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1. Supplementary
1.1. Mean and Variance of Sample Mean

Let X1, X2, ..., Xn be a random sample of size n from a
distribution with mean µ, variance σ2 and sample mean X̄ .
The Expected value of the sample mean, that is E[X̄], is
given by:

E[X̄] = E

[
X1 +X2 + ...+Xn

n

]
(1)

The linear operator property 1 of expectation is:

E[X + Y ] = E[X] + E[Y ] (2)

and property 2 is:

E[cX] = E[c].E[X] = cE[x] (3)

here c is a constant. Using Equation 2 and 2 in Equation 1
we get:

E[X̄] =
1

n
(E[X1] + E[X2] + ...+ E[Xn]) (4)

As Xi are identically distributed, they have the same mean
µ. We then get:

E[X̄] =
1

n
(µ+ µ+ ...+ µ) =

nµ

n
(5)

E[X̄] = µ (6)

Equation 6 shows that the expected value (or mean) of sam-
ple mean X̄ is µ, which is the mean of individual Xi.

Similarly, for variance of sample mean X̄ is:

V ar(X̄) = V ar

(
X1 +X2 + ...+Xn

n

)
(7)

Since variance scales by the square of a constant, we can
factor out 1

n2 from above equation:

V ar(X̄) =
1

n2
V ar(X1 +X2 + ...+Xn) (8)

V ar(X̄) =
1

n2
(V ar(X1) + V ar(X2) + ...+ V ar(Xn))

(9)
similar to mean, each Xi has the same variance σ2:

V ar(X̄) =
1

n2
(σ2 + σ2 + ...+ σ2) =

1

n2
(nσ2) (10)

V ar(X̄) =
σ2

n
(11)

Equation 11 indicates that the variance of the sample mean
X̄ is inversely proportional to sample size n. This implies
that V ar(X̄) decreases as sample size n increases, thus
leading to a more accurate estimate.

1.2. Decomposition of Expected MSE into Bias and
Variance

The bias-variance decomposition can be used to decom-
pose the mean-squared error of an predictor ȳ into two parts
which are its bias and variance.

Firstly consider a predictor ȳ and true value y. The bias
is defined as the deviation of its expectation value from the
true value that we want to predict.

Bias(ȳ) = E[ȳ − y] (12)

while the variance is defined as the squared deviation from
its expectation value given by:

V ar(ȳ) = E[(ȳ − E[ȳ])2] (13)

The expected MSE (Mean Squared Error) of predictor ȳ is
given by:

MSE(ȳ) = E[(ȳ − y)2] (14)

Expanding the right hand term in Equation 14:

E[(ȳ − y)2] = E[ȳ2 + y2 − 2ȳy] (15)
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Using properties in equations 2 and 3

E[(ȳ − y)2] = E[ȳ2] + E[y2]− E[2ȳy] (16)

E[(ȳ−y)2] = E[ȳ2]+y2−2yE[ȳ]+E[ȳ]2−E[ȳ]2 (17)

rearranging the above equation:

E[(ȳ − y)2] = (E[ȳ]− y)2 + E[ȳ2]− E[ȳ]2 (18)

E[(ȳ−y)2] = (E[ȳ]−y)2+E[ȳ2]+E[ȳ]2−2E[ȳ]2 (19)

E[(ȳ−y)2] = (E[ȳ]−y)2+E[ȳ2]+E[E[ȳ]2]−2E[ȳE[E[ȳ]]]
(20)

E[(ȳ−y)2] = (E[ȳ]−y)2+E[ȳ2+E[ȳ]2−2ȳE[ȳ]] (21)

E[(ȳ−y)2] = (E[ȳ]−y)2+E[ȳ2+E[ȳ]2−2ȳE[ȳ]] (22)

E[(ȳ − y)2] = (E[ȳ]− y)2 + E[(ȳ − E[ȳ])2] (23)

In Equation 24, the first term indicates the bias while the
second term indicates the variance as shown in Equations
12 and 13 respectively. Thus we get the bias-variance de-
composition which is a simple equation given by:

MSE(ȳ) = E[(ȳ − y)2] = Bias(ȳ)2 + V ar(ȳ) (24)

1.3. Evaluation Against Vision-Language Based
IQA Methods

We evaluate STAPLE, trained on KonIQ-10K as DS and
DT with Gaussian Noise, Pixelation, and Impulse Noise
combined (as described in second part of section 5.3 from
main paper). While vision-language models like Q-Align,
LIQE, and CLIP-IQA leverage both image and text su-
pervision, STAPLE remains purely vision-based. Despite
this, STAPLE achieves competitive performance as shown
in Figure 1. Notably, while Q-Align performs best overall,
STAPLE consistently outperforms or matches models like
CLIP-IQA and LIQE, demonstrating its strong generaliza-
tion capability even without language supervision.

Additionally in Figure 2, we evaluate all methods in a
real-world application like perceptual quality assessment
of super-resolved images generated via diffusion (as de-
scribed in Section 5.4 from main paper). Consistent with

earlier results, STAPLE performs competitively and tracks
perceptual progression more reliably across diffusion steps
than some of the vision-language methods. This further
reinforces STAPLE’s robustness in challenging and prac-
tical deployment scenarios, even without leveraging textual
guidance.

1.4. Algorithms

Algorithm 1 represents STN baseline with no pseudo-label
training. While Algorithm 2 represents STAPLE training.
The blue indicates the steps required for pseudo-label gen-
eration. In Algorithm 3, we show algorithm at inference
using ref = 1 reference image.

