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1. Teams and Methods

This section briefly describes the participating teams and
their proposed methods for the two tracks. We only provide
the methods of the top six teams of each track.

1.1. Track 1

1.1.1 Team MiAlgo

Team MiAlgo proposed a two-stage raw image restoration
pipeline. Their method integrates transformer-based and
GAN-based models for joint denoising, demosaicking, and
detail enhancement, with robustness to noise, exposure, and
sensor defects.
Architecture. As shown in Fig. 1, the proposed method
consists of a two-stage end-to-end pipeline. Stage 1 uses
Restormer to jointly perform denoising and demosaick-
ing. Its transformer-based self-attention mechanism enables
modeling of long-range dependencies and better preserva-
tion of semantic features. Stage 2 applies a GAN model
for texture enhancement, where the discriminator follows
the Real-ESRGAN [21] design. The generator in this stage
is initialized with Stage 1 parameters to boost convergence
and performance. In Phase 3, the team compressed and
distilled their Phase 2 model using a lightweight UNet ar-
chitecture enhanced with basic transformer blocks and two
Restormer modules in the bottleneck. MWRCAN [11] is
used as the Stage 2 generator to enable efficient multi-scale
restoration.
Data Augmentation. The team used both the official
paired dataset and an internal ultra-high-resolution dataset
(4K–6K) consisting of 1200 images, including 1000 gen-
eral scenes and 200 night portraits. The data degradation
pipeline includes gamma correction, AWB gain removal,
CCM adjustment, blurring, noise, downsampling, and ISO-
based noise augmentation using darkening and dgain trans-
formation. To simulate sensor defects, random Bayer pat-

Figure 1. The two-stage pipeline proposed by team MiAlgo.

tern defect augmentation was also applied.
Training Details. The training was conducted in two
stages. Stage 1 was trained with L1 loss for 300K iterations
at a resolution of 256× 256, followed by 100K iterations at
512× 512 using a loss function composed of L2 + 0.1 Per-
ceptual + 0.1 LPIPS + 0.1 SSIM. Stage 2 was trained with
a composite loss of L2 + 0.1 Perceptual + 0.01 GAN + 4
LPIPS, using a learning rate of 1× 10−5. The models were
implemented in PyTorch and trained on 8 NVIDIA A100
GPUs.
Performance and Efficiency. The method achieved the
highest score in Phase 2 with a PSNR-based score of 92.56.
The Phase 2 model has 52.24M parameters and 5351.47
GFLOPs (for 1024×1024 input), with an average inference
time of 2651 ms per image. The Phase 3 model is signifi-
cantly lighter, with 4.62M parameters and 372.09 GFLOPs,
and runs at 320 ms per image (3072×4096 resolution) on
A100.
Robustness and Generality. The proposed solution
demonstrates strong robustness in real-world scenarios, es-
pecially in the presence of extreme exposure and Bayer pat-
tern defects. The lightweight design of Phase 3 ensures
practical deployment with minimal compromise in perfor-
mance.
Additional Information. No external or pre-trained mod-
els were used. No ensemble or fusion strategies were ap-
plied. The method is novel and has not been published.
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The team does not plan to submit a paper for NTIRE 2025.
They suggest releasing the evaluation metrics earlier in fu-
ture competitions for better tuning and transparency.

