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1. Challenge Methods
1.1. User-generated Video Track

1.1.1 SLCV

Table 1. The performance of the proposed method for track 1 chal-
lenge

Model Test MainScore Test PLCC Test SRCC
InternVL2.5 1B 0.8615 0.8617 0.8610
InternVL2.5 2B 0.8617 0.8637 0.8598
InternVL2.5 26B 0.8730 0.8738 0.8723
AVG of 2 models 0.8657 0.8667 0.8645
AVG of 3 models 0.8731 0.8738 0.8724

Team SLCV wins the championship in the user-
generated video track. Unlike conventional approaches that
rely on regression or classification for video quality as-
sessment (e.g., LIQE [59], Q-Align [53], Fast-VQA [51],
and SimpleVQA [40]), their method leverages a multimodal
large language model (MLLM) to estimate video quality. In
InternVL 2.5 [3], an effective data filtering process was in-
troduced, leveraging large language model (LLM) scoring
to evaluate and remove low-quality samples, thereby im-
proving the overall quality of the training data. Inspired
by this capability of InternVL 2.5 to assess data quality
using LLM-based scoring, they adopt a multimodal large
language model (MLLM) for estimating video quality in
our work. Specifically, they directly utilize the InternVL
2.5 model as the MLLM to achieve robust and reliable
video quality assessment . To overcome the limitation in
the spatial domain, they introduce Spatial Window Sam-
pling as a data augmentation strategy. Specifically, they
employ a sliding window approach that crops the original
video frames with a window size set to 3/4 of the video’s
longest side. This method effectively triples the amount
of training data, thereby enhancing the model’s ability to
learn fine-grained spatial features. They employ the LoRA
(Low-Rank Adaptation) method to efficiently fine-tune the
InternVL 2.5 model, enabling it to perform the six fine-
grained quality assessments. The overall framework is de-
picted in Figure 1. During inference, the same data pro-
cessing strategy used during training is applied to the test

videos. Specifically, the model independently predicts qual-
ity scores for the three sub-videos generated by the slid-
ing window sampling process. The final prediction is then
obtained by averaging the results across these sub-videos.
This approach not only ensures robust training but also
facilitates accurate and reliable evaluation of fine-grained
video quality.
In experiments, they utilize a machine equipped with 8
NVIDIA A100 GPUs (each with 80 GB of memory) and
1 TB of system memory for both the training and infer-
ence phases. To address the XGC Quality Assessment
Track 1 challenge under limited training data conditions,
they propose a hierarchical framework that integrates video
preprocessing, parameter-efficient fine-tuning, and multi-
level ensembling. Specifically, input videos are divided into
three overlapping segments, each determined by 3/4 of their
longest spatial dimension, to strike a balance between com-
putational efficiency and contextual preservation. The In-
ternVL2.5 series models (1B, 2B, and 26B) were fine-tuned
using Low Rank Adaptation (LoRA) with hyperparameters
(rank=16, alpha=64) and a learning rate of 1e-4. Train-
ing was performed on 8 NVIDIA A100-80G GPUs with
a batch size of 16 for a single epoch to mitigate the risk
of overfitting. During inference, predictions for each video
segment were generated in parallel across the 8 GPUs. Fi-
nal scores were obtained through clip-level averaging and
model-level ensembling across all three InternVL2.5 vari-
ants, ensuring robust and reliable quality assessments. This
approach achieved state-of-the-art performance with a score
of 0.8731, showcasing the effectiveness of combining spa-
tial segmentation, parameter-efficient adaptation, and hier-
archical score aggregation. As demonstrated in Table 1,
the ensemble of InternVL2.5-1B and InternVL2.5-2B mod-
els achieved an average performance improvement of 0.4%
compared to individual models. By further incorporating
the InternVL2.5- 26B model, system performance was sig-
nificantly enhanced, reaching a final score of 0.8731. These
results highlight the substantial benefits of multi-model col-
laboration and the effectiveness of proposed hierarchical
framework in achieving state-of-the-art performance. They
finally get the averaged main score of 0.8731.
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Figure 1. Overview diagram of the proposed method of team SLCV.

1.1.2 SJTU-MOE-AI

Team SJTU-MoE-AI [61] wins second place in the user-
generated video track. They propose a multi-dimensional
quality assessment for UGC Videos via modular multi-
modal vision-language models.They use both single-modal
and multiple multi-modal networks for learning. The fine-
grained user-generated content (UGC) video quality assess-
ment (VQA) task involves multi-dimensional quality eval-
uations. Specifically, a VQA model is expected to assess
UGC videos across six quality dimensions: color, noise, ar-
tifacts, blur, temporal consistency, and overall quality. To
tackle this task, they derive two primary insights: first, the
employed computational architecture should have sufficient
capacity; second, an effective training strategy is needed to
optimize the model across all six evaluation aspects.

For the computational architecture, they consider using
multi-modal vision-language models trained with both con-
trastive [35] and autoregressive objectives as the base qual-
ity evaluator. Specifically, they employ SigLIP2 [46] and
a variant of Q-Align [53]. Given a video, the base quality
evaluators generate frame-level quality predictions for eight
key frames uniformly sampled from the entire sequence.
The final video-level quality score yb is then obtained by av-
eraging these predictions. For SigLIP-2, they first compute
the cosine similarities between the vision representation and
textual embedding derived from multiple textual templates:
“a photo with {d} {q} quality”. where q ∈ {“bad”, “poor”,
“fair”, “good”, “perfect”}, represents the five Likert-scale
quality levels, and d ∈ {“color”, “noise”, “artifact”, “blur”,
“temporal”, “overall”} corresponds to different quality di-
mensions. Following [59], they separately apply a Soft-
max function to the cosine similarity logits of each quality
dimension to obtain the quality distributions over the five

quality levels, which are then converted into scalar quality
scores via weighted summation (see Figure 2 (b)). They
choose the NaFlex version of SigLIP-2, as it is designed
to adaptively handle input images (video frames in this
task) with varying aspect ratios—a common characteristic
of UGC videos. For Q-Align, they follow its default setup
for computing quality scores, with one key modification:
during training, they alternate conversations associated with
different quality dimensions in batches. During inference,
they evaluate each quality dimension separately by posing
the corresponding question, e.g., How do you rate the color
quality of this video?, How do you rate the overall quality
of this video?, etc.

