
Supplementary Material: Rethinking Compressive Sensing: A Compression
Framework for Video Super-Resolution

Ruthy Katz* Adi Teitel* Moran Mordechay Adi Falik Eli Bery Maya Mayberg
Corephotonics, Israel

{rkatz, ateitel, mmordechay, afalik, ebery, mmayberg}@corephotonics.com

1. Experimental settings
We present more details of the training settings and exper-
iments involved in this paper. In our flow we process the
frames in YUV color space. The sampling masks are ap-
plied on Y channel only. UV channels are down-sampled
by ×4 with bicubic down-sampler. Then, LR Y and UV
channels are concatenated and converted to RGB as input
to the VSR network.

For evaluation on Vimeo-90K-T [9] and Vid4 [6], we
report PSNR and SSIM on the Y channel, while LPIPS is
evaluated on RGB images. For Vid4, we segment videos
into 7-frame sequences, following the Vimeo-90K struc-
ture, to enable efficient processing within time and resource
constraints, making it suitable for sensor applications. This
contrasts with VSR recurrent models, which process entire
video sequences and are thus limited to post-processing.

In single-sample-per-frame we follow [2] to initialize the
model with weights of a model trained on REDS dataset
[7]. We fine-tune it for additional 300K iterations. For all
other experiments and ablation studies we train BasicVSR
without pre-train.

2. More qualitative results
We show more visual comparisons between bicubic, 16Sum
and Random sampling combined with representative VSR
models for one-sample-per-frame case, see Fig. 3. In Fig.
2 for the two-samples-per-frame case we show comparison
between different masks layouts combined with BasicVSR
model. The examples are from Vimeo-90K-T dataset.

3. Sampling with constant masks
In one experiment we trained BasicVSR [1] using random
and Tetromino masks that remain constant over time, mean-
ing the same mask is applied to all frames in the two-
samples-per-frame case. This experiment validated our
premise that incorporating temporal dynamics into non-
regular sampling improves reconstruction performance in

*Equal contribution

the VSR task. The masks are illustrated in Fig. 1, and the
training settings were consistent with those used in all other
experiments.

A A A B
B A B B
B B A B
B A A A

(a)

A A A A
A B B B
B B B A
B B A A

(b)

Figure 1. Constant T-Tetromino mask (a) and constant random
mask (b). Pixels with the value of one in the mask are marked as
A, and pixels with the value of zero in the mask (and one in the
complementary mask) are marked with B.

4. Ablation study - network adaptation for two-
samples-per-frame

Three configurations are explored for adding a second mea-
surement in the two-sampels-per-frame case as input to
VSR models as illustrated in Fig. 4:
1. Flip: During training, many VSR models flip the input

sequence to simulate a long range video. We harness this
configuration and use both in training and at inference
time the second measurement as the flipped version in-
stead of the first measurement. This doubles the number
of processed frames.

2. Nesting: The frames processed in sequential order, with
the odd and even masked frames processed in interleaved
manner. Each two LR measurements from the same
frame are paired and used in sequence. Similar to the
flip configuration, the video duration is doubled.

3. Channel stacking: The two LR measurements are con-
catenated in the channels dimension. Instead of a 3-
channels RGB image, we use a 6-channels input and
change the first layer of the VSR model respectively.
This design implicitly guides the model that the two
measurements are drawn from the same frame. The
output is also a 6-channels image and the last layer is

1



Figure 2. Visual comparison on example from Vimeo-90K-T [9] using BasicVSR [1] with various two samples-per-frame mask layouts.
The frame number is shown in the figure. Zoom in for better visualization.

B
a
si

cV
S

R
R

V
R

T
IA

R
T

Bicubic 16Sum Random

Figure 3. Visual comparison for an example from Vimeo-90K-T dataset [9] on different VSR models (IART [8], RVRT [5], BasicVSR [1])
with single sample-per-frame mask layouts - bicubic, 16Sum and random mask sampling, ordered from left to right. The frame number is
shown in the figure. Zoom in for better visualization.

changed accordingly. We add a pointwise convolution
layer to obtain a 3-channel RGB image. The video dura-
tion remains is unchanged.