1.1.2 Team IID-AI

Team IID-AI employed a data-centric strategy and adopted
XRestormer [8] as the backbone network to address the do-
main gap between training and testing data. The model
is trained with a carefully designed multi-loss function to
achieve high-quality raw image enhancement.
Data Synthesis. Initial experiments trained on Phase 1
paired data showed strong performance on Phase 2 paired
testing, but significant degradation on Phase 3 unpaired
data. The root cause was identified as a domain shift:
DSLR-captured (16-bit, daytime) training data versus
smartphone-captured (10-bit, nighttime) testing data. To
mitigate this gap, over 700 clean RAW images were cap-
tured using smartphones under low-ISO and short-exposure
conditions to simulate noise-free ground truth. A degra-
dation pipeline was then applied, including demosaicing,
Gaussian blurring (based on PSF parameters), downsam-
pling, and synthetic noise generation using ISO 1600, 3200,
and 6400-level noise. GT sRGB images were generated us-
ing AAHD demosaicing for improved edge sharpness and
texture fidelity. This pipeline effectively supports joint de-
noising and demosaicking.
Network Design. XRestormer [8] was selected as the back-
bone for its proven effectiveness in low-level vision tasks
and efficient computation. To adapt it to the raw-to-RGB
task, the final convolutional layer was modified to output
12 channels, followed by a pixelshuffle layer for resolution
doubling and RGB conversion. The input–output skip con-
nection was removed due to channel mismatch.
Loss Functions. A combination of L1 reconstruction
loss [16], perceptual loss [12, 28], and FFT-based frequency
loss [15] was used. While reconstruction and percep-
tual losses ensured good quantitative and perceptual qual-
ity, checkerboard artifacts were observed in dark regions
of Phase 3 test images. This was addressed by adding a
frequency-domain loss term. The overall training loss con-
sists of an L1 loss, an FFT loss weighted by 300, and an
LPIPS loss weighted by 0.3.
Training Details. The model was implemented using Py-
Torch and trained on an NVIDIA RTX 4090 GPU. The op-
timizer was Adam, with a batch size of 2 and a patch size
of 512. Training was conducted for 70K iterations with a
learning rate of 1 × 10−4, followed by 30K iterations at
1× 10−5.

1.1.3 Team PolyU-AISP

Team PolyU-AISP proposed a lightweight restoration net-
work based on the NAFNet [6] architecture. The method

adopts a UNet-like design with layer normalization, con-
volution, and channel attention in each block. To handle
high-resolution inputs, the model processes images in over-
lapping tiles and fuses them at the output, achieving both
computational efficiency and restoration quality.
Architecture. As illustrated in Fig. 2, the proposed pipeline
is a compact UNet-style network built upon NAFNet.
Each block integrates layer normalization, 1×1 convolution,
depthwise convolution, and channel attention. The input
image is divided into 2048 × 2048 overlapping tiles with
64-pixel padding. These tiles are processed independently
and then fused using weighted averaging to ensure smooth
transitions across tile boundaries. The final model contains
29M parameters, offering a good trade-off between perfor-
mance and model size.
Training Details. The model is trained on the SIDD
dataset [1], following the protocol in HiNet [4]. The train-
ing patch size is 256 × 256, and the network is optimized
with the Adam optimizer [14]. The learning rate starts from
10−3 and decays to 10−7 using cosine annealing over 200K
iterations. A tile width of 32 is used during training.
Testing and Inference. During inference, the input is tiled
into 2048×2048 overlapping patches with 64 pixels of over-
lap. Each tile is processed through the network, and the
outputs are fused via weighted averaging. The average run-
time per image is approximately 2.8 seconds on an NVIDIA
RTX 4090 GPU. The method requires only 3K GFLOPs to
process a full 4096×3072 image, demonstrating high com-
putational efficiency.

UNet
Tiling

LN Conv DConv CA Conv

LN Conv Conv

Block Block

Block Block

Block

Figure 2. Pipeline of Team POLYU-AISP. LN: Layer Normaliza-
tion, Conv: 1×1 Convolution, DConv: Depthwise Convolution,
CA: Channel Attention (as in NAFNet [6]). Certain details, such
as activation functions and element-wise operations, are omitted
for clarity.

1.1.4 Team TongJi-IPOE

Team TongJi-IPOE proposed a lightweight and efficient
joint raw image denoising and demosaicing solution, named
B2FNet (Branching to Fusion Network), designed for low-
light image processing. Inspired by the low-light pipeline
from Chen et al. [2], the method explicitly separates and



Figure 3. Overview of the Team TongJi-IPOE.

processes the green and red/blue channels in the Bayer pat-
tern, followed by a fusion stage to generate the final sRGB
image.
Architecture. As shown in Fig. 3, B2FNet is a three-
stage UNet-based structure. The input raw image is first
converted to a four-channel RGGB image via demosaicing.
Two lightweight UNets are deployed to restore the GG and
RB channels separately. Their outputs are then fused by an-
other UNet to generate the final sRGB output. Each UNet
consists only of 3 × 3 convolutional layers, max-pooling
for downsampling, and deconvolution for upsampling. To
avoid gradient vanishing, feature maps from the encoder
stages of the two-branch UNets are introduced into the de-
coder of the fusion UNet.
Processing Pipeline. Given a raw input of size RH×W×1,
it is first demosaiced into a four-channel RGGB image
RH