Algorithm 1 Training STN Model (No pseudo label)

Input: Number of iterations N , labeled dataset D, Ini-
tialize STN fθ
Output: fθ
Set: STN to Train mode→ fθ
for N iterations do

Sample (x1, y1), (x2, y2) ∼ D
LLb =| fθ(xi, xj)− (yi − yj) |
L = LLb

θ ← θ − η∇θLLb

end for
return: fθ

Algorithm 2 STN Model with Pseudo label

Input Number of iterations N , labeled dataset D, unla-
beled dataset U , Initialize STN fθ
Output: fθ
for N iterations do

Sample (ux1) ∼ U
Set: STN to eval mode→ f

′

θ

Calculate Pseudo label ũpi for ux1

for reference t = 1 to T do
Sample (xt, yt) ∼ D
ypi,t = fθ(ux1, xref,t) + yref,t

end for
ũpi =

1
T

∑T
t=1 ypi,t

Set: STN to Train mode→ fθ
Sample (x1, y1), (x2, y2) and (x3, y3) ∼ D
LULb =| fθ(ux1, x3)− (ũpi − y3) |
LLb =| fθ(x1, x2)− (y1 − y2) |
L = LLb + λLULb

θ ← θ − η∇θL
end for
return: fθ
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Figure 1. PLCC and SROCC scores for KonIQ-10K test set (DS ) and Distortions from KADID-10K (DT ). CLIPIQA (yellow), LIQE
(orange), LIQEmix (green), Qalign (pink), STAPLE (black)

Figure 2. Performance of CLIPIQA (blue), LIQE (green),
LIQEmix (yellow), Qalign (pink) and STAPLE(red) on Super-
Resolution images generated using Stable Diffusion across 100
timesteps. Solid line indicates average and shaded area indicates
standard deviation.

Algorithm 3 Inference of STN Model

Input xtest, (xref , yref ) ∼ D, trained STN fθ
Set: STN to eval mode→ f

′

θ

ypred = f
′

θ(xtest, xref ) + yref

1.5. Experimental Setup for Scenario 1

As described in Section 5.1 of the main paper, Scenario 1 in-
volves training STAPLE on six distortion types asDS while
reserving the seventh as DT , conducting a separate evalua-
tion for each distortion type. This results in seven indepen-
dent experiments. For all experiments, λ is initialized at 0.1
and increased by 0.1 every 5 epochs. To prevent over-fitting
on the target domain, we randomly sample from both DS
training set and DT during unsupervised learning, using a
6:4 sampling ratio. STAPLE is fine-tuned for 50 epochs us-
ing Stochastic Gradient Descent (SGD) with a learning rate
of 0.0001 and a cosine scheduler.

1.6. Experimental Setup for Scenario 2

As described in Section 5.2 of the main paper, Scenario 2
involves training STAPLE on KADID-10K asDS while uti-
lizing KonIQ-10K, LIVEC, and BID as unlabeled DT in
three separate experiments, each running for 50 epochs. For
KonIQ-10K, λ is kept steady at 0.5 for the first 20 epochs
and then increased to 1.25 in increments of 0.25 every 10
epochs. The DS to DT sampling ratio is set to 6:4. Due
to the smaller dataset size of BID, the sampling ratio is ad-
justed to 2:8. For LIVEC, λ is initialized at 0.25 for the
first 10 epochs, then maintained at 0.5, with a 4:6 sampling
ratio. The rest of the training strategy follows the approach
used in Scenario 1.

1.7. Experimental Setup for Scenario 3

For Scenario 3, supervised learning (LLb) is conducted on
80% of the KonIQ-10K training set, while unsupervised
learning (LULb) involves random sampling from either the
80% KonIQ-10K training set (GT labels discarded) or the
simulated target dataset using an 8:2 sampling ratio. λ val-
ues for Gaussian Noise are initially set at 0.1, gradually in-
creasing to 0.3 in increments of 0.1 every 10 epochs, before
being decreased at the same rate. A similar trend is followed
for Pixelation and Impulse Noise, but with λ adjusted from
0.1 to 0.5 in increments of 0.2. The training strategy for
STN and STAPLE remains consistent with Scenario 1.

As outlined in Section 5.3 of the main paper, STAPLE
is trained on a simulated DT instead of using KADID-10K
distortions directly, ensuring KADID-10K remains a sepa-
rate test set. To generate this simulated dataset, we create
an image-only dataset with three types of distortions: Gaus-
sian Noise, Pixelation, and Impulse Noise. Specifically, we
select 9% of the highest-quality images from KonIQ-10K,
based on their GT MOS, and apply distortions at varying
levels during training. Examples of minimum and maxi-
mum distortion levels for each type are shown in Figure 3.

Additionally, as mentioned in the main paper, we train
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Figure 3. Minimum and maximum distortions for (a) Gaussian
Noise (b) Pixelation (c) Impulse Noise

STAPLE on all three target distortions simultaneously. Fig-
ure 4 shows that STAPLE effectively handles multiple target
domains, further improving accuracy across all distortions.

Figure 4. Performance when STAPLE is trained with DT consist-
ing of multiple distortions

1.8. Simulated target distortions in Experiment
Setup 1

Figure 5. SROCC Comparison in performance of STN vs
STNAPL throughout Training.

1.9. Effect of self-supervised Learning

In Fugure 5, we compare performance of STN to STAPLE
with reference sample number T=1 and T=10 on SROCC
metric. Here, we follow Setup 1 as mentioned in original
paper and consider target domain as Gaussian Noise.
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