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A. More Challenge Methods and Teams
A.1. NJU MCG
Description. The NJU MCG team builds their solu-
tion upon the Adaptive Token Dictionary Super-Resolution
(ATDSR) model [63]. In addition to the original
three-branch architecture, they introduce a new Mamba-
based [13] branch. This branch incorporates an OmniShift
module [57] before the Mamba unit and transforms the
input into four-directional sequences for directional scan-
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ning [34]. Furthermore, the team replaces the ConvFFN
component of the original ATDSR with a GDFN struc-
ture [60], which enhances the model’s non-linear represen-
tation capacity. The core ATM module structure is illus-
trated in Figure 1.
Implementation Details. While ATDSR relies primarily
on multi-head self-attention (MSA) [35] for feature aggre-
gation, it is limited by window size and subcategory defi-
nitions, reducing its ability to convey global pixel-level in-
formation. The introduction of a four-directional Mamba
branch overcomes this limitation by enabling directional
pixel communication with linear computational complexity.

To further boost local feature awareness, the OmniShift
module is added prior to Mamba. This ensures each input
token encodes spatial context from its neighborhood, thus
enhancing local structure recovery. Meanwhile, replacing
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Figure 1. Team NJU MCG
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Figure 2. Team X-L

ConvFFN with GDFN improves both spatial feature model-
ing and non-linear capacity, leading to stronger pixel-level
reasoning performance.

The team trains their ATM model using the Adam opti-
mizer [26] with β1 = 0.9 and β2 = 0.99. The training loss
is computed using the L1 loss. A MultiStepLR scheduler
is adopted, with learning rate milestones set at 300000 and
500000 iterations. The initial learning rate is 2× 10−4 and
is halved at each milestone. The training dataset consists of
DIV2K, Flickr2K, and LSDIR.

A.2. X-L
Description. Existing super-resolution methods typically
require substantial computational resources. To ensure
performance while reducing computational overhead, the
team members adopted the following strategy: leverag-
ing two leading approaches, HAT (Hybrid Attention Trans-
former) [6] and RGT (Recursive Generalization Trans-
former) [9], the team members directly utilized their pre-
trained models to perform self-ensemble, generating two
output results. Then, the team members conducted a model
ensemble on these two outputs, integrating the results be-
tween models to obtain the final reconstruction result. The

(a) Data

(b) Module

Figure 3. Team Endeavour

overall pipeline is shown in Figure 2.
As for the Training strategy, the team members do not

require additional training; instead, the team members di-
rectly leverage existing methods and their pre-trained mod-
els for inference. This approach not only saves signifi-
cant computational resources and time but also fully uti-
lizes the excellent models and valuable expertise available
in the field. By directly employing these pre-trained mod-
els, the team members can quickly generate high-quality
predictions while avoiding the high costs and complexity
associated with training models from scratch.
Implementation Details. The team leverages pretrained
HAT [6] and RGT [9] models, which are fine-tuned on
DIV2K. During inference, the team members perform self-
ensemble and model ensemble to enhance the final results,
which do not need training at all.

A.3. Endeavour
Description. The Endeavour team proposes an innovative
approach based on the HAT network model [6], enhanced



Figure 4. Team CidautAi

with a frequency-domain fusion module to improve per-
formance on image restoration tasks. A key feature of the
method is the construction of a high-quality dataset called
Data-LDCC, specifically designed to bridge the domain gap
between training and testing distributions. To enable this,
the team uses the CLIP model to extract latent features
from both the training candidate data and test data, and
then applies cosine similarity [47] to select the most se-
mantically aligned samples. The final Data-LDCC dataset
includes selected images from LSDIR [27], HQ-50K, and
Flickr2K [29]. The dataset construction pipeline is shown
in Figure 3a.

Network Architecture. The proposed model is built
upon HAT, which incorporates channel attention and
window-based self-attention mechanisms. To further en-
hance detail reconstruction, a frequency-domain fusion
module is added. This module operates in the frequency do-
main and complements the spatial features extracted by the
base network, thereby improving the model’s ability to rep-
resent high-frequency information. The complete network
structure is illustrated in Figure 3b.
Implementation Details. The training process consists of
three distinct stages. In the first stage, the model is pre-
trained on the ImageNet dataset to establish a strong ini-
tial representation. In the second stage, it is optimized on
the DF2K dataset, composed of DIV2K and Flickr2K im-
ages, to enhance generalization. Finally, in the third stage,
fine-tuning is performed jointly on DF2K and Data-LDCC,
which enables the model to adapt to the target test domain
more effectively.

1. Stage 1: The model is trained on ImageNet for 70,000
iterations with a patch size of 64 × 64 and a batch size
of 256.

2. Stage 2: Training continues on DF2K for 50,000 itera-
tions, with a larger patch size of 96 × 96 and a reduced
batch size of 128.

3. Stage 3: The model is fine-tuned for 20,000 iterations
on DF2K + Data-LDCC using 112 × 112 patches and a

batch size of 64.

This progressive training pipeline allows the model to
gradually adapt to more complex data and resolution scales.
The training strategy includes fixed learning rates within
each stage and checkpoint-based model selection.

A.4. CidautAi

Description. The team members propose a x4 SR solution
for both tracks, however, the results might be more optimal
if the team members consider track 2) perceptual metrics.

The model is a learned ensemble of state-of-the-art
super-resolution techniques. It takes as input the results of
three super-resolution models: (i) two models optimized
for fidelity and minimal distortion, MSE (PSNR) [18, 65].
(ii) one perceptual model, SUPIR [58], designed to en-
hance perceptual metrics and visual quality from a human
perspective.

The model is based on DRCT [18]. Using attention
mechanisms designed to enhance textures, the results
of DRCT are combined with the outputs of the other
two models (HIT-SCR [65] and SUPIR [58]). the team
members illustrate this in Figure 4.
Implementation Details. For training the model, a com-
bined loss function was used to balance maintaining good
PSNR performance while enhancing visual details.
L = L2(x̂−x)+(1−SSIM(x̂−x))+0.5 ·Lpips(x̂−x).