2 ×W
2 ×4. This is followed by dark-level correction and

processed by B2FNet to generate a final sRGB image of
size RH×W×3.
Training Details. The model is trained solely on the pro-
vided dataset, using PyTorch on a single NVIDIA RTX
3090Ti GPU. The optimizer is AdamW with β1 = 0.9,
β2 = 0.999. The training is conducted in three stages: 92K
iterations with a fixed learning rate of 1×10−4, followed by
208K iterations using cosine annealing to decay the learning
rate to 1 × 10−6, and finally 300K iterations of fine-tuning
at 1× 10−5. The training patch size is 128× 128.
Testing and Efficiency. At inference, raw inputs are first
demosaiced to RGGB format, corrected for dark levels,
and passed through B2FNet for sRGB conversion. The
model contains only 0.39M parameters and requires 23.45
GFLOPs for an input size of 1024 × 1024. Average infer-
ence time is 8.3 ms on an NVIDIA A100 GPU.
Training Details. The method is implemented in PyTorch
and runs on a single RTX 3090Ti GPU. The pipeline is
simple and compact, and suitable for real-time deploy-
ment. The full training and fine-tuning process took ap-
proximately 24 hours. Given its low complexity, the method
holds potential for edge deployment with further optimiza-
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Figure 4. Frame diagram of our method.

tion.

1.1.5 Team NJUST-KMG

Team NJUST-KMG proposed a novel restoration frame-
work for low-light raw image denoising and demosaicing,
named DWT-Enhanced Hybrid Networks. The approach
combines a hybrid attention mechanism with multi-scale
feature processing via discrete wavelet transforms (DWT),
and is trained via a two-stage pipeline to jointly optimize
noise removal and detail preservation.
Architecture. The model employs a U-shaped encoder-
decoder structure enhanced with HybridBlockGroups,
which alternate between Residual Guided Feature Modu-
lation (ResGFM) blocks and Residual Channel Attention
(RCA) blocks. These modules are designed to balance spa-
tial detail preservation and channel-wise feature enhance-
ment. Additionally, DWTForward and DWTInverse mod-
ules are incorporated to perform multi-scale feature extrac-
tion and reconstruction using discrete wavelet transforms.
The architecture is illustrated in Fig. 4.
Training Strategy. The model is trained in two phases us-
ing a custom PyTorch framework that supports distributed
training and mixed precision for improved efficiency. The
first phase focuses on robustness, using heavy data augmen-
tation to train the model against severe low-light noise and
artifacts. Augmentations include ISO-based noise model-
ing (simulating shot and read noise across ISO levels from
3200 to 9600), adaptive Gaussian blur (kernel sizes 3–7 and
sigma 0.6–1.2), color channel perturbation (random scaling
in [0.8, 1.2]), and dynamic noise amplification (factors be-
tween 20 and 30). In the second phase, the model is fine-
tuned with lighter augmentations to better preserve texture
and fine details while maintaining denoising performance.
The dataset used includes 50 images from SIDD [1], 90
images from SID [2], and 20 additional images collected
from online sources. The training loss is a composite of L1
loss, SSIM loss, and perceptual losses (LPIPS and DISTS),
which together balance pixel accuracy, structural similarity,
and perceptual fidelity. The entire training process takes ap-
proximately 4 hours on a single NVIDIA RTX 3090 GPU.



Figure 5. Frame diagram of Team xianggkl.

The lightweight design of the network (only 0.83M parame-
ters) allows for efficient training and deployment, requiring
minimal human supervision.