We conduct ablation studies on Vimeo-90K dataset with
random masks layout in two-samples-per-frame case com-
bined with BasicVSR model. Table 1 shows quantitative
evaluation of the three setups. It is shown that channel
stacking is the best fit to our study case and yeilds the best
performance in PSNR, SSIM and LPIPS measures both on
Vid4 and Vimeo-90K-T datasets. We compared inference
time of the three settings, measuring the average inference
time of a 7-frame sequence from Vimeo-90K-T. The exper-
iments were conducted on NVIDIA GeForce RTX 3090.
Results are reported in Table 2. The runtine reported is
the average runtime per reconstructed frame. It can be seen
that not only channel stacking achieves the best reconstruc-
tion results, it is also preferable in terms of inference time
and features utilization running in half of the execution time
compared with the first two approaches.

5. Learnable initial reconstruction

Most VSR architectures do not explicitly use an initial re-
construction as input, instead, they rely on bilinear interpo-
lation for initial reconstruction, with the network learning
residual HR features to refine the estimate. [1, 5, 8].

t(i-1) t(i) t(i+1)

St
ac

k
(a)

(b)

𝑌௢,௜ିଵ 𝑌௢,௜ 𝑌௢,௜ାଵ 𝑌௘,௜ାଵ 𝑌௘,௜ିଵ𝑌௘,௜

𝑌௢,௜ିଵ 𝑌௘,௜ିଵ 𝑌௢,௜ 𝑌௘,௜ 𝑌௢,௜ାଵ 𝑌௘,௜ାଵ

𝑌[௢,௘],௜ିଵ 𝑌[௢,௘],௜ 𝑌௢,௘ ,௜ାଵ

(c)

Figure 4. Two LR sequences are captured. As input to VSR net-
work the second sequence is used as a flipped sequence (a), a sep-
arate sample paired with the first sample (b), or in channel stack
configuration, as additional channels (c).

Input settings Vimeo-90K-T Vid4

Flip 39.9496/ 0.9730/ 0.0423 30.1695/ 0.9151/ 0.0940
Nesting 40.8813/ 0.9769/ 0.0347 30.7239/0.9257/ 0.0769
Channel stack 41.0379/ 0.9778/ 0.0335 31.2786/ 0.9292/ 0.0741

Table 1. Quantitative comparison (PSNR/SSIM/LPIPS) on
Vimeo-90K-T and Vid4 of network adaptation for adding a sec-
ond sample-per-frame using BasicVSR model with random masks
configuration. Best result is in red.

In [3], the authors propose an end-to-end neural network-
based solution for single-image super-resolution, where im-
ages are downscaled using various non-regular sampling



Transposed 
Conv

C

↑ C

↑ Bilinear Up-sampler

ConcatenationC

Conv1x1, C = 224/112

Conv3x3, C = 9

Transposed 
convolution

𝑌௖௛௔௡௡௘௟

𝑈𝑉

Conv1x1
…

Enhance Module

Conv3x3 C

𝑀𝑎𝑠𝑘𝐴𝑟𝑟

Conv1x1

Figure 5. LFCR reconstruction network. The LR image converted to YUV. The network processes the Y channel and the output is
concatenated with a bilinear upsampling of the UV channels.

Input settings Sequence length Input channel count Runtime[ms] / frame

Flip 14 3 17.125
Nesting 14 3 16.862
Channel stack 7 6 9.697

Table 2. Runtime comparison for adding a second sample-per-
frame using BasicVSR model with random masks configuration
measured with Vimeo-90K-T dataset on NVIDIA GeForce RTX
3090. The runtine reported is the average runtime per recon-
structed frame. Best result is marked in red.

methods. They replaced bicubic upsampling with a data-
driven approach using a locally fully connected reconstruc-
tion (LFCR) network. Similarly, the authors of [4] em-
ployed the LFCR network for single image reconstruction
and demonstrated that, when combined with their proposed
sensor layout, it improves reconstruction quality.