The team members used the DIV2K and FLICKR2K
datasets for training, which were preprocessed through
the three models before being fed into the ensemble
model. The images generated by the three models were
concatenated and processed through the network with a
batch size of 16 and 512 for crop size.

The results obtained have been quite encouraging with
respect to the goal. Although the PSNR of SuPEm is
slightly lower than that of DRCT, perceptual metrics show
a considerable improvement. The results differ from those



Figure 5. KLETech-CEVI

reported as the metrics were calculated using techniques
different from those provided in the challenge.

These results are consistent with those obtained from the
other test datasets used for the super-resolution problem:
DIV2K, LSDIR, Urban100, Manga109, Set5, and Set14.
Contact us if you want to know the results.

Despite using three pre-trained models, the approach
has a certain degree of novelty, as it aims to leverage the
advantages of perceptual-focused models and integrate
them into the results of other models through attention
mechanisms.

A.5. KLETech-CEVI
Description. The proposed framework, WHAT (Wavelet
Hybrid Attention Transformer), is built upon a pre-trained
HAT-L model and designed to enhance ×4 image super-
resolution by integrating hybrid attention and frequency-
aware learning. The architecture introduces Non-Local
Sparse Attention (NLSA) blocks to improve long-range
dependency modeling. Training is performed on LSDIR
and DIV2K with standard augmentations. The framework
is further guided by a composite loss function combining
pixel-wise, wavelet, perceptual, and MS-SSIM terms. It re-
quires 33 hours of training and achieves an inference speed
of 0.9s per image.
Implementation Details. The proposed super-resolution
framework integrates hybrid attention mechanisms and
wavelet-based loss functions to enhance image quality. The
methodology consists of the following key components.
Hybrid Attention Architecture. To improve the receptive
field and enhance feature learning, the model builds upon
the Hybrid Attention Transformer (HAT) [6] framework

while incorporating Non-Local Sparse Attention (NLSA)
blocks. The architecture follows these enhancements.
NLSA blocks are added before and after the core HAT
model to strengthen global feature aggregation and long-
range dependencies. The transformer backbone uses a pre-
trained HAT-L model with a default configuration where the
embedding dimension is set to 180, the patch embedding
size is 4, and the total number of trainable parameters is 41.3
M. This structure helps in capturing both local and global
features efficiently, making it suitable for super-resolution
×4 tasks. The overall architecture is shown in Figure 5.
Wavelet-Based Loss Function. To improve the recovery
of high-frequency details, the model incorporates wavelet-
domain losses alongside conventional RGB pixel-wise
losses. A Symlet filter is used to compute wavelet coeffi-
cients. In the wavelet loss function, the weights for sub-
bands λj are set to 0.05 to prevent chroma artifacts. The
loss balances low- and high-frequency details, preserving
textures and edges. The loss function is inspired by [24]
and is defined as:

LG = LRGB + LWavelet + LMS-SSIM + LVGG (1)
where LRGB is the pixel-wise loss in the RGB domain, and
LWavelet is the wavelet-based loss that ensures sharp details
in the reconstructed image.

A.6. JNU620
Description. Inspired by the recent success of Transformer-
and Mamba-based architectures, the JNU620 team pro-
poses a framework for image super-resolution based on pre-
trained models and ensemble learning, named PMELSR.
As shown in Figure 6, the pipeline consists of two stages
and follows an ensemble learning paradigm. In the first
stage, the team employs three powerful pre-trained back-
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Figure 7. Team ACVLAB

bones—DAT [7], HAT-L [6], and MambaIRv2 [14]—to
process the low-resolution input independently. The outputs
are then fused to generate a preliminary super-resolved re-
sult. In the second stage, a RRDBNet [51] refinement mod-
ule is used to further optimize the fused results and enhance
the final image quality. Although this design increases com-
plexity, it is intended to maximize performance.

Implementation Details. During training, the parameters
of the pre-trained models (DAT, HAT-L, and MambaIRv2)
remain fixed, and only the RRDBNet refinement module
is updated. The model is optimized using the Adam op-
timizer with the L1 loss function, and data augmentations
such as random flips and rotations are applied. Training is
conducted on the DIV2K dataset, with HR patches of size
512 × 512 randomly cropped from the full-resolution im-
ages. The batch size is set to 4, and training runs for a total
of 400K iterations. The initial learning rate is set to 2e-4
and decayed using a cosine annealing schedule.

In the testing phase, the team adopts two ensemble
strategies to reduce prediction bias: self-ensemble and
model ensemble. First, the self-ensemble technique is ap-
plied to each pre-trained model to enhance individual per-
formance. Then, the outputs of all models are combined
through model ensemble. Finally, the fused results are fur-
ther refined using RRDBNet, again applying self-ensemble
to improve the final output quality.

A.7. ACVLAB
Description. The proposed method is built upon the Hybrid
Attention Transformer (HAT) [6] and enhanced through
self-ensemble fusion strategies. The approach aims to
improve reconstruction performance by leveraging multi-
ple training stages and combining diverse model check-
points. The training is conducted on the LSDIR and DIV2K
datasets, with data augmentations including random flips
and rotations. The method is designed to progressively re-
fine model accuracy through careful learning rate schedul-
ing and loss function transitions.
Implementation Details. The training process is divided
into two phases, each consisting of 800,000 iterations. The
Adam optimizer is used with parameters β1 = 0.9 and
β2 = 0.999, and the initial learning rate is set to 2× 10−4.
A multi-step learning rate scheduler reduces the learning
rate at iterations 300,000, 500,000, 650,000, 700,000, and
750,000. No weight decay is applied. High-resolution train-
ing patches of size 256× 256 are extracted and augmented
using horizontal flips and rotations. The first training phase
optimizes the model using L1 loss with a batch size of 16,
while the second phase switches to MSE loss for further
refinement. The method is implemented in PyTorch 1.13.1
and trained on two NVIDIA GeForce RTX 3090 GPUs. The
final model integrates multiple trained checkpoints for en-
semble inference.