1.1.6 Team xianggkl

Team xianggkl proposed a diffusion-based framework for
joint raw image denoising and demosaicing, named En-
hanced Degradation Adaptation Diffusion. The method
leverages a trainable VAE encoder Eθ, a LoRA fine-tuned
two-step diffusion model ϵθ, and a frozen VAE decoder
Dθ. To guide the diffusion process, text prompts extracted
from low-quality images are used as conditioning inputs.
These prompts help the model adaptively generate high-
quality images by aligning the output distribution with that
of natural, clean images using Variational Score Distillation
(VSD).
Architecture and Inference. As shown in the Fig. 5,
the proposed model is based on a diffusion framework en-
hanced with a trainable VAE encoder Eθ, a LoRA fine-
tuned two-step diffusion network ϵθ, and a frozen VAE de-
coder Dθ. During training, the diffusion output is regular-
ized by two networks—one frozen and one fine-tuned—via
VSD in the latent space. The overall objective function
combines a data loss Ldata (comprising MSE and LPIPS
losses) and a regularization loss Ltotal = Ldata + λ2Lreg,
where λ2 controls the trade-off between fidelity and distri-
bution alignment. At inference, only Eθ, ϵθ, and Dθ are
used. The prompt extractor and CLIP encoder are removed
and replaced with a fixed empty-string embedding. The
decoder operates in a fast VAE decoding mode, achieving
37.48 seconds per image of size 3072× 4096.
Training Strategy and Efficiency. Training is conducted
in three stages to progressively improve performance and
robustness. In Step 1, the model is trained on 256 × 256
crops using four RTX 4090 GPUs (batch size 4) for 60K
steps. Step 2 continues training with noise-enhanced data
(high ISO noise) for 20K steps on two RTX 4090 GPUs
(batch size 2). Step 3 fine-tunes the model on 512 × 512

C
O

N
V

D
W

T

C
O

N
V

R
eL

U

R
G

F
M

C

C
O

N
V

R
C

A

C
O

N
V

IW
T

C
O

N
V

C
O

N
V

R
eL

U

C
O

N
V C

O
N

V
C

O
N

V

R
eL

U
R

eL
U

C
O

N
V

C
O

N
V

C
O

N
V

R
eL

U

C
O

N
V

P
o

o
l

C
O

N
V

R
eL

U

C
O

N
V

Residual Guided Feature Modulation Block Residual Channel Attention Block

Figure 6. The overall pipeline of the solution proposed by team
NulltoZero.

crops using two A100 GPUs for 50K steps. Despite the
large model size and complexity (2124.36 GFLOPs for
512 × 512 input), the system is optimized for deployment
with fast inference and minimal runtime overhead.
Novelty and Generalization. The proposed method builds
upon OSEDiff [23] and incorporates degradation-aware
prompt extraction (DAPE) from SeeSR [24]. Notable in-
novations include noise-adaptive training, CLIP-free infer-
ence via fixed prompts, progressive training stages, and the
use of VSD for distribution alignment. The model general-
izes well across varying lighting and noise conditions and
can be adapted to other restoration and degradation tasks.
To the best of the authors’ knowledge, this solution has not
been previously published.
Technical Implementation. The system is implemented in
Python using PyTorch and trained on 4× RTX 4090 and 2×
A100 GPUs. Each experiment takes approximately 2 days.
Validation includes both quantitative metrics (PSNR, SSIM,
LPIPS) and qualitative visual inspection. Hyperparameters
such as latent tile size are tuned through multiple test runs
to optimize output quality.

1.2. Track 2

1.2.1 Team NulltoZero

Team NulltoZero introduces WaveletFusionNet, a deep
learning architecture for image detail enhancement, specif-
ically designed for competitive image enhancement tasks.
Architecture.As shown in Fig. 6, the proposed model intro-
duces WaveletFusionNet, a novel deep learning architecture
tailored for high-resolution image detail enhancement tasks.
The model adopts a multi-stage U-shaped framework built
upon multilevel discrete wavelet transforms (DWT)to de-
compose the input into low-frequency and high-frequency
components. This decomposition facilitates effective noise
suppression and detail recovery.

To extract and enhance features at different scales, the
model employs Hybrid Feature Extraction, Multi-Scale
Processing, and Fusion and Reconstruction.



• Hybrid Feature Extraction Modules. The network uti-
lizes Residual Channel Attention Groups (RCAGroup)
to refine global features and a novel Residual Guided
Feature Modulation Block (ResGFMBlock) to adaptively
modulate spatial features via a Spatial Feature Transform
module.