In this section we tested whether there is an advantage
in using such end-to-end solution like LFCR as the initial
reconstruction instead of the bilinear up-sampler.

5.1. LFCR settings
The number of channels in the LFCR network defined in [3]
considers the following elements as defined in 1:

C = s× (1− CR)×B2. (1)

C is the number of channels, s is a scaling factor, CR is the
compression ratio, and B is the mask block size.

Pre processing is applied so that the LFCR network is
applied with the following settings:
1. Convert the LR image to YUV.
2. Y channel processed in the LFCR network.
3. UV channels are upsampled using bilinear upsampling

interpolation.
4. Concatenate LFCR output with the upscaled UV.
5. Convert to RGB (if required).

We configure the LFCR parameters to align with our com-

pression scheme, where mask block size is B = 4. The net-
work settings are designed for the two-samples-per-frame
case, resulting in a compression ratio of CR = 2

B2 = 1
8 .

We define the scaling factor as s = 8 or s = 16, which
determines the network’s scaling width. Consequently, the
number of channels is set to C = 112 and C = 224, respec-
tively.

To ensure a fair comparison with regular sampling
schemes like bicubic downsampling, where CR = 1

16 , we
used a single sample per frame configuration which results
in the same CR. The network settings remained unchanged.

The entry stage of the LFCR network partitions the LR
image into overlapping blocks and transforms each block
into a vector. In our configuration 3 × 3 neighboring pix-
els are stacked into a vector, forming a H

4 × W
4 × 9 data

block. Our sampling scheme incorporates a temporal as-
pect, as each frame in a 7-frame sequence is sampled using
a different mask. Since each frame’s initial reconstruction
is processed independently, it is crucial for the upsampler
to receive information about the sample structure. Instead
of passing the explicit mask, we inform the model of the
frame’s position within the sequence. We form a tensor of
size H

4 × W
4 × 7 with elements as in 2:

MaskArr (:, :, i) =

{
1, i = f
0, else

(2)

Where f is the index of the processed frame and 1 ≤ i ≤ 7.
This tensor is concatenated with the data block to produce
feature maps of size H

4 × W
4 ×16. Then, a series of L point-

wise convolutions is applied. Last, the original LR image is
stacked with the output features, and transposed convolu-
tion is performed to re-order the reconstructed pixels to the
HR Y image. Fig. 5 demonstrates the LFCR pipeline.

As in [3], the LFCR+BasicVSR network is trained in
two steps. First, LFCR is trained for 50K iterations using
Charbonnier penalty loss against the HR reference, with in-
puts matching the sampling-mask configuration. Then, Ba-
sicVSR is trained for 300K iterations with the same loss



Down-sampling Up-sampling L Channels Vimeo Vid4

Bicubic bilinear - - 30.46/ 0.8539/ 0.3077 23.33/ 0.6071/ 0.5000
Random bilinear - - 30.34/ 0.8583/ 0.2834 23.17/ 0.6115/ 0.4736
Random LFCR 4 224 31.72/ 0.8829/ 0.1758 23.88/ 0.6671/ 0.3345
Random LFCR 10 112 28.94/ 0.8255/ 0.3221 22.68/ 0.6036/ 0.4440

Table 3. Quantitative comparison (PSNR/SSIM/LPIPS) on Vimeo-90K-
T and Vid4 for ×4 upsampling in single-sample-per-frame case, with 2
reconstruction methods (not combined with a VSR model): LFCR [3] and
bilinear up-sampler using different down-sampling methods. Best result is
in red.

Down-sampling Up-sampling L Vimeo Vid4

Bicubic BasicVSR - 37.30/ 0.9461/ 0.1006 27.16/ 0.8195/ 0.2524
Random BasicVSR - 39.00/ 0.9670/ 0.0544 28.91/ 0.8905/ 0.1271
Random LFCR + BasicVSR 4 38.48/ 0.9639/ 0.0634 28.53/ 0.8823/ 0.1501
Random LFCR + BasicVSR 10 38.21/ 0.9624/ 0.0675 28.35/ 0.8777/ 0.1599

Table 4. Quantitative comparison (PSNR/SSIM/LPIPS) on Vimeo-90K-T
and Vid4 for ×4 VSR in single-sample-per-frame case, with 2 reconstruc-
tion methods: LFCR [3] + BasicVSR and BasicVSR [1] using different
down-sampling methods. Best result is in red.

function while keeping the LFCR layers frozen.