A.8. CV SVNIT
Description. The single-image super-resolution model uti-
lizes the Hybrid Attention Transformer (HAT) [6] archi-
tecture, incorporating pretrained weights to enhance over-
all performance. The network is divided into three primary
stages: shallow feature extraction, deep feature extraction,
and image reconstruction. Each stage plays a crucial role
in capturing relevant features from low-resolution input im-
ages to reconstruct HR outputs with high fidelity.

The model is designed for single-image super-resolution
with a scaling factor of ×4. It consists of 6 attention blocks
and a depth of 6 layers. Pretrained weights were used to
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Figure 8. Team CV SVNIT

initialize the model, which allows for faster convergence
and improved accuracy during the training process. The in-
put low-resolution (LR) image is processed through shal-
low feature extraction layers that capture important low-
frequency information. Deep feature extraction layers are
used to extract high-frequency details essential for produc-
ing high-quality super-resolved images.

The model uses the Gaussian Error Linear Unit (GELU)
activation function, which helps maintain smooth gradients
and enhances learning performance. Global residual con-
nections are employed to combine shallow and deep fea-
tures, enabling a comprehensive understanding of the image
across multiple layers. The reconstructed image is produced
using the gathered feature information in the final stage.

Hybrid attention blocks (HAB) are applied to preserve
high-frequency details by selectively emphasizing impor-
tant features. Each residual attention block includes atten-
tion mechanism blocks (AMB), an overlapping cross atten-
tion block (OCAB), and a 3×3 convolution layer with resid-
ual connections. Channel attention blocks in the AMB per-
form adaptive re-scaling of features on a per-channel basis
to refine the reconstruction. The pixel shuffle operation is
used to upscale the feature maps to the desired ×4 factor.

To ensure smoothness and reduce artifacts in the output
image, total variation (TV) loss is combined with Charbon-
nier loss. Additionally, the team members incorporated L1
loss and SSIM (Structural Similarity Index Measure) loss to
improve the image’s structural quality.

The overall loss function is defined as:
Loss = B1 · L1 Loss +B2 · SSIM +B3 · TV Loss (2)

where,
B1 = 1, B2 = 0.5, B3 = 10−1 (3)

Implementation Details. The model was trained using the
DIV2K and LSDIR datasets. The architecture consists of 6
attention heads with a window size of 16, while the number
of hybrid attention blocks (HAB) and attention mechanism
blocks (AMB) is set to 6. The number of channels is set to
64.

The learning rate is initialized at 5 × 10−5 and decays
by half every 10k iterations. The model was trained for a
total of 100k iterations with a batch size of 2. The Adam
optimizer is used to minimize the combination of L1 loss,
SSIM, and TV loss, optimizing performance [6].

A.9. HyperPix
Description. The proposed solution integrates a
Transformer-CNN hybrid architecture with advanced atten-
tion mechanisms to address single-image super-resolution.
The network is designed to efficiently extract both low-
frequency and high-frequency features, leveraging Hybrid
Attention Blocks (HABs) and Overlapping Cross-Attention
Blocks (OCABs). This approach significantly improves
feature representation and super-resolution performance.
The model is further enhanced through specialized pre-
training on large-scale datasets, improving generalization
across diverse low-resolution inputs.
Implementation Details. The proposed super-resolution



Figure 9. Team HyperPix

framework consists of three main components: shallow fea-
ture extraction, deep feature extraction, and image recon-
struction. The low-resolution (LR) input ILR is passed
through a convolutional layer for shallow feature extraction,
followed by a series of Residual Hybrid Attention Groups
(RHAG) and a 3x3 convolution layer for deep feature ex-
traction. A global residual connection fuses shallow and
deep features, which are then upsampled using a pixel shuf-
fle operation.
Hybrid Attention Block (HAB). The HAB is designed to en-
hance pixel activation through channel attention and self-
attention. The HAB works in tandem with the Swin Trans-
former block to improve the network’s feature representa-
tion. Each HAB contains a channel attention block (CAB)
and a window-based multi-head self-attention (W-MSA)
module, with self-attention computed within local windows
of size M ×M .
Overlapping Cross-Attention Block (OCAB). The OCAB
further enhances representation capability by establishing
direct cross-window connections. Unlike traditional self-
attention, OCAB employs an overlapping cross-attention
mechanism to compute attention within pixel tokens across
windows of varying sizes, enabling richer feature extraction
and stronger inter-window connections.

For training, the model uses the DIV2K and LSDIR
datasets. The depth and width of the network are compara-
ble to SwinIR, with 6 Hybrid Attention Blocks (HABs) and
6 DAT Blocks (DATBs). The model is trained for 20,000
iterations with a batch size of 8, using a learning rate of
1 × 10−4, which decays by 0.5 every 10,000 iterations.

The Adam optimizer is used, and the model is implemented
in PyTorch. The pre-training strategy leverages large-scale
datasets to improve generalization, and the network param-
eters are optimized using the L1 loss function.

A.10. BVIVSR
Description. The BVIVSR team proposes HIMam-
baSR, a novel architecture that integrates the strengths
of MambaIRv2-B [14] and HIIF [22] to enhance super-
resolution performance. As shown in Figure 10, the team
adopts the MambaIRv2-B model—excluding its upsam-
pling modules—as a latent encoder Eφ. The core of Mam-
baIRv2 consists of a sequence of Attentive State Space
Groups (ASSG), each comprising multiple Attentive State
Space Blocks (ASSBs). Within each ASSB, a local-to-
global modeling strategy is applied using Window Multi-
Head Self-Attention (MHSA) for local feature capture and
an Attentive State Space Model (ASSM) for global depen-
dencies. Each block follows a “Norm → Token Mixer →
Norm → FFN” design, incorporating two residual connec-
tions with learnable scaling. This encoder is responsible for
extracting latent features from the low-resolution image.

The decoder Dϱ is built on HIIF, which reconstructs
high-resolution images from the extracted features. The
HIIF decoder includes a multi-scale hierarchical encoding
module, multiple multi-head linear attention blocks, and
MLPs. It uses hierarchical positional encoding to capture
the local implicit image function across multiple scales.
These encodings are progressively injected throughout the
network, promoting effective feature propagation and en-



Figure 10. Team BVIVSR

Figure 11. Team AdaDat

hancing the ability to recover high-frequency details.