• Multi-Scale Processing. The network utilizes Residual
Channel Attention Groups (RCAGroup) to refine global
features and a novel Residual Guided Feature Modula-
tion Block (ResGFMBlock) to adaptively modulate spa-
tial features via a Spatial Feature Transform module.

• Fusion and Reconstruction. The enhanced low- and
high-frequency features are fused using a 1 × 1 convolu-
tion followed by further refinement with attention-based
modules and residual connections.

The overall design results in an end-to-end system ca-
pable of enhancing image details and suppressing arti-
facts, making it particularly effective for high-resolution
image enhancement tasks. The model has approximately
0.303MB of parameters, which have achieved excellent re-
sults in image processing efficiency. The training time of
the model can be controlled within 4 hours. When the input
size is 1024×1024×3, the reasoning time is about 22.58ms
per image on a computer with an RTX3090 GPU.
Data Augmentation. Three main steps are involved. First,
the target image is read from a specified path, and a corre-
sponding input image path is generated, and the existence
of the input image is verified. Then, a random degradation
strategy is applied. If the input image exists and a random
probability threshold is met, or when not in training mode,
the input image is used directly. Otherwise, a random degra-
dation method is applied, either Gaussian blur or bilateral
filtering, which is selected randomly. For Gaussian blur,
parameters such as kernel size and sigma are randomly sam-
pled, while for bilateral filtering, sigmaColor, sigmaSpace,
and the kernel size are chosen randomly. Lastly, synchro-
nized transformation is performed by generating a random
seed to ensure that both the degraded input image and target
image undergo identical transformations.
Training Details. The training process using PyTorch starts
with loading the training and validation datasets using the
DataLoader. The data sets are split based on a set valida-
tion ratio. The WaveletFusionNet model is built and trained
using the AdamW optimizer. A MultiStepLR scheduler is
used to adjust the learning rate during training. The loss
function combines L1 loss, SSIM loss, and a custom NTIRE
score loss based on LPIPS and DISTS to support multi-
objective optimization. During the validation process, per-
formance is measured using PSNR, SSIM, LPIPS, DISTS,
and NIQE. The training loop includes repeated training and
validation steps. The checkpoints are saved regularly and
the best model is selected on the basis of the validation re-
sults. Every five epochs, a visualization is created by ran-

domly selecting an image from the validation set to track
the progress of the model.

1.2.2 Team TeleAI-Vision

Team TeleAI-Vision adopts the HAT [7] architecture to per-
form the image restoration task, benefiting from its strong
representation capacity and competitive performance.
Detailed Method Description. In their proposed approach,
the team adopts a multi-phase strategy to address the im-
age restoration task. In Phase 2, they utilize the HAT-GAN
architecture, leveraging its strong representation capacity
and competitive performance to perform high-quality im-
age restoration. To further enhance the model’s efficiency,
knowledge distillation is applied by using HAT-S as the stu-
dent network, thereby reducing the model size while pre-
serving performance.

Recognizing the increasing importance of computational
efficiency and the demand for deployment-friendly models,
the team introduces a more lightweight solution in Phase 3.
Specifically, they adopt the Swift Parameter-free Attention
Network (SPAN) [19] as the backbone of their final model.
In their implementation, the number of feature channels is
set to 52 and the upscale factor is fixed at 1, in accordance
with the specific requirements of the restoration task.

The training process is carried out in three distinct stages.
Unlike the Phase 2 model, which relies solely on the pro-
vided paired data, the team begins by pretraining the model
using the high-quality and diverse LSDIR dataset [17]. This
dataset offers a broad range of scenes, enabling the model
to acquire a strong and generalizable representation. Dur-
ing the first two stages, the model is trained on the LSDIR
training subset with synthetic degradations, allowing it to
learn a robust prior. In the third and final stage, the model
is fine-tuned using real paired data provided by RAIM 2024
[18] and RAIM 2025. This step is crucial for adapting the
model to the target domain and improving its performance
under real-world degradation conditions.