Inspired by [49], they enhance the base quality evaluator
with two complementary modules: a degradation percep-
tion module and a temporal perception module. The degra-
dation perception module extracts distortion-aware features
from sampled video frames within the feature space of
ARNIQA [1], which is exposed to diverse distortion types
during training. The temporal perception module lever-
ages a SlowFast model [13] to address artifacts resulting
from motion anomalies. The representations of both mod-
ules are processed through separate multi-layer perceptrons
(MLPs). As shown in Fig. 2, each rectifier produces a tuple
of scale (α) and shift (β) parameters, which are applied to
adjust the base quality predictions yb as follows:

y =
√
αdαtyb +

βs + βt

2
(1)

Given two videos, their relative quality rankings may dif-
fer across various quality dimensions. This motivates us to
model the relative quality rankings of each video pair as a
joint distribution across all six quality dimensions. Corre-
spondingly, we compute an average of six binary fidelity
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Figure 2. (a) The overall framework of team SJTU-MOE-AI proposed model. (b) SigLIP2 as the base quality evaluator.

losses [45]:

ℓf (x,y) =
1

S

S∑
s=1

(
1−

√
p(s)(x,y)p̂(s)(x,y)

−
√

(1− p(s)(x,y))(1− p̂(s)(x,y))

)
, (2)

where s indexes the six quality dimensions (S = 6),
p(s)(x,y) is the binary label of video pair (x,y) according
to the s-th quality dimension, which can be inferred from
their ground-truth mean opinion scores (MOSs):

p(s)(x,y) =

{
1 if q(s)(x) ≥ q(s)(y)

0 otherwise
. (3)

p̂(s)(x,y) is the estimated probability that the quality of x
is higher than y in terms of the s-th dimension. Under the
Thurstone’s model [43], this can be computed as:

p̂(s)(x,y) = Φ

(
q̂(s)(x)− q̂(s)(y)√

2

)
, (4)

where Φ(·) is the standard Normal cumulative distribution
function, and the variance is fixed to one. We use ℓf along

with PLCC loss and mean absoluate error (MAE) loss to
optimize the model, aiming to improve both the precision
and monotonicity of quality predictions: ℓf + ℓp + 0.1 ×
ℓmae.

In experiments, they train two variants of SigLIP2-
based models, based on SigLIP2-base-patch16-naflex, and
SigLIP2-so400m-patch16-naflex, respectively. They also
train a Q-Align-based model using the same data. They
train SigLIP2-based models for 15 epochs, minimizing
the hybrid loss function using the Adam optimizer with
a batch size of 16 and 6 for SigLIP2-base-patch16-naflex
and SigLIP2-so400m-patch16-naflex, respectively. The ini-
tial learning rate is set to 5e-6. The maximum number of
patches is set to 900 and 576 for SigLIP2-base-patch16-
naflex and SigLIP2-so400m-patch16-naflex, respectively.
They train Q-Align for 3 epochs with an initial learning rate
of 2e-5. After training, they freeze the Q-Align model and
incorporate into the modular framework, which is exposed
to additional 10 epochs of training. They perform full fine-
tuning for SigLIP2-base-patch16-naflex and lora finetuning
for SigLIP2-so400m-patch16-naflex along with Q-Align.
All the experiments are conducted on a single NVIDIA
A5880ada GPU.They use the entire test dataset for evalu-
ation, and the pretrained model is initialized with the saved



weights from the final epoch of the training phase. They
finally get the averaged main score of 0.8620.

1.1.3 MiVQA

Team MiVQA wins third place in the user-generated video
track. Their method is based on RQ-VQA [42]. As shown
in Figure 3, it employs a Swin Transformer-B [25] to learn
spatial quality feature and utilizes SlowFast [14] for model-
ing motion characteristics. To further enhance its capability
in perceiving video quality, the model incorporates addi-
tional features extracted from LIQE [60], Q-Align [54], and
FAST-VQA [52]. These features are subsequently concate-
nated to form a comprehensive representation of the video’s
quality. Finally, six distinct two-layer MLP heads are uti-
lized to predict the video’s quality across multiple dimen-
sions, including color, noise, artifact, blur, temporal, and
overall quality. Notably, only the Swin Transformer-B and
the six MLP heads are trainable, while the remaining mod-
ules are frozen during training.

They employed the model trained by [42] on LSVQ [57]
to initialize the Swin Transformer-B. As for SlowFast,
LIQE, Q-Align, and FAST-VQA, they utilized the weights
officially provided by their respective developers. For Swin
Transformer-B, LIQE, and Q-Align, they extract a key
frame from every one-second video segment. For Slow-
Fast, the video resolution is adjusted to 224×224, and the
video is divided into one-second segments to capture tem-
poral features. FAST-VQA features are generated from the
entire video using fragment sampling [52].

During training, they randomly split the training data
into ten different training-validation sets and trained ten
models. The video quality score is computed by averag-
ing the quality scores obtained from these models. During
testing, to enhance performance, they employ data augmen-
tation during the testing phase. Specifically, each image is
horizontally flipped, effectively transforming a single image
into two parallel inputs. The final prediction scores are then
averaged to produce the final result.

In experiments, they implement their model on the Py-
Torch framework using NVIDIA RTX 3090 GPUs. The
model is trained on 4 GPUs with a batch size of 12 for 30
epochs, which takes 14 hours. The initial learning rate is set
to 2e-5. They use the Adam optimizer [19] with a weight
decay of 1e-7 and the StepLR scheduler with a step size of
10 and a decay ratio of 0.9. They finally get the averaged
main score of 0.8440.