By leveraging the representation capacity of
MambaIRv2-B in latent feature encoding and the
continuous-scale decoding capability of HIIF, the pro-
posed HIMambaSR model demonstrates flexible and
high-quality super-resolution performance.

Implementation Details. The team adopts the original
configurations of both MambaIRv2-B and HIIF. The train-
ing dataset includes DIV2K [48], 1,000 2K-resolution im-
ages from BVI-AOM [40], Flickr2K [29], and 5,000 images
from LSDIR [27]. For evaluation, the team follows the stan-
dard protocol [22, 23] in continuous super-resolution and
uses the DIV2K validation set containing 100 images. The
learning rate is set to a maximum of 4 × 10−4 and follows
a cosine annealing schedule with a warm-up period of 50
epochs. The model is optimized using the L1 loss and the
Adam optimizer [26]. Training and testing are conducted
on four A100 GPUs. The final model contains approxi-
mately 24.5M parameters and is trained with resolution of
64× 64× 3, using a batch size of 48 for 1,000 epochs.

A.11. AdaDAT

Description. Adaptive DAT (AdaDAT) is an enhanced ver-
sion of DAT that can adapt to new datasets with the pre-
trained DAT model [7] and the adaptive layer. The moti-
vation of AdaDAT is that the team members observe that
most existing SR models have achieved great performance,
and the team members aim to leverage the power of these
pretrained models to adapt to new datasets or tasks. Fig-
ure 11 illustrates the overall pipeline of the proposed Ada-
DAT. Given a low-resolution image x, the team members
first use the shallow feature extractor (SFE) to extract the
shallow features fs, where the SFE consists of a single con-
volutional layer. Then, the team members use the deep fea-
ture extractor (DFE) to extract the deep features fd. The
DFE consists of N blocks, where each block consists of a
pretrained DAT basic layer and an adaptive layer. The pre-
trained DAT basic layer is used to extract the basic deep
features, while the adaptive layer is used to introduce the
adaptive information. Given the input features, in the adap-
tive layer, the team members first use a 2d adaptive average
pooling layer (Adaptive AvgPool2d) to process the input
features and then use 2 convolutional layers with a ReLU
activation function in between to process the output of the
pooling layer. The sigmoid function is used to generate the
attention map, which is then multiplied with the input fea-
tures to generate the output of the adaptive layer. The out-
put of the adaptive layer is then added to the output of the
pretrained DAT basic layer to generate fd. The fd is then
added with fs to serve as the input of the reconstruction
layer. The reconstruction layer is used to reconstruct the
high-resolution image X .

Implementation Details. the proposed AdaDAT is trained
on the LSDIR dataset [27]. The team members employed
the Adam optimizer with learning rate of 1e-5, β1 = 0.9,
and β2 = 0.999, running for 250K iterations. The learn-
ing rate is reduced by half at iterations [125K, 200K, 225K,
237K]. The batch size is set to 32. The input image is set
to 64 × 64. The L1 loss is used as the loss function to op-



Figure 12. Team Junyi

timize the model. The proposed AdaDAT is trained in two
phases. In the first phase, the team members optimized only
the adaptive layer and fixed the pretrained DAT basic layers.
In the second phase, the team members optimized both the
adaptive layer and the pretrained DAT basic layers. The first
phase is used to adapt the model to the new dataset, while
the second phase is used to fine-tune the whole model. In
the first 125K iterations, the team members trained the first
phase, and then the team members trained the second phase
for the rest of the iterations.

A.12. Junyi
Description. Deep learning models currently applied in
the field of image super-resolution have achieved significant
advancements, with increasingly diversified network archi-
tectures such as the Dual Aggregation Transformer (DAT)
model [7] and the Shifted Window Transformer (SwinIR)
model [28].

To investigate whether these models can achieve en-
hanced super-resolution performance through fusion tech-
niques, a series of model fusion experiments were con-
ducted based on three foundational architectures: DAT,
SwinIR, and the Residual Feature Distillation Network
(RFDN) [32]. This study systematically evaluates the syn-
ergistic efficacy of integrating these state-of-the-art models,
aiming to explore potential performance improvements in
super-resolution reconstruction tasks through architectural
hybridization and parameter optimization strategies.

Beyond the aforementioned fusion framework con-
stituting the primary investigation, a secondary fusion
paradigm was further implemented by integrating the Real-
ESRGAN [51, 52] architecture with the Dual Aggregation
Transformer (DAT) model. This comparative experiment
was specifically designed to quantify performance discrep-

ancies arising from distinct fusion methodologies. Subse-
quent analysis of experimental results, rigorously evaluated
through standardized metrics (Peak Signal-to-Noise Ratio
[PSNR] and Structural Similarity Index [SSIM]), demon-
strated superior quantitative performance in the initial fu-
sion strategy. Based on this empirical evidence, the first fu-
sion configuration was conclusively adopted as the optimal
solution, thereby establishing its technical predominance
in balancing reconstruction fidelity and computational ef-
ficiency within the experimental framework.
Implementation Details. The fusion methodology em-
ploys an output-level model fusion approach. Specifically,
three baseline models—DAT, SwinIR, and RFDN—were
fine-tuned. A lightweight attention-based weight allocation
network was then devised to dynamically optimize the fu-
sion coefficients among the three super-resolution outputs.

This architectural design enables adaptive spatial
weighting across different reconstruction results, where
the attention mechanism automatically prioritizes region-
specific contributions from each model based on local tex-
ture complexity and edge preservation characteristics. The
weight optimization process was conducted through end-to-
end training using perceptual loss constraints, ensuring both
quantitative metrics and visual quality in the fused super-
resolution output.

The architectural configuration of the proposed model is
illustrated in Figure 12.
Training Strategy. All experimental procedures were con-
ducted using the DIV2K dataset for model development and
evaluation. The fine-tuning of three baseline models was
the starting point for the training process, with key hyper-
parameters documented for reproducibility.

Once the baseline models were trained, the weight pre-
diction network was optimized over 150 epochs with a batch



(a) The block schematic of the proposed architecture for scaling factor ×4.