Overall, the experimental results demonstrate the effec-
tiveness of the proposed method and underscore the value of
carefully curated training data. By progressively leveraging
both synthetic datasets and real paired samples, the model
achieves strong generalization capabilities while maintain-
ing high adaptability to real-world degradations.
Training Details. In the phase 2 of their approach, the team
trains the HAT model using only the real paired datasets
provided by RAIM 2024 [18] and RAIM 2025. To enhance
efficiency, knowledge distillation is applied with HAT-S
serving as the student network.

In the third phase, with a focus on computational effi-
ciency, the team adopts the Swift Parameter-free Attention
Network (SPAN) as the backbone of the model. The com-
plete training process is conducted on 8 GPUs with a batch



size of 12. During the first two training stages, the model
is trained on the LSDIR dataset [17], which includes syn-
thetically degraded images. Before training, LSDIR images
are cropped into patches of size 240 × 240 with a stride of
120. During training, random patches of size 128× 128 are
further sampled as model inputs to improve generalization.

The degradation pipeline is based on Real-
ESRGAN [20], with additional degradation hyperpa-
rameters to introduce more variability. The degradation
settings are as follows:
• Gaussian noise probability: 0.5
• Noise range: [0.5, 1]
• Poisson scale range: [0.05, 0.1]
• Gray noise probability: 0.4
• Second blur probability: 0.8
• Gaussian noise probability (second): 0.5
• Noise range (second): [0.5, 1]
• Poisson scale range (second): [0.05, 0.1]
• Gray noise probability (second): 0.4

The model is trained in three stages:
• Stage 1 The model is trained using only the L1 loss on the

LSDIR dataset. This stage runs for approximately 330000
iterations with a learning rate of 1× 10−4.

• Stage 2 The Real-SPAN model is trained using a com-
posite loss function to improve perceptual quality and ro-
bustness. The loss function is defined as L = LL1 +0.1×
LPerceptual +4×LLPIPS +0.1×LGAN. This stage is trained
for approximately 400000 iterations with the same

• Stage 3. The model is fine-tuned using the real paired
data from RAIM 2024 and RAIM 2025. Before train-
ing, the RAIM images are cropped into patches of size
480 × 480 with a stride of 240. The same composite
loss function from Stage 2 is used. Fine-tuning is per-
formed for 10000 iterations with a reduced learning rate
of 1× 10−5 to ensure stable convergence.

1.2.3 Team TongJi-IPOE

Team TongJi-IPOE proposed a lightweight method for ef-
ficient image detail enhancement/generation on RGB im-
ages, named MSUnet (from branching to fusion network, as
shown in Fig. 7, a multi-stage image restoration network.
Architecture. Recent research has demonstrated that multi-
stage network architectures are highly effective for various
image restoration tasks. Compared to directly increasing
the number of channels in convolutional layers, cascading
multiple networks provides a more lightweight and com-
putationally efficient design [25]. Based on this motiva-
tion, the team proposes a multi-stage architecture named
MSUnet, as illustrated in Fig. 7 (a). The MSUnet consists
of two cascaded U-Net sub-networks. The first U-Net is
responsible for performing a preliminary enhancement on
the input image, while the second U-Net is designed to fur-

Figure 7. Overview of the MSUnet proposed by Team TongJi-
IPOE.

ther refine the image details and improve the final restora-
tion quality. Both sub-networks adopt a simple yet effec-
tive design, consisting solely of 3× 3 convolutional layers,
max-pooling layers for downsampling, and deconvolution
layers for upsampling. To achieve better computational ef-
ficiency, the team also introduces a lightweight backbone
named B2FNet, which serves as the core component of the
MSUnet. The B2FNet contains approximately 0.26 M pa-
rameters and requires 54.96 GFLOPs to process an image of
resolution 1024 × 1024. The average inference time of the
network is 15 ms on a single NVIDIA A100 GPU, demon-
strating its suitability for real-time applications and deploy-
ment on resource-constrained platforms.
Training Details. The entire training process is conducted
using a single NVIDIA GeForce RTX 3090Ti GPU, and the
implementation is based on the PyTorch framework. The
team employs the AdamW optimizer to train the proposed
network, with the hyperparameters set to β1 = 0.9 and
β2 = 0.999. The training is carried out in two stages. In
the first stage, the model is trained for 92000 iterations us-
ing a fixed learning rate of 1 × 10−4. In the second stage,
the model undergoes further training for 208000 iterations.
During this stage, the learning rate is gradually decreased
following a cosine annealing schedule, with a minimum
learning rate of 1× 10−6. Throughout both training stages,
only the official dataset provided by the RAIM organizers
is used. The training inputs are cropped into patches of size
128×128 to balance memory usage and training efficiency.