1.1.4 XGC-Go

Initially, the characteristics of the data distribution in five
distinct evaluation dimensions are systematically exam-
ined, and their mutual correlations are investigated. Sub-
sequently, a weighted, data-independent information loss

metric is developed through discriminative feature extrac-
tion from each dimension’s unique informational aspect.
The contributions are listed as follows: 1) methods for data
analysis, 2) reasons for using large model features, and 3)
reference ideas on how to use large model features and the
loss weight design.

Analysis 1: Correlation. All dimensions of labels in-
clude: 1) color, 2) noise, 3) artifacts, 4) blur, 5) temporal,
and 6) overall.

• It can be seen that the distribution is close to the same,
probably on a scale from 0 to 100.

• It is close to the sigmoid function distribution, possibly
with machine assignments for labeling, so there should
be some training noise.

• In particular, the second dimension, noise, exceeds the
minimum value of 0.

• The data score distribution is close to a Gaussian distri-
bution, which is suitable for PLCC correlation training.

• The relationship between the first five dimensions and the
sixth dimension is calculated.

• The relation between dimensions 1 and 6 is 0.90102.
• The relation between dimensions 2 and 6 is 0.88396.
• The relation between dimensions 3 and 6 is 0.94065.
• The relation between dimensions 4 and 6 is 0.94059.
• The relation between dimensions 5 and 6 is 0.86511.
• It can be seen that the correlation between the second

dimension (noise) and the fifth dimension (temporal) is
weak. Therefore, focusing on learning these dimensions
is necessary.

• The average of all dimensions against all in the annotation
is calculated as 0.9867, indicating that the definition of all
dimensions should be the close mean of all dimensions.

Analysis 2: Information independence. The informa-
tion independence(values for each dimension minus mean
of all values for a single video) across samples is then sorted
from largest to smallest:
• It can be seen that the second dimension has the least

information independence, with special cases fluctuating
greatly (up to 37).

• Compared with the sixth dimension, the fluctuation can
be seen to be smaller, and the number of information in-
dependence is larger.

• Other dimensions have some missing combinations of in-
formation. (i.e., a direct combination of different points
for each dimension). This will lead to the problem of: a)
imbalanced data and imbalanced training samples, which
will lead to the learning of unwanted features.b) less train-
ing data in different dimension combinations, which will
lead to low generalization.
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Figure 3. Overview of team MiVQA proposed method.

Analysis 3: Data Situation. As shown in Figure 5, differ-
ent colors represent different combinations of information,
and the numbers represent richness. In the case of training
and test sets, the model tends to learn the information from
the yellow features more easily, while it is weaker with the
blue features. This leads to weak generalization.

Reason 1: Data Characteristics.
• The training set is noisy.
• The hard and easy samples are unbalanced.
• There is a data information combination balance problem.
• It is difficult to fit a model that generalizes well when

trained on some training data already available.

Reason 2: Model Characteristics.
• The aim is to borrow world knowledge to help understand

relevant qualities and reasons for using large model fea-
tures.

• However, the feature information of different large mod-
els is not aligned.

• At the same time, different large models have different
degrees of performance for different videos.

• Different large models also have varying levels of effec-
tiveness for different dimensional information.

Methods. Based on the above analysis, all dimensional
data is consolidated into a 0 to 100 score. At the same time,
all six dimensions are trained simultaneously, with weights
set according to the dataset analysis. Focused learning is
performed on the second and fifth dimensions. The follow-
ing loss functions are defined:

lossa = W11 ·PLCC1+W12 ·PLCC2+ · · ·+W16 ·PLCC6

(5)

lossb = W21 ·Rank1+W22 ·Rank2+· · ·+W26 ·Rank6 (6)

lossall = lossa + lossb (7)

The large model reference selection includes:
• 1: Q-ALIGN: Teaching LMMs for Visual Scoring via

Discrete Text-Defined Levels,
• 2: CLIPVQA: Video Quality Assessment via CLIP,
• 3: Blind Image Quality Assessment via Vision-Language

Correspondence: A Multitask Learning Perspective,
• 4: Enhancing Blind Video Quality Assessment with Rich

Quality-aware Features,
• 5: DepictQA: Depicted Image Quality Assessment with

Vision Language Models,
• 6: Teaching Large Language Models to Regress Accurate

Image Quality Scores Using Score Distribution,



Lossa = w11*plcc1 + w12*plcc2+ .....+w16*plcc6,
Lossb= w21*rank1 + w22*rank2+ .....+w26*rank6,
Lossall = Lossa +Lossb. 
loss weight (Wn) can be obtained by data analysis
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Figure 4. The overall framework of team XGC-Go proposed model.
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Figure 5. Example diagram of the data situation

• 7: Descriptive Image Quality Assessment in the Wild,
• 8: Depicting Beyond Scores: Advancing Image Quality

Assessment through Multi-modal Language Models, and
so on.

The parameters of the large models are frozen, as training
large models with less data is difficult. They also design the
selection module, as shown in Figure 4, which is effective in
some data cases. This will serve as an important reference
and idea for better utilization and selection of appropriate
large model features. After the activation function, the fea-
ture is calculated with the original feature, which has the
function of selection. It is desirable to select better large
model features. Reference can be made to more complex

networks, such as nets for sensor fusion.
In experiments, the optimizer used is Adam with a learn-

ing rate of 0.000015 during training. The training was con-
ducted on a GPU (A30) for 48 hours, with no external
datasets involved. The training strategies include a two-
stage approach, loss weight adjustment, and hyperrefer-
ence. A comparison is also made during the training pro-
cess. They finally get the averaged main score of 0.8248.