(b) The schematic of the DAT block with triple attention.

Figure 13. Team ML SVNIT

size of 72, requiring approximately 5 hours of training using
an NVIDIA GeForce RTX 4090 GPU. The Adam optimizer
was used with combined MSE and L1 loss functions. The
final fusion model consisted of 28.4K parameters and was
trained without extra data.

A.13. ML SVNIT
Description. In order to design single-image super-
resolution, the proposed solution employs a Transformer
and CNN-based network approach. As shown in Figure 13,
the overall network consists of three parts, including shal-
low feature extraction, deep feature extraction, and image
reconstruction.
Implementation Details. The proposed pyramid atten-
tion and dual aggregate transformer (DAT) architecture for
single-image super-resolution with a scaling factor of ×4 is
depicted in Figure 13 (a). The low-resolution (LR) image is
passed through the network to extract both low-frequency
and high-frequency features. Initially, a shallow feature ex-
traction module employs a convolutional layer to capture
essential low-frequency details.

The extracted features are then processed through a
deep feature extraction module, which incorporates multi-
ple residual group blocks (RBG) and dual aggregate trans-
former (DATB) blocks. A global residual connection fuses
shallow and deep features, ensuring efficient information
propagation.

To reconstruct the high-resolution (HR) image, the re-
construction module refines the extracted features and up-
samples them using a pixel shuffle operation. This preserves
high-frequency details and enhances super-resolution per-
formance. The adaptive self-attention and pyramid attention
mechanisms further improve feature representation, making
the model highly effective for real-world super-resolution
tasks [6, 7].

The DIV2K and LSDIR datasets are used for training.
The depth and width of the model are kept the same as
SwinIR. Specifically, the RGB number and DATB number
are both set to 6. The model is trained for up to 2 × 104

iterations with a batch size of 8. The attention head number
and depth are set to 4 each. The code is implemented using
the PyTorch library. The loss function is Charbonnier loss
with a learning rate of 1 × 10−4, which is decayed by 0.5
every 1 × 104 iterations. The model is optimized using the
Adam optimizer.

A.14. SAK DCU
Description. The network architecture of the proposed
method is shown in Figure 15a and Figure 15b. The pro-
posed image super-resolution framework, SAKSRNet, as
shown in Figure 14,, integrates multiple components that
are designed to enhance feature extraction, preserve fine
details, and improve upsampling quality. The architecture
consists of a multi-scale convolution block (MSCB) [42],
gated convolution feature enhancement (GCFE) module [4],
Swin Transformer block (STB) [28], and a lightweight
recurrent mechanism [53], which includes gated convo-
lution (GConv) and progressive pixel-shuffle upsampling
(PPSU) [61].

The network takes a low-resolution (LR) image as input,
which undergoes hierarchical feature extraction through the
MSCB. This block captures multi-scale spatial and contex-
tual information using varied strides and kernel sizes. It also
employs residual connections to maintain training stability.

Next, the GCFE module replaces traditional convolu-
tions with gated convolutions, introducing dynamic feature
selection to suppress noise while preserving edges and tex-
ture details. This is followed by the Swin Transformer
block, which enhances long-range feature modeling via hi-
erarchical window-based attention and LayerNorm, effec-
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(b) Team SAK DCU Result

Figure 15. Team SAK DCU

tively refining global structures.
The recurrent module, named the lightweight process-

ing unit, is integrated to optimize spatial feature aggregation
across varied receptive fields in a memory-efficient manner.

Finally, the PPSU module performs resolution enhancement
via sub-pixel convolutions. Its progressive design enables
fine-grained sharpening of textures and reduction of arti-
facts in the HR output.
Implementation Details. The network is trained using the
Adam optimizer [26] with a composite loss function com-
posed of L1 loss, perceptual loss, and adversarial loss [66],
aiming to balance pixel accuracy, perceptual similarity, and
realism. The initial learning rate is set to 2 × 10−4 and
decayed to 10−6 via a cosine annealing schedule. A warm-
up strategy is applied in the first 5000 iterations to stabilize
training.

Training is conducted on an A6000 GPU with 48GB
memory. The batch size is set to 16, and patch size is
64 × 64. Data augmentation strategies include random ro-
tations, horizontal and vertical flips, and Gaussian noise in-
jection. No external datasets are used beyond the provided
training data.

The team implements the method based on the RTSR
codebase (NTIRE 2023), and intends to submit an extended
version of this work to a journal. Visual results demonstrat-
ing the model’s performance are presented in Figures 15a
and 15b.

A.15. VAI-GM
Description. The VAI-GM team builds upon the DRCT
methodology [8] to further improve its performance on 4×
super-resolution (SR). As illustrated in Figure 16, the base
network is DRCT, an established state-of-the-art method for
4× SR. The team enhances the original architecture by in-
troducing additional skip connections between every two



RDG RDG RDG RDG RDG

Shallow Feature
Extraction

Deep Feature
Extraction

Image
Reconstruction

RDG3x3 Conv Layer

Pixel Shuffle Layer

Residual Deep Feature
Extraction Group

Element-wise sum

DF2K(DIV2K+Flickr2K)
Training Data Validation Data

Unsplash2K
(20 images)(3450 images)

Dataset Used

Figure 16. Team VAI-GM

MambaIRv2-B

Input LR 
Database

MambaIRv2-Light

Knowledge 
Distillation

L1 
Loss

Reference HR Database

Student Network

Teacher Network

Figure 17. Team Quantum Res

RDG (Residual Dense Group) blocks and employing 12
RDG blocks in total. These multi-step residual connections
allow features from shallower layers to be preserved and
passed to deeper layers, mitigating gradient vanishing and
helping retain low-level details critical for high-quality im-
age reconstruction.

