Supplementary Material
1. Synthetic Data Engine pling from a dataset of real handheld homography matrices.

We provides more details of our synthetic data egnine. Fig-
ure | provides more examples of the temporal and spatial
correlation of motion within a multi-frame data capture.
Figure 2 shows visual results for the SOTA model in MFSR
[1] trained on our dataset with motion sampled from a uni-
form distribution of rotations and translations against sam-
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handheld burst photography homographies distribution of pre-defined parameters

Figure 1. Sampling transformations from a uniform distribution of pre-defined rotations and translation parameters (right) versus sampling
transformations from a dataset of homography matrices defining the transformations within a real handheld burst photography capture
(left). Uniform distribution sampling does not contain spatial and temporal correlations found in real handheld motion.



Burstormer trained on our Burstormer trained on our

dataset but with motion dataset using motion
vectors sampled from a vectors sampled as per our
uniform distribution synthetic data engine

Figure 2. Burstormer [2] trained on our dataset with motion vectors sampled from a uniform distribution of pre-defined rotations and
translation parameters (left) versus Burstormer trained on the same dataset but with motion vectors sampled from a dataset of homography

matrices defining the transformations within a real handheld burst photography capture as per our synthetic data engine (right). All
experimental conditions identical.
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Figure 3. MFSR-GAN modules for (a) Multi-Frame Alignment, and (b) Multi-Frame Attention. Descriptions in Section ??.

2. Model Architecture Details

We provide more details for our model architecture pre-
viously introduced in Section 4. Our model architecture
builds upon the work previously completed for MFSR by
[2]. Our adaptions of the Multi-Frame Alignment and
Multi-Frame Attention modules are presented in Figure 3
with descriptions in Section 4.2.2.

References

[1] Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fa-
had Shahbaz Khan, and Ming-Hsuan Yang. Burst Image
Restoration and Enhancement. In 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5749-5758, 2022. ISSN: 2575-7075. 1

[2] Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fa-
had Shahbaz Khan, and Ming-Hsuan Yang. Burstormer:
Burst Image Restoration and Enhancement Transformer. In
2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5703-5712, 2023. ISSN: 2575-
7075. 2,3