1.1.5 FoodVQA

Team FoodVQA proposes a multi-level distortion adapta-
tion and spatiotemporal cross-attention fusion framework
for VQA, named MACA-VQA. Specifically, a novel multi-
level adaptive strategy progressively incorporates distortion
information into each Transformer layer of the CLIP model,
enabling layer-wise fusion of semantic and distortion fea-
tures. Furthermore, a newly introduced cross-attention fu-
sion mechanism dynamically integrates spatiotemporal fea-
tures, capturing complex, multi-dimensional interactions.

As shown in Figure 6, their framework comprises four
main components: pre-trained feature extractors, multi-
level distortion adaptation module, spatiotemporal cross-
attention fusion module, and quality regressor. The pre-
trained feature extractors contains three extractors, includ-
ing a distortion feature extractor, semantic feature extrac-
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Figure 6. Overview of team FoodVQA proposed method.

tor, and a temporal feature extractor. These extractors yield
a robust feature extraction to all kinds of videos. Be-
sides, they propose a layer-by-layer fusion strategy that
integrates distortion and semantic features, enhancing the
Transformer’s capacity to capture quality-relevant distor-
tions while preserving its original feature extraction. An
adapter module ensures distortion information does not dis-
rupt the Transformer’s inherent mechanisms. By progres-
sively incorporating distortion at each layer, the attention
mechanism refines semantic relationships and adapts to
distortions, enabling adaptive feature refinement. Mean-
while, the proposed method applies cross-attention to fuse
semantic-distortion features F sd

i with temporal information
F t
i . Previous approaches often concatenate spatiotemporal

features or use 3D methods (e.g., 3D CNNs or 3D Swin
Transformer) directly, failing to capture the potential inter-
actions between them. Finally, the spatiotemporal represen-
tation F sd

i is then passed through a regressor consisting of
multiple MLP layers to obtain a prediction score qi for each
video fragment. The final predicted quality score Q for the
video is calculated as:

Qpred =
1

N

N∑
i=1

qi .

The differentiable Pearson’s Linear Correlation Coeffi-

cient (PLCC) loss combined with a rank loss is employed
as the objective function. The introduction of rank loss
helps the model better distinguish the relative quality lev-
els among videos. The overall loss function is defined as:

L = Lplcc + α ∗ Lrank ,

where α represents a balancing hyper-parameter, empir-
ically set to 0.3 during training.

In experiments, they pre-trained on LSVQ, containing
39, 000 real-world distorted videos and 117, 000 space-time
localized video patches (‘v-patches’), and 5.5M human per-
ceptual quality annotations. The pre-training weights are
saved, and loaded for training each dimension, then the
weights for each dimension are saved, for a total of 6 dimen-
sions. They finally get the averaged main score of 0.8162.

1.2. AI Generated Video Track

1.2.1 SLCV

Team SLCV is the final winner of the AI generated video
track. They propose temporal pyramid sampling , as shown
Figure 8, to address the unique challenges posed by AI-
generated videos in quality assessment. Unlike user gen-
erated video, the quality assessment of these AI generated
videos primarily focuses on two core aspects: the smooth-



Figure 7. The overview of team Kwai-kaa proposed LMM and CLIP branches.

ness of object motion and the authenticity of the content.
To effectively capture these critical metrics, the team de-
sign the temporal pyramid sampling method to capture the
dynamic characteristics of videos at multiple temporal res-
olutions. This is achieved by performing multi-scale frame
interval sampling at varying frequencies. The original video
is sampled at different frame rates and lengths, generating
multiple subsets of data with diverse temporal granularities.
Each subset is then used to independently train the model,
enabling it to learn distinct motion smoothness and content
authenticity features at different temporal scales.

During training, they evaluate the performance under
varying temporal resolutions and model sizes. First, they
test the performance of InternVL2.5 4B [8], InternVL2.5
8B [8], and InternVL2.5 26B [8] using a fixed sam-
pling frame rate of 2 frames per second(fps). Their re-
sults demonstrate that larger models consistently outper-
form smaller ones, indicating a positive correlation between
model size and performance. Then, to assess the impact
of different temporal resolutions, they use the InternVL2.5
26B model to resample the original video at varying frame
rates. The results reveal consistent performance across dif-
ferent frame rates. Finally, they train three assessment mod-
els on InternVL2.5 26B at three different sampling frequen-
cies: 2.5 fps, 3 fps, and 4 fps, respectively. The whole
trainning phase uses 8 NVIDIA A100 (80G) GPUs with the
LowRank Adaptation (LoRA) method for two epochs.

During inferring, they average the results from three
models, and observe a notable improvement of 2% in over-

all performance, achieving a final score of 0.6645.

1.2.2 CUC-IMC

Team CUC-IMC [32] wins second place in the AI generated
video track. They propose an LLM-based AI-Generated
Video (AGV) visual quality assessment method, which con-
sists of multibranch encoders and an LLaMA2-based [44]
decoder, as illustrated in Figure 9. Specifically, they de-
sign a multi-branch encoding architecture to comprehen-
sively characterize AGV visual quality by decoupling it into
three complementary dimensions: (1) The technical qual-
ity encoder employs Swin-3D Transformer [55] to capture
technical artifacts such as motion blur, noise, and jitter; (2)
The motion quality encoder quantifies video motion char-
acteristics including naturalness, smoothness, and dynamic
intensity through a SlowFast [13] network; and (3) The se-
mantic encoder utilizes a BLIP-based [22] visual backbone
to represent holistic content semantics. Through a spe-
cially designed multimodal prompt engineering framework,
they align the features extracted from the multi-branch en-
coders with the LLM’s reasoning space. Guided by feature
mapping and semantic anchors, the LLM establishes cross-
dimensional correlations among these features. Combined
with LoRA fine-tuning technique, this design enables supe-
rior adaptation of the LLM for quality assessment tasks.