This architectural enhancement draws inspiration from
traditional residual learning strategies such as ResNet [17],
as well as more recent transformer-based designs like
HAT [6], which combine hierarchical attention with skip
connections to maintain robust feature flow. By integrat-
ing these principles into the DRCT framework, the team
improves information propagation and training stability, re-
sulting in better image quality.
Implementation Details. Training is conducted on
800 images from DIV2K [48] and 2,650 images from
Flickr2K [29], with validation on 20 images from Un-
splash2K [25]. Pretraining is used by initializing from a
DRCT-L model trained on ImageNet and fine-tuning it on
the SR task. The model is optimized using Adam with a
learning rate of 5× 10−4, weight decay set to 0, and β val-
ues of 0.9 and 0.99. The learning rate is scheduled using
MultiStepLR, with milestones at 125000, 200000, 225000,
and 240000 iterations, and a decay factor of 0.5.

Training is run for 250,000 iterations. Data augmenta-
tions include random horizontal flips and rotations. The
batch size is set to 4 per GPU, with a ground-truth patch
size of 256. The model is trained using the L1 loss, which
minimizes the average absolute difference between the pre-
dicted SR image Î and the HR ground truth image I:

LL1 =
1

N

N∑
i=1

∣∣∣Îi − Ii

∣∣∣ (4)

where N is the total number of pixels. This loss provides
robustness to various noise levels in super-resolved outputs.

A.16. Quantum Res
Description. In this work, the team members propose
a novel student-teacher framework for super-resolution as
shown in Figure 17 that enables a lightweight student model
to achieve better performance comparable to heavier mod-
els. Specifically, to adopt this architecture the team mem-
bers used MambaIRv2-Light [14] as the student model,
while MambaIRv2-base [14] serves as the teacher. While
the team members use MambaIRv2-light as an efficiency,
the key contribution is demonstrating that a guided student-
teacher learning strategy can significantly improve SR per-
formance while keeping model complexity low [50].

The student model extracts the initial low-level features
from the input low-resolution image using the 3× 3 convo-
lutional layer. The core of the network comprises a series of
Attentive State-Space Blocks (ASSBs) [14]to capture long-
range dependencies efficiently. For each block, residual
connections are used to facilitate stable gradient propaga-
tion. Finally, a pixel-shuffle-based upsampling module re-
constructs the final high-resolution image. [14]

Mathematically, the feature extraction and transforma-
tion process in a single ASSB can be formulated as:

Fout = ASSB(Fin) + Fin (5)
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where Fin and Fout are the input and output feature maps,
respectively. [14]

The teacher model, MambaIRv2, follows the same archi-
tectural design but with increased depth and wider feature
dimensions. This model has significantly more parameters
and serves as an upper-bound reference for the student.

Teacher-Guided Inference: The teacher model remains
frozen throughout training and is only used as a quali-
tative reference to validate architectural choices and im-
provements. The student model inherits refined architec-
tural principles from the teacher rather than weight transfer
or feature alignment. This allows the student to retain its
original lightweight nature while benefiting from structural
knowledge obtained from a larger-capacity model. [50]

Inference Strategy: During inference, an efficient
patch-based processing method is applied to handle high-
resolution images. Given an input image, it is divided into
overlapping patches. Each patch is processed independently
by the student network, and final predictions are blended
using a weighted averaging scheme to ensure seamless re-
construction. [14]

ISR =
∑
k

WkS(Pk) (6)

where Pk are the patches processed independently by the
student network, Wk are blending weights ensuring smooth
transitions between adjacent patches.

Implementation Details. The student model is initial-
ized using pre-trained weights of MambaIRv2-light. The
teacher model is loaded with pre-trained weights from a
high-performing MambaIRv2-base variant.

Fine-tuning was performed on DIV2K and LSDIR, with
the number of feature channels set to 48. The training was
conducted on patches of size 192×192 extracted from high-
resolution images, using a batch size of 8. The model is
finetunned by minimizing the L1 loss function using the
Adam optimizer.

The initial learning rate is set to 1× 10−5 and is reduced
when training iterations reach specific milestones, follow-
ing a MultiStepLR decay strategy with a factor of 0.5. The
total number of iterations is 150k. The teacher model is only
used as a reference for guiding architectural refinement and
remains frozen throughout the training.

A.17. PSU
Description. The PSU team proposes a novel deep learn-
ing framework named OptiMalDiff, which formulates im-
age restoration as an optimal transport problem based on
Schrödinger Bridge theory. The method aims to learn the
most efficient stochastic path connecting the distributions
of degraded and clean images. As shown in Figure 18, the
architecture integrates multiple components:
• Hierarchical Swin Transformer Backbone: Utilizes an

encoder-decoder structure with window-based multi-head
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Figure 19. Team IVPLAB-sbu

self-attention to efficiently extract both local and global
features.

• Schrödinger Bridge Diffusion Module: Learns an opti-
mal transport plan via a forward diffusion process and a
conditional reverse denoising UNet.

• Multi-Scale Refinement Network (MRefNet): Com-
prises a coarse-scale UNet branch and a fine-scale refine-
ment stage guided by the coarse output.

• Adversarial Training Module: Uses a PatchGAN dis-
criminator to ensure texture realism by classifying local
image patches.

Implementation Details. The model is trained from
scratch without any pre-trained weights, using the DIV2K
dataset provided for the NTIRE 2025 Image Super-
Resolution (×4) Challenge. The team employs a composite
loss function that combines diffusion loss for accurate noise
prediction, optimal transport loss based on Sinkhorn diver-
gence, multi-scale SSIM and L1 loss for perceptual quality
enhancement, and adversarial loss to improve texture real-
ism and natural appearance.

The model is trained for 300 epochs with a batch size of
8, totaling 35,500 iterations per epoch. All components are
optimized jointly in an end-to-end manner using PyTorch.
The final model contains approximately 41 million parame-
ters. Efficient inference is achieved through the use of win-
dowed attention in the backbone. According to the team,
this is the first application of Schrödinger Bridge theory
combined with diffusion modeling for image restoration in
a multi-scale adversarial training framework. The method
has not been previously published.

A.18. IVPLAB-sbu

Description. Inspired by SwinFIR [62] and using the
SwinIR [28] architecture, the model is slightly similar to
the latter by incorporating the Spatial Transform Attention
Block into it. As shown in Figure 19e, it consists of a
conv3×3 layer to capture shallow features, as it showed its
strength and stability to start with transformers, a Deep Fea-
ture Extraction Module, and a Reconstruction phase.