5.2. Results
Two configurations were explored for the LFCR pointwise
convolution series: L = 10 as in [4] and L = 4. Table 3
compares bilinear upsampling and LFCR network without
additional VSR network. The results support the results of
[3], showing that a data-driven approach is more suitable
than bilinear upsampler when combined with non-regular
sampling. The optimal settings in our case were differ-
ent than the ones demonstrated in [3]. However, when the
LFCR network is combined with BasicVSR network, there
is no advantage to the data-driven approach as shown in Ta-
ble 4. The conclusion is that a simple initial reconstruc-
tion combined with a VSR model is sufficient to recover the
super-resolved video, eliminating the need for an end-to-
end neural network solution and simplifying the overall ap-
proach. By omitting the LFCR model, we reduce both train-
ing time and inference complexity, making our approach
more efficient. Unlike SISR, VSR overcomes non-regular
sampling implicitly.

6. Limitations
There are several limitations to the proposed solution in this
paper:
1. Dependency in mask order: The trained network im-

plicitly learns to reconstruct the video sequence without
requiring the mask given as input for a given mask se-
quence. Consequently, altering the mask order will de-
grade the VSR model’s performance. This limitation can
be mitigated by training with cyclic mask shifts, which
aligns well with hardware compression using a finite,
ordered set of masks. Alternatively, the model can be
trained with explicit mask inputs.

2. Compression ratio: in the two samples-per-frame con-
figuration CR=1

8 , which is doubled compared to regu-
lar ×4 down-scaling. Doubling the input affects system
bandwidth and may require twice the memory for stor-
ing measurements. To mitigate this, we propose saving
one measurement along with the quantized difference
between the two. Since the measurements are fairly sim-
ilar, quantization is expected to have minimal impact on
reconstruction quality compared to storing full measure-
ments. This approach enables a more compact memory
format than storing two separate videos.

3. Sensor compatibility: We demonstrated our solution
with compression applied to the Y channel. To align it
with a sensor-level implementation, future work should
evaluate reconstruction quality when applied with the
Bayer pattern and converted to RGB images.

References
[1] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and

Chen Change Loy. Basicvsr: The search for essential compo-
nents in video super-resolution and beyond. In CVPR, pages
4947–4956, 2021. 1, 2, 4

[2] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. In
CVPR, pages 5972–5981, 2022. 1

[3] Simon Grosche, Fabian Brand, and André Kaup. A novel
end-to-end network for reconstruction of non-regularly sam-
pled image data using locally fully connected layers. In IEEE
MMSP, pages 1–6, 2021. 2, 3, 4

[4] Simon Grosche, Andy Regensky, Jürgen Seiler, and André
Kaup. Image super-resolution using T-Tetromino pixels. In
CVPR, pages 9989–9998, 2023. 3, 4

[5] Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan,
Eddy Ilg, Simon Green, Jiezhang Cao, Kai Zhang, Radu Tim-
ofte, and Luc V Gool. Recurrent video restoration trans-
former with guided deformable attention. NeurIPS, 35:378–
393, 2022. 2

[6] Ce Liu and Deqing Sun. On bayesian adaptive video super
resolution. IEEE TPAMI, 36(2):346–360, 2013. 1

[7] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee.
Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In CVPRW, 2019. 1

[8] Kai Xu, Ziwei Yu, Xin Wang, Michael Bi Mi, and Angela Yao.
Enhancing video super-resolution via implicit resampling-
based alignment. In CVPR, pages 2546–2555, 2024. 2

[9] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. IJCV, 127:1106–1125, 2019. 1, 2


	Experimental settings
	More qualitative results
	Sampling with constant masks
	Ablation study - network adaptation for two-samples-per-frame
	Learnable initial reconstruction
	LFCR settings
	Results

	Limitations