During the training phase, they employ the Adam opti-
mizer with an initial learning rate of 1e-5 and a decay rate
of 0.05. The learning rate is dynamically adjusted using the
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LambdaLR scheduler, with the training process spanning 10
epochs including 2.5 warmup epochs. In the video frame
sampling stage, each video is processed through two dis-
tinct sampling strategies: Randomly sample 8 frames with a
stride of 2 frames between consecutive samples. This sparse
sampling captures representative visual semantics while re-
ducing redundancy. Uniformly sample 32 frames with tem-
poral continuity preserved. Dense sampling enables precise
motion pattern analysis through the SlowFast architecture.
And during the testing phase, they maintain the same frame
sampling strategy as used in the training stage. Their all
stages are consistently completed using an NVIDIA A800
GPU, with an inference speed of 1.91 seconds per video
during the final testing. Their final score is 0.6310.

1.2.3 opdai

Team opdai wins third place in the AI generated video track.
They propose to evaluate the video quality of AIGVs by us-
ing two models. They train two separate models based on
T2VQA [20] and SAMA, respectively. The T2VQA model
was trained with the addition of LoRA training, while the
SAMA model was trained using adversarial weight pertur-
bations. Then they use the fused results of the two models
as the final result. Their specific training configuration is
as follows: the Sama model using 8 × 32G NVIDIA V100
GPU, with a batch size of 144 (18 × 8), a learning rate of
1e-4, and trained for 10 epochs. Finally, they get the score
of 0.5903.

1.2.4 Magnolia

Team Magnolia designs a cocktail model , as shown in
Figure 10, incorporating multiple feature encoders for AI-
Generated video quality assessment (AIG-VQA). It con-

sists of four visual encoders (Siglip2-ViT [47], CLIP-
ConvNext [26], Swin2 [24], and VideoSwin [27]) and two
textual encoders (Siglip2 [47] and CLIP [9]). The visual
encoders Siglip-ViT and CLIP-ConvNext are responsible
for capturing the semantic content of videos, while Swin2
and VideoSwin focus on encoding textural and motion-
related information. To achieve this, Siglip-ViT and CLIP-
ConvNext process resized video frames to represent the
overall view of the content, whereas Swin2 and VideoSwin
operate on cropped frames or video clips to extract features
of fine details. The two textual encoders take the prompts
used to generate videos as input. Each visual/textual en-
coder is followed by an adapter (a linear layer) that projects
its extracted features into a quality perception space. No-
tably, textual features are concatenated with their corre-
sponding visual features before projection.

Each visual/textual feature outputted from adapters are
mapped into a quality score. They use the PLCC and rank
losses in FAST-VQA [52] as the quality prediction loss for
each predicted scores. Simultaneously, all the features are
concatenated and fed into the quality network (which con-
sists two linear layers) for final quality prediction. The same
loss is used. In addition, they also adopted an auxiliary
classification task to boost the quality perception. Specif-
ically, they roughly categorized the training videos accord-
ing to their resolution and fps. Then the visual features are
mapped into specific categories. The cross entropy loss is
used as the auxiliary loss.

During training phase, they train the model for 10
epochs. During the first 5 epochs, they freeze the param-
eters of the visual and textual encoders, training only the
adapters, fully connected (FC) layers, and the quality net-
work. The batch size is set to 16, and the learning rate is
3e-4. In the last 5 epochs, they finetune the entire model ex-



Figure 9. The overview of team CUC-IMC proposed method in track 2.

cept for the textual encoders, using the same batch size but
with a reduced learning rate of 3e-5. AdamW is used as the
optimizer. They resize and crop the video according to the
resolution requirements of different backbones. The entire
training process is completed on a 32G vGPU.

During test phase, the team randomly selects eight con-
secutive frames from each video. The testing process is
repeated ten times, and the final quality prediction for the
video is obtained by averaging the results of these ten runs.
Their final score is 0.5889.

1.2.5 AIGC-VQA

Team AIGC-VQA proposes a simple but effective method,
as shown in Figure 11. They use the pre-trained
KSVQE [28] model, freeze the backbone, and simply fine-
tune the model head on the competition training dataset, us-
ing PLCC loss and distortion contrast loss. This model uses
3D Swin Transformer [55] as the backbone, CLIP [33] to
extract semantic information, and CONTRIQUE [30] to ex-
tract spatial distortion. Finally, their score is 0.5606.

1.2.6 SJTU-MOE-AI

Team SJTU-MOE-AI proposes a quality assessment
method using multi-modal vision-language models trained
with both contrastive [33] and autoregressive objectives as
the base quality evaluator, as shown in Figure 12. Specif-
ically, they employ SigLIP2 [47] and a variant of Q-

Align [53]. Given a video, the base quality evaluators gener-
ate frame-level quality predictions for eight key frames uni-
formly sampled from the entire frame sequence. The final
video-level quality score yb is then obtained by averaging
these frame-level quality predictions. For SigLIP-2, they
first compute the cosine similarities between visual embed-
ding and textual embedding derived from five textual tem-
plates: “a photo with {q} quality, which matches prompt”.
where q ∈ {bad, poor, fair, good, perfect}, where {q}
corresponds to the Likert-scale of five quality levels and
prompt is the textual prompt used to generate the video.
Following [59], they apply a softmax function to the cosine
similarity logits to obtain a quality distribution over the five
levels, which they then convert into a scalar quality score
via weighted summation. As for Q-Align, they adhere to its
default setup for computing quality scores, except that they
append the video prompt to the question in the conversation
template.