The deep feature extraction module, including several
Residual Swin Transformer Blocks (RSTB), is structured as
follows: Each RSTB consists of several Swin Transformer
Layers (STL), and the Spatial Transform Attention Block
(STAB) is the last layer instead of the convolution layer in
SwinIR [28]. The Swin Transformer Layers (STL) use a
Multi-head Self-Attention and a shifted window mechanism
to calculate self-attention for windows separately. The Pix-
elShuffle upsamples features in the Reconstruction part.

Spatial Transform Attention Block. Convolution layers
bring the inductive bias to the transformer model, but the
size of the convolution kernels is an issue. Small kernel
sizes exert minimal influence on receptive fields, whereas
excessively large kernels may lead to saturation, resulting
in degraded performance.

Spatial Transform Attention Block (STAB), as shown in
Figure 19e, consists of a Transform Attention Block (TAB)
to capture the feature maps in the transform domain, in par-
allel with a Residual Block, in order to take feature maps
in the spatial domain. Each part is explained in detail as
follows.



Figure 20. Team MCMIR

Transform Attention Block. The performance of the
model increases by using a Transform Attention Block in-
stead of a convolution layer, as convolution layers focus on
low resolutions. Transform methods sharpen the edges of
input features effectively and thus could be a good choice
to focus more on edges.

The Transform Attention Block, depicted in Figure 19b,
includes a Wavelet Transform Attention Block, a Fourier
Transform Attention Block, and a Channel Attention
Layer. A Wavelet Transform Attention Block, alongside
the Fourier Transform Attention Block, is responsible for
capturing the information of transform domains. Then, all
information is concatenated, and a conv1×1 reduces the di-
mension of channels. Output of this convolution is then fed
to a Channel Attention Layer to select the best channels.

Wavelet Transform Block. Wavelet Transform is a tech-
nique to capture feature maps and expand the receptive
fields, as it extracts frequencies in three different directions:
horizontally, vertically, and diagonally. It also maintains
low-resolution spatial input decomposition. Therefore, ex-
tracting feature maps from it using a convolution layer is
like extracting features from a low-resolution input.

The Wavelet Transform Block, depicted in Figure 19c,
uses a Daubechies Wavelet Transform in four levels. Each
decomposition of the input is fed into a conv1×1, followed
by a LeakyReLU, before applying the inverse wavelet trans-
form to extract more accurate features.

Fourier Transform Block. The Fourier Transform Block,
depicted in Figure 19d is the same as the Wavelet Transform
Block, but instead of the wavelet, the team members used
a Fast Fourier Transform (FFT). As it extracts the global
features of the input image in the frequency domain, it can
leverage the impact of global information and expand the
receptive fields.

Residual Block. The Residual Block consists of two
conv3×3 layers, a LeakyReLU activation function in be-
tween, and a skip connection to extract more local features
in the spatial domain, as shown in Figure 19a.
Implementation Details. The model was trained on the
DIV2K dataset, and Set5, Set14, and DIV2K validation
datasets were used for the validation phase. PSNR, SSIM,
and LPIPS are metrics to measure model results. The batch
size, window size, and patch size were set to 4, 12, and 60,
respectively. The number of RSTB blocks, STL blocks, and
heads in multi-head self-attention was all set to 6, while the
channel dimensions were set to 180.

The model underwent training for 500k iterations using
the Charbonier loss function and Adam optimizer (with β1

= 0.9 and β2 = 0.99), without weight decay. The initial
learning rate was set to 2e-4 and halved at 250000, 400000,
450000, and 475000 iterations. Implementation was car-
ried out using the Pytorch framework on a single RTX 3090
GPU. Additionally,



• Total method complexity (parameters: 15,479,531).
• The model is trained on the DIV2K train dataset.
• The team uses BasicSR API and Pytorch-wavelets. Ad-

ditionally, the team members used the SwinFIR code to
implement the model.

A.19. MCMIR

Description. In recent years, Transformer-based meth-
ods [49] have emerged as the dominant approach in the field
of image restoration [1, 5, 16, 21, 28, 33], particularly ex-
celling in image super-resolution tasks and surpassing the
performance of CNN-based approaches [11, 31]. How-
ever, despite their impressive performance, the attention
mechanism in Transformers is constrained by the quadratic
computational cost of vanilla self-attention. While some
works address this issue through model compression [36–
39], such approaches often lead to performance degrada-
tion. To mitigate this, various linear attention mechanisms,
such as RWKV [41] and Mamba [13], have been proposed,
achieving notable success in large language model appli-
cations. Among these, Mamba has recently been widely
adopted in computer vision tasks [13–15, 54, 67], demon-
strating promising results.

Traditional Mamba-based methods [2, 12, 30, 43, 44,
55, 56, 64, 68] for image restoration sequentially unfold
2D images into 1D token sequences using specific scan-
ning strategies, which limit each pixel’s ability to access
global context and require multi-directional scans to expand
the receptive field, leading to increased computational com-
plexity and redundancy. Due to their rigid sequential na-
ture, these methods also fail to fully utilize semantic rela-
tionships between pixels. FreqMamba [67] perceive global
degradation using the state space model in the Fourier do-
main. MambaLLIE [54] locality enhancement for low-light
image enhancement tasks. MambaIRV2 [14] employs the
routing matrix from Adaptive Semantic Encoding (ASE) to
group semantically similar pixels together in the unfolded
sequence, thus enhancing global context utilization while
reducing computational complexity and redundancy.