1.2.4 Team NJUST-KMG

Method Description. The team optimizes the MW-ISPNet
architecture [11] to develop a lightweight model suit-
able for real-world applications, particularly in resource-
constrained environments. Specifically, the number of
channels in the downsampling stages is adjusted to 16, 32,
and 32, while only a single intermediate layer is retained



to simplify the network structure. Correspondingly, the up-
sampling stages are configured with 32, 32, and 16 chan-
nels. To enhance the model’s ability to capture fine-grained
image details and textures, several auxiliary loss functions
are introduced in addition to the standard L1 loss. The
SSIM loss [22] is employed to preserve structural consis-
tency, with a loss weight of 0.15. Furthermore, LPIPS [27]
and DISTS [9] losses are incorporated to improve percep-
tual and texture-level fidelity, both with weights set to 1.0.
The combination of these loss functions significantly im-
proves the model’s capacity to restore realistic and detailed
image content.
Training and Testing Details. To improve generalization
and robustness, data augmentation techniques are applied
during training. These include randomly cropping the in-
put images to a resolution of 1024× 1024 pixels, as well as
performing random horizontal and vertical flips to diversify
the training samples. In the third phase of development, the
team observed that training exclusively with the LR and GT
image pairs provided by the organizers often resulted in the
generation of severe false textures, which are undesirable
in real-world applications. Analysis suggests that this issue
arises because of the significant loss of detail and texture
information in the LR images, which increases the learning
difficulty for the network. To mitigate this problem, a data
pre-processing strategy is proposed to generate LR images
that better match the statistical distribution of real mobile
phone photographs. As illustrated in Fig. 8, a slight bound-
ary blur is applied to the GT images. To preserve poten-
tial noise in flat regions, the blurring is restricted to edge
areas only. The process is as follows: the Canny edge de-
tection algorithm is used to extract an edge mask from the
GT image. Then, a Gaussian-blurred version of the GT im-
age is multiplied by the edge mask and added to the original
GT image weighted by the inverse mask (1−mask), result-
ing in a synthesized LR image that preserves noise in flat
areas while reducing sharp transitions at edges. This pre-
processing strategy effectively reduces false texture artifacts
and enhances the model’s ability to generate high-quality
images that align more closely with real-world visual char-
acteristics.
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Figure 8. Overall training framework of the method proposed by
the team NJUST-KMG.

Figure 9. Overall framework proposed by iAM IR. (a) repre-
sents the U-Net architecture of NAFNet, (b) represents the original
NAFNet block, and (c) represents our improved NAFNet block.

1.2.5 Team iAM IR

Team iAM IR proposed a two-stage image restoration
model (TSIRM) to address simulated degradation in phase
2 and real-world degradation in phase 3. In the first stage,
the model is pre-trained using extensive simulated data. In
the second stage, the model is fine-tuned using GT.
Architecture. Considering the efficiency and practical de-
ployment requirements, the proposed model is built upon
NAFNet [5], with several modifications to improve fea-
ture representation and model performance. As illus-
trated in Fig. 9, the model adopts a U-Net-like architec-
ture composed of multi-scale NAFNet blocks. In the orig-
inal NAFNet design, the GELU activation function is re-
placed with the computationally efficient SimpleGate oper-
ation, and the self-attention mechanism is substituted with
a lightweight channel attention module. These changes sig-
nificantly improve computational efficiency while preserv-
ing the benefits of transformer-based architectures. How-
ever, SimpleGate alone may result in limited feature interac-
tion. To address this limitation, the team introduces an im-
proved activation mechanism named CrossGate, as shown
in Fig. 10. Unlike SimpleGate, the CrossGate module en-
ables more effective fusion of complementary feature in-
formation without reducing channel dimensionality, thereby
enhancing the model’s representation capacity.
Two-Stage Training Strategy. Due to the limited availabil-
ity of real paired training data, a two-stage training strategy
is adopted. In the first stage, the model is pretrained us-
ing synthetic paired data generated from high-quality pub-
lic datasets. Specifically, the team uses the DIV8K [10]
dataset and 1,000 facial images from FFHQ [13]. To simu-
late realistic degradations, a simplified version of the BSR-
GAN [26] pipeline is adopted, in which JPEG compres-
sion is removed to reduce artifacts. The commonly used



Figure 10. Structure comparison between SimpleGate and the
CrossGate proposed by iAM IR.