Then inspired by [50], they equip the quality evalua-
tor a spatial rectifier and a temporal rectifier, which are im-
plemented by a truncated ResNet-18 [17] and a SlowFast
model [14], respectively. The spatial rectifier captures dis-
tortions caused by spatial re-sampling, while the temporal
rectifier addresses artifacts resulting from motion anoma-
lies. To evaluate text-video alignment, we introduce an
alignment rectifier based on FGA-BLIP2 [15] that bridges
vision and language modals. The representations from all
three rectifiers are processed through separate multi-layer
perceptrons (MLPs). As shown in 12, each rectifier pro-



                             

       

                             

             

                

                                          

               

  

   

  

    

   

  

   

  

   

  

    

  

   

  

   

  

    

  

   

  

    

                                                              

                                            

Figure 10. The overview of team Magnolia proposed method in track 2.

duces a tuple of scale (α) and shift (β) parameters, which
are applied to rectify the base quality predictions yb as fol-
lows:

y = 3
√
αsαtαayb +

βs + βt + βa

3
(8)

They train their model for 10 epochs, minimizing the
PLCC loss function using the Adam optimizer with a batch
size of 8. The initial learning rate is set to 1e-5. For
SigLIP2, “siglip2-base-patch16-naflex” is used, and the
maximum number of patches is set to 768. For the dataset in
this track, they sample 8 key frames. For the Q-Align base-
line model, they train for 4 hours using four A800 GPUs,
while their model requires 25 hours of training with a 4090
GPU. SigLIP2 is trained for 20 hours using a single A800
GPU. They finally get the score of 0.5463.

1.3. Talking Head Track

1.3.1 QA Team

The QA Team [39] thoroughly considered both the visual
and auditory aspects of TH (Talking Head), proposing a
novel NR video quality assessment model based on mul-
timodal feature representations.As shown in Fig. 13. Their
method can be divided into four modules:the spatial fea-
ture extraction module,the temporal feature extraction mod-
ule,the audio feature extraction module,and the audio-visual
fusion module.

The types of visual distortions in videos can be roughly
divided into two categories: spatial distortion[62] and mo-
tion distortion. First, Talking Head videos are split into clips
for spatial and temporal feature extraction.Whole clip is uti-
lized for temporal feature extraction with a fixed pretrained
3D-CNN backbone SlowFast[14].The first frame of each
clip is used for spatial feature extraction.The spatial fea-
ture extraction module utilizes an efficient channel attention
module ECA-Net[48], to effectively achieve cross-channel
interaction,and then utilize the SwinTransformer-tiny[25] to
extract visual features from the first frame.

For audio feature extraction, they first align the audio to
the visual frames according to the timeline and utilize four
extraction techniques to extract audio features[4], including
the chromagram, CQT, MFCC, and GFCC. These features
provide various characteristics and compensate for each
other.Subsequently, they stack these features to generate 4
channels of time-frequency audio features and feed them
into a separable convolution network to obtain more dis-
criminative and distinguishable audio features.The separa-
ble convolution network consists of three blocks (frequency
block, time block, and fusion block), which can handle
time and frequency domain characteristics for audio feature
representation and output more distinct and complimentary
audio features. Each block consists of Conv2D-Conv2D-
Conv2D-BatchNorm-Maxpool with different numbers of
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Figure 11. The overview of team AIGC-VQA proposed method in track 2.

kernels and kernel sizes. Specifically, the kernel sizes of
the frequency block and time block are 1 × m and n × 1 in
the frequency domain and time domain, respectively, which
employ spatially separable convolutions and reduce the pa-
rameters drastically.Then learns the temporal information
through Bi-LSTM, which has a good effect on processing
timing signals. Bi-LSTM, a particular LSTM, receives in-
formation in both forward and backward directions at the
same time, which makes the characteristics of the time se-
quence richer, because each signal possesses context mes-
sage from the past and future.Finally, they fuse the features
into a final quality score using the FC layers.

The videos are divided into 1s clips.they employ 6 clips
from each video with cyclic sampling.If a video has less
than 6 clips,the existing clips are expanded with cyclic sam-
pling until 6 clips are selected.For videos lasting for more
than 6 seconds,the first 6 clips are used.The Swin Trans-
former is utilized as the spatial feature extractor and patches
with a resolution of 3*224*224 are cropped as input.The
SlowFast is utilized as the temporal feature extractor and
the clips are resized to 224*224 for training.

The Adam optimizer is utilized, with an initial learning
rate of 1e-5. The default number of epochs and batch size
are set as 50 and 1, using one RTX3080 10GB GPU for talk-
ing head dataset. The total training duration was 15 hours.
Specifically, after every 2 epochs, the learning rate is mul-
tiplied by 0.95, ensuring that the learning rate progressively
diminishes over time.

1.3.2 MediaForensics

The MediaForensics team proposed integrating image and
video pre-trained models for enhanced multiframe video
assessment. As shown in Fig. 14, The method ensem-

ble consists of two types of models: The first type of
models involve using the image pre-trained model “eva02
large patch14 448. mim m38m ft in22k in1k” [12] as
the backbone, combined with a feature regression layer
(NeXtVLAD [23]), to build a multi-frame video assess-
ment model (training two separate models with 4 frames
and 8 frames, respectively). The Second type of models in-
volves using the visual encoder part of the video pre-trained
model “microsoft/xclip-large-patch14-16-frames” [31] to
construct a multi-frame video quality analysis model (train-
ing two separate models with 16 frames and 32 frames, re-
spectively). Finally, the average of the prediction scores
from the four models is calculated to obtain the final pre-
diction score.

During training, they firstly train the model for 27 epochs
using 90% of the training set, and the remaining 10% of
the training set is used as a validation set. Subsequently,
they finetune the model for another 7 epochs using the entire
training set.

1.3.3 AutoHome AIGC

The AutoHome AIGC team developed an enhanced solu-
tion based on SimpleVQA [40] for assessing the quality of
generated Talking Head videos. The team’s methodology
revolved around extracting both spatial and motion features
to improve video quality assessment. Spatial features were
obtained using ResNet50 [16]or RegNetY-8G [36], while
motion features were extracted via a pre-trained SlowFast
action recognition network. Multi-resolution processing
was enhanced by concatenating spatial features from differ-
ent backbone stages along with motion features. The final
video scores were computed using a Multi-Layer Percep-
tron (MLP) combined with Mean Pooling.
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Figure 13. The framework of the QA team method.