The method introduces slight modifications to the Mam-
baIRV2 framework and trains the model on a dataset pro-
cessed through the custom-designed degradation pipeline.
The detailed pipeline of the approach is illustrated in Fig-
ure 20. More specifically, the version of network g simpli-
fies the architecture by reducing the depths from 9 layers
to 3 and aligning the num heads accordingly, significantly
lowering computational complexity while maintaining suf-
ficient depth for feature extraction. Additionally, the team
members increase the window size from 16 to 64, enabling
the model to capture broader spatial dependencies, which
is crucial for high-resolution super-resolution tasks. Other
key parameters remain unchanged, preserving the strong
baseline architecture. These adjustments strike a balance

between efficiency and performance while enhancing the
model’s spatial awareness and practicality for training and
deployment.
Implementation Details. The team members pretrain
the MambaIRv2 model using the Flickr2K [29] and LS-
DIR [27] datasets, incorporating a custom-designed degra-
dation pipeline to generate diverse low-resolution (LR) vari-
ants from high-resolution (HR) images. This addresses the
limited availability of degraded images by simulating re-
alistic LR-HR pairs for robust training. Subsequently, the
team members fine-tune the model on the DIV2K [48] train-
ing dataset, utilizing the provided HR-LR pairs to further
enhance super-resolution performance. For validation, the
team members evaluate the model on the DIV2K validation
dataset, using PSNR and other metrics with a focus on the
Y-channel for precise assessment.

The degradation pipeline assumes that a degraded image
y is generated by the linear model:

y = kx+ n

where x is the original (clean) image, k represents the
degradation operator (e.g., a Gaussian blur kernel), and n
is additive white Gaussian noise (AWGN). This model is
commonly used in image processing to simulate how real-
world distortions affect image quality. The convolution of
the Gaussian kernel with the original image (kx) reduces
the clarity of the image. The pipeline uses a 25 × 25 blur
kernel with 9 modes. For blur mode = 0, a Gaussian blur is
applied using a 2D Gaussian kernel, with the blur strength
controlled by σblur. For blur mode = 1 to 8, precomputed
25 × 25 motion blur kernels from PnP GS [19] are used to
simulate various motion patterns and directions. These ker-
nels are applied via convolution, with proper alignment en-
sured using a torch.roll operation. Additionally, Gaus-
sian noise with a standard deviation σnoise (scaled to the
[0, 1] range) is added to simulate sensor noise. By combin-
ing blurring and noise, the degradation pipeline effectively
simulates realistic distortions, enriching the training data
with diverse low-resolution images. This enables super-
resolution models to generalize effectively, improving their
performance in handling real-world degradations.

A.20. Aimanga
Description. This model is trained based on the RealESR-
GAN [52]. They have done in-depth thinking in cleaning
data and image degradation models to achieve higher image
reconstruction effects and better generation quality.
Implementation Details. As shown in Figure 21, the gen-
erator is based on an RRDBNet architecture, which primar-
ily consists of multiple stacked Residual-in-Residual Dense
Blocks (RRDB). Each RRDB integrates dense connections
and residual skip connections, with residual scaling applied
to stabilize training. The network removes batch normal-
ization (BN) layers to avoid artifacts and incorporates pixel



Figure 21. Team Aimanga. Architecture of Generator.

Figure 22. Team Aimanga. Architecture of Discriminator.

attention or channel attention mechanisms to enhance de-
tail recovery. The input image first undergoes shallow fea-
ture extraction via convolutional layers, then passes through
multiple RRDB blocks for deep feature refinement. Fi-
nally, PixelShuffle [46] upsampling reconstructs the high-
resolution output. This design prioritizes preserving fine
details and natural textures, making it effective for super-
resolution tasks.

As shown in Figure 22, the discriminator adopts a U-
Net-based [45] architecture to better capture both global and
local details. It consists of an encoder with strided convolu-
tions for downsampling and a decoder with transposed con-
volutions for upsampling, connected by skip connections to
preserve spatial information. The network employs spec-
tral normalization for stable training and uses PatchGAN-
style [20] prediction to distinguish real vs. fake patches at
multiple scales. Additionally, LeakyReLU activation and
instance normalization help improve discrimination ability
while maintaining gradient flow. This design enables effec-
tive adversarial training by providing detailed feedback to
the generator on both high-level structures and fine textures.

They used nomos2k as the training set. To extract the
detailed areas in the image, they designed an effective data
screening process. Finally, they selected 1342 images from
nomos2k dataset, which contains 2436 images in total.
They carefully analyzed and tuned the image degradation
model. Through continuous experiments, they found very
effective image degradation models and parameters. The
training process takes over 100k iterations with a batch size
of 16 and a fixed learning rate of 1e-4.

To evaluate the performance of our trained model, they
created a synthetic evaluation set of 125 images. The eval-
uation set contains 10 categories, such as human, animals,
animation, and AI. This can more accurately evaluate the
model’s capabilities for various scenes. They further con-

ducted experiments on the real-world dataset RealSR [3],
which contains 100 images captured by Canon 5D3 and
Nikon D810 cameras.

They compared our model with RealESRGAN and the
latest work InvSR [59] in CVPR2025. They used niqe,
brisque, nrqm, pi, clipiqa and musiq as evaluation indica-
tors. The evaluation results are shown in the following ta-
ble, from which they can see that our model is better than
these two models in most indicators.

A.21. IPCV
Description. HMANet (Hybrid Multi-Axis Aggregation
Network) [10] is a novel deep learning-based approach for
Single Image Super-Resolution (SISR) that enhances both
local and global feature learning through a hybrid aggrega-
tion strategy. The network consists of four key components:
Shallow Feature Extraction Module (SFEM), Hybrid Multi-
Axis Aggregation Module (HMAA), Residual Feature Ag-
gregation Module (RFAM), and an Upsampling & Recon-
struction module. HMAA integrates multi-axis attention
mechanisms, capturing spatial and channel-wise dependen-
cies by leveraging axial attention, dilated convolutions, and
feature fusion from multiple orientations. This allows the
model to efficiently extract long-range dependencies while
preserving fine details.

To further refine the feature representation, RFAM em-
ploys hybrid convolutions (standard, dilated, and grouped)
along with residual skip connections and squeeze-and-
excitation attention, enabling hierarchical residual learn-
ing. The final upsampling is performed using a sub-pixel
convolution layer (PixelShuffle) to reconstruct the high-
resolution image. By integrating multi-axis feature learn-
ing and efficient upsampling, HMANet achieves superior
super-resolution performance while maintaining computa-
tional efficiency.
Implementation Details. The model is trained using a
combination of L1 loss, perceptual loss (VGG-19), and op-
tionally adversarial loss, ensuring both pixel accuracy and
perceptual quality.
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