Real-ESRGAN [20] second-order degradation pipeline is
avoided due to its tendency to introduce overly severe dis-
tortions. Pretraining is conducted in two steps: first, 20,000
iterations are trained using only L1 loss; then, perceptual
loss and GAN loss are introduced, with the loss function
defined as:

Ltotal = L1 + 1.0× Lperceptual + 0.1× LGAN,

and training continues for an additional 150000 iterations.
In the second stage, fine-tuning is performed using available
high-quality reference images. In Phase 2, where GT data is
available, the team employs all reference-based evaluation
metrics from the competition as supervisory objectives to
directly optimize image quality and perceptual fidelity. In
Phase 3, where no GT is provided, pseudo GT images are
generated using FeMaSR [3] (×2 version), a state-of-the-art
real image restoration model. The generated pairs are then
used to fine-tune the network. To further enhance percep-
tual quality, the weights of the perceptual and GAN losses
are increased to:

Ltotal = L1 + 1.5× Lperceptual + 0.2× LGAN.

1.2.6 Team MiAlgo

Phase2. The MiAlgo team fine-tuned the model for approx-
imately 20000 iterations using the loss function L2 + 0.1 ·
Lperceptual + 0.01 · LGAN + 4 · Llpips. The fine-tuning pro-
cess was conducted within the RealESRGAN [20] training
framework, employing a learning rate of 1e-5. For training
data, the degraded data from the RAIM2024 [18] challenge
was combined with the 50 paired data samples provided by
RAIM2025, in a 50:50 ratio in the training filelist.
Phase3. As shown in Figure 11, the Phase 3 model is built
upon the Phase 2 architecture, adopting a lightweight UNet
structure enhanced with Haar wavelet-based downsampling
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Figure 11. The tiny unet in phase3 applied by the team MiAlgo.

and upsampling (×2). The design is inspired by the MWR-
CAN model [11], where each UNet block contains one Res-
Block, with convolutional layers between ResBlocks and
wavelet modules to adjust channel dimensions. Given the
high quality of Phase 3 test data, only minor edits were nec-
essary. To maintain fidelity to the input, a global residual
connection was added into the network design to ensure the
output remains closely aligned with the original image. This
efficient configuration results in a model size of only 0.075
MB and 19.83 GFLOPs for 3× 1024× 1024 inputs. On an
A100 GPU, it processes this input in 5.95 ms and handles
3× 3040× 4032 images in 58.90 ms.

The training dataset consisted of two parts: one inher-
ited from Phase 2, and another newly synthesized. The lat-
ter was motivated by the observation that 50% of the test
images were high-quality female portraits. Approximately
5000 curated DSLR portrait of young women were curated
and used as ground truth. These images were converted to
RAW format and augmented with noise. Subsequently, the
Track 1 Phase 2 model was employed to render these im-
ages into RGB format, serving as the low-quality images.
Similarly, the GT used in phase 2 was also processed in the
same manner to generate low-quality images.

Training began from scratch using the full dataset. The
model was first optimized with L2 loss for 10k steps, fol-
lowed by 800k steps using a composite loss: L2 + 0.1 ·
Lperceptual + 0.01 · LGAN. A learning rate of 1e−5, batch
size of 32, and input size of 512 were employed across 4
GPUs. To emphasize portrait quality, the dataset was re-
balanced to include 80% portrait images. A learning rate
of 1e−6 was used for an additional 40k steps. In the final
stage, another 10k steps were trained with USM-enhanced
ground truths and a reduced learning rate of 1e−7. De-
spite some training data being blurrier than the test set, such
degradation was found to improve the clarity of non-portrait
scenes.
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