• Usernames on the NTIRE 2023 NonHomogeneous Dehazing Challenge
Codalab leaderboard (development/validation and testing phases) User-
names: BokingChen, Leaderboard results: 1/77(development) , 2/77(test-
ing)

• Link to the codes/executables of the solution(s) our codes/executables
were upload to docker, the docker image name is:

registry.cn-shenzhen.aliyuncs.com/bokingchen/thqa submit v1

Please refer to the README.md file for detailed instructions on how to
pull and run our docker image.

• Link to the enhancement results of all frames

https://codalab.lisn.upsaclay.fr/my/competition/submission/936953/output.zip

2 Contribution details

Figure 1: Five framework diagrams of our method.

• Title of the contribution

Integrating Image and Video Pre-trained Models for Enhanced Multi-
frame Video Assessment

• General method description

Our solution ensemble consists of two types of models: The first type mod-
els involve using the image pre-trained model “eva02 large patch14 448.mim m38m ft in22k in1k”
as the backbone, combined with a feature regression layer (NeXtVLAD),
to build a multi-frame video assessment model (training two separate mod-
els with 4 frames and 8 frames, respectively). The Second type mod-
els involve using the visual encoder part of the video pre-trained model

3

Figure 14. The framework of the MediaForensics team method.

The team implemented online performance fitting dur-
ing the testing phase. While the original SimpleVQA
model applied performance fitting only in training, ex-
tending this approach to inference further optimized the
model’s predictions, resulting in a MainScore increased to
0.799761. To further enhance feature extraction, the team
replaced the original ResNet50 backbone with RegNetY-
8G, a more powerful model with superior Top-1 accuracy

on ImageNet. This modification boosted the MainScore to
0.801045. The MainScore improvements on the validation
dataset are shown in Table 2.

MainScore
BVQA Baseline 0.26

Fintune on training dataset 0.780976
Increase Learning Rate to 1e-4 0.799159

On-line performance fit 0.799761
RegNetY-8G Backbone 0.801045

Table 2. MainScore Improvements on Validation Dataset

Beyond these architectural changes, the team also opti-
mized the testing process to improve efficiency. Offline-
extracted frames and SlowFast features were used instead of
real-time computation, reducing computational costs while
maintaining accuracy. The incorporation of online perfor-
mance fitting during inference further refined predictions,
which led to the highest test-phase MainScore of 0.807383.
The MainScore Improvements on Validation Dataset shows
in Table 3

MainScore
ResNet50 0.803407

RegNetY-8G 0.807383

Table 3. MainScore on Test Dataset

For training, RegNetY-8G, pre-trained on ImageNet, was
used as the initial weight. The training strategy remained
consistent with SimpleVQA, with the exception of an in-
creased learning rate. The team utilized an Adam optimizer
with a StepLR scheduler, applying a learning rate decay
factor of 0.9 every two epochs. During data preprocess-



ing, one frame per second was extracted from each video,
and for videos shorter than 8 seconds, the last frame was
repeated to maintain consistency. SlowFast was also used
for motion feature extraction, and all frames were resized
to 224×224 to reduce computational costs.These optimiza-
tions allowed AutoHome AIGC to achieve 1st place on the
test leaderboard, demonstrating significant improvements
over the baseline SimpleVQA model.

1.3.4 USTA-AC

The USTC-AC team proposes a dual-branch network for
video quality assessment. To address the domain gap be-
tween 2D and 3D video clips, they split the dataset into two
parts. The videos are processed at 25 fps and cropped to
512x512 portrait format, with face regions detected using
MediaPipe.

The team built a dual-branch network to extract the
frame feature and the face image feature, where they use
ViT [11] and SwinTransformer-b [25]. In the first, they use
the DSL-FIQA [6] model as shown in the Figure 15 to ex-
tract features from randomly sampled frames and crop out
the face region, applying the SwinTransformer-b to extract
face-specific features. Additionally, the team uses to extract
artifact features.

Figure 15. The framework of the proposed solution.

These features are then concatenated into a final feature
representation, which is passed through a two-layer MLP
network to predict the final quality score. The model is pre-
trained on the CGFIQA-40k dataset [6]. During training,
the team randomly samples frames to compute MOS, while
in the testing phase, they sample 10 frames and calculate
their mean score as the final MOS.

1.3.5 SJTU-MOE-AI

The SJTU-MOE-AI team proposed a modular multi-Modal
quality assessment for talking head videos via spatial and
temporal rectification. The model is adapted from [50] with
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Figure 16. The schematic of SJTU-MOE-AI team proposed.
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two modifications (see Fig. 16). First, we use SigLIP-base-
patch16-512 [58] (rather than CLIP-ViT-base-patch16 [34]
in the original implementation) the base quality predictor.
Second, instead of introducing an additional multi-layer
perceptron (MLP) to compute quality predictions on top of
vision representation, we follow [60] to compute the cosine
similarities between the visual embedding and textual em-
bedding derived from five textual templates: “a photo with
{q} quality.”, where q ∈ {“bad”, “poor”, “fair”, “good”,
“perfect”}, corresponding to the Likert-scale of five qual-
ity levels. We then apply a Softmax function to the cosine
similarity logits to obtain a quality distribution over the five
levels, which are converted into a scalar quality score via
weighted summation. We also enhance the base quality pre-
dictor with a spatial rectifier and a temporal rectifier as in
[50], which are based on a truncated ResNet-18 [18] and
a SlowFast model [14], respectively. The representations
from both rectifiers are processed through separate multi-
layer perceptrons (MLPs), producing a tuple of scale (α)
and shift (β) parameters, which are applied to rectify the
base quality predictions yb as follows:

y =
√
αsαtyb +

βs + βt

2
(9)



1.3.6 FocusQ

The FocusQ team proposes Face-IQA-Enhanced Evaluator
(FIEE), an innovative framework for the quality assessment
of talking head videos. Unlike other general video gener-
ation [37, 38], this track focuses on the quality assessment
of facial local details. Specifically, FIEE first extracts key
frames for each videos. Then, FIEE uses two key compo-
nents to obtain quality-aware features: (i) a TOPIQ model
[5] pretrained with face IQA dataset (GFIQA) [7] to ex-
tract static face-specific features, and (ii) a SimpleVQA
model [41] learning to extract dynamic motion and spatial
features. Finally, FIEE fuses these features and adopts an
MLP to predict the final MOS scores. Experimental results
have shown that our method can achieve competitive per-
formance. Specifically, the overall pipeline of FIEE is
illustrated in Figure 17. To improve the training/inference
efficiency, the FocusQ team follows SimpleVQA [41] to ex-
tract chunks and 2D frames from each video. As a result,
the image size of chunks and 2D frames is 3 × 224 × 224
and 3 × 448 × 448, respectively. The extracted chunks
are processed by the motion feature branch, while the 2D
frames are fed into both the spatial feature branch and the
face feature branch. Through these branches, FIEE obtains
three types of 1D features with lengths of 2304, 7168, and
256, respectively. To further improve efficiency, FIEE pre-
extracts motion features using the motion feature branch
with a SlowFast-R50 framework [14, 18], following the
methodology of SimpleVQA [41]. Next, FIEE concate-
nates these features to formulate the quality-aware features,
which are subsequently fed into a two-layer MLP with the
number of hidden nodes set to 128. Finally, the MLP is
expected to predict the MOS score aligned with human per-
ception.

In terms of training strategy, FIEE employs L1 loss,
Pearson linear correlation coefficient (PLCC) loss, and
Spearman rank-order correlation coefficients (SROCC)
loss, with their loss weight all set to 1. FIEE only trains the
spatial feature branch with ResNet-50 [18] as the backbone
and the MLP and keeps other components frozen. Note that
for the face feature branch, FIEE also adopt ResNet-50 [18]
as the backbone. Moreover, the batch size is set to 8. FIEE
adopts AdamW as the optimizer, with the learning rate set
to 1e-5 and the weight decay ratio set to 0.9. The imple-
mentation is based on Python 3.10 and PyTorch 2.6, and
all experiments are conducted on an NVIDIA H100 GPU.
Importantly, the FocusQ team did not use any additional ex-
ternal datasets for training the model.

1.3.7 NJST-KMG

The NJUST-KMG team proposes a Multi-Granularity Fu-
sion strategy to enhance video quality assessment for talk-
ing head videos, addressing the challenge of integrating

both qualitative and quantitative evaluations to improve pre-
diction robustness. Specifically, the method employs two
distinct large language models: one trained for 5-level clas-
sification (bad, poor, fair, good, excellent) and another for
10-level regression (integer scores 0–9). During inference,
outputs from both models are fused to leverage comple-
mentary insights from different granularities, enhancing the
overall assessment accuracy.

The team implemented this approach using pre-trained
vision-language models QwenVL2.5-7B [2] and MiniCPM-
V-2 6 [56], which were fine-tuned on competition-specific
data formatted as user instructions. Training utilized the
Adam optimizer for 2 epochs on 2× NVIDIA RTX 3090
GPUs, completing within 24 hours. No external data or
quantization techniques were employed. The fused infer-
ence achieved a processing speed of 1.38 videos per second,
demonstrating computational efficiency despite the model
scale.

Experiments on the competition dataset highlighted the
method’s advantages, including improved robustness to
subjective variations, generalization from pre-trained mod-
els, and enhanced accuracy through multi-granularity fu-
sion. The approach outperformed baseline methods without
requiring additional training data, validating its applicabil-
ity in resource-constrained scenarios.

1.3.8 XIDIAN-VQATeam

XIDIAN-VQATeam proposed the Adaptive Talking Head
Quality Assessment (ATHQA) method, which is an opti-
mized approach based on short video quality assessment
techniques, specifically designed for the NTIRE 2025 talk-
ing head video quality assessment task.An example of
ATHQA shows in Figure 18. ATHQA integrates both Con-
tent Understanding and Distortion Understanding modules
to effectively identify key regions affecting video quality
and distinguish various types of distortions, thereby accu-
rately predicting subjective video quality. The model em-
ploys a Fragment Sampling Strategy to enhance training
efficiency, while Content-adaptive Modulation (CaM) and
Distortion-aware Modulation (DaM) improve the model’s
understanding of content and distortions.

During the training phase, the model leverages
CLIP [33] and CONTRIQUE [29] as pre-trained models,
with a learning rate set to 3e-5. The loss function is defined
as 0.7LMSE + 0.3LRank, and data augmentation strategies
include Temporal Reversal, FiveCrop, and Random Frame
Sampling (8 frames per video). Additionally, Multi-Stage
Training and Multi-Scale Feature Fusion are utilized to en-
hance the model’s adaptability to different distortion pat-
terns.

In the testing phase, the team maintained the same hy-
perparameter settings and data augmentation strategies as



Figure 18. Representative image: Proposed network architecture.

Input res Training time Epochs Extra data Attention Quantization Params (M) GPU
448×448 34h 100 No Swin-T FP16 26 NVIDIA TITAN RTX

Table 4. Key technical parameters

used during training. ATHQA introduces several innova-
tive components, including the Lip-sync Consistency Mod-
ule [10], which analyzes lip synchronization in talking head
videos; Dynamic Motion Artifact Detection [21], based on
optical flow to identify motion distortions; and a Hybrid
Ensemble of Spatial and Temporal Predictions, which in-
tegrates spatial and temporal information to improve evalu-
ation accuracy. Table 4 shows key technical parameters.

Regarding computational complexity, the model consists
of 26 million parameters (26M), with an inference time of
0.54 seconds per video on an NVIDIA TITAN RTX. During
training, the AdamW optimizer is employed(β1 = 0.9,β2 =
0.999, weight decay = 0.05), with a batch size of 4 and a
2.5-epoch warmup. Moreover, the team optimized compu-
tational efficiency by incorporating Depth-wise Separable
Convolutions and Operator Fusion (e.g., Conv+BN+ReLU)
to accelerate inference.
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