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6. Experimental Settings

Implementation details. The experiments are conducted

using a single A6000 GPU on PyTorch 1.12.0. We use

the Adam optimizer to train our model with a batch size

of 32. The learning rate is set to 0.002 and adjusted using

a cosine-annealing scheduler. We train for 30 epochs ex-

cept for FLIVE [40] and AVA [24], which contains a suf-

ficiently large number of images. For FLIVE and AVA,

we use 5 epochs. The performance is evaluated using the

weights that achieved the best performance in the training

epochs. The input image is resized to 448× 448, except for

KADID-10k [21], where the original resolution is retained

to preserve the synthetic distortion signals as much as pos-

sible. We use CLIP-ViT-L/14 from OpenAI [26] for our

frozen CLIP model. We set wmin and hmin to 40, wmax

and hmax to 150 in Eq. (8). We set N = 6 and M = 18
for RandAugment [6]. All experiments are conducted based

on IQA-PyTorch [3] code. We normalize the Mean Opinion

Score (MOS), the ground truth of IQA datasets, to [0,1] for

calculating the loss. In Tab. 1, we present the reproduced

results of MANIQA on all datasets. MANIQA does not

provide the performance and experimental details for SPAQ

and FLIVE, which include images at various resolutions—

some even lower than 224 × 224. Since MANIQA crops

images to a fixed size of 224 × 224, we follow the CLIP-

IQA’s approach [33] that resizes the shorter side of each

image to 512.

Datasets. We evaluate the performance of our models

on various datasets: KonIQ-10k [13], which is an in-the-

wild dataset from YFCC100m [32]; SPAQ [9], which con-

tains 11K images gathered from smartphones; CLIVE [11],

which is also an in-the-wild dataset, and includes 1K im-

ages; AVA [24], which is an image aesthetic assessment

dataset, and contains about 236K images; FLIVE [40],

which is another in-the-wild dataset, and contains 160K im-

ages from AVA [24], VOC [8], EMOTIC [15], and CERTH

Blur [23]; KADID-10k [21], which is a synthetic dataset;

CSIQ [18], which is another synthetic dataset, and con-

tains about 1K images; LIVE [28], which is also synthetic

dataset, and contains 779 distorted images; and AGIQA-3K

[19], which is an AI-generated image dataset.

Metrics Descriptions. PLCC (Pearson’s linear correlation

coefficient) measures the linear relationship between the

predicted score and the ground truth, where a positive cor-

relation approaches 1 and a negative correlation approaches

-1. The equation is as follows:

PLCC =

N
∑

i=1

(xi − x̄)(yi − ȳ)

√

N
∑

i=1

(xi − x̄)2

√

N
∑

i=1

(yi − ȳ)2

, (12)

where xi and yi indicate the i–th predicted score and the

ground truth, respectively. x̄ and ȳ denote the mean of the

predicted score and the ground truth. N is the number of

the images.

SRCC (Spearman’s rank-order correlation coefficient)

measures the rank relationship between the predicted score

and the ground truth. If the ranks of the predicted scores

and the ground truth match exactly, SRCC is 1; if the ranks

are upside down, SRCC is -1. The equation is as follows:

SRCC = 1−

6
N
∑

i=1

d2
i

N(N2 − 1)
,

(13)

where di denotes the rank gap between the i–th predicted

score and ground truth.

7. Text Prompt Tuning

We conduct the ablation study to examine the effects of text

prompt tuning on TeMu-IQA-I. In Tab. 5, option (1) denotes

that text prompt tuning is not applied. Options (2) and (3)

represent the text prompt tuning of CoOp [47] and CoCoOp

[46], respectively. The text prompt tuning from CoCoOp

shows the best performance on KonIQ-10k [13] and CLIVE

[11].

KonIQ-10k CLIVE

Option SRCC PLCC SRCC PLCC

(1) 0.944 0.955 0.873 0.903
(2) 0.937 0.952 0.870 0.899
(3) 0.946 0.957 0.911 0.932

Table 5. Results on KonIQ-10k and CLIVE for different text

prompt tuning methods with TeMu-IQA-I. Options are (1) no tun-

ing, (2) CoOp, and (3) CoCoOp. Bold indicates best results

8. AI-Generated Image

Recent advancements in image generation have led to the

development of AGIQA-3K [19], a dataset designed for as-

sessing the quality of generated images. We train our model



AGIQA-3K

Method SRCC PLCC

CLIPIQA+ 0.843 0.888
HyperIQA 0.843 0.901
CLIP-AGIQA 0.875 0.919

TeMu-IQA-S 0.896 0.933
TeMu-IQA-I 0.898 0.934

Table 6. Results on AGIQA-3K. Bold and underline indicate best

and second best results.

on AGIQA-3K and compare its performance with existing

methods. We average the results across 10 random splits.

All results presented in Tab. 6 except for TeMu-IQA are

derived from CLIP-AGIQA [10]. As shown in Tab. 6, our

models surpass the performance of CLIP-IQA+ [33], Hy-

perIQA [30], and CLIP-AGIQA on AGIQA-3K.

Figure 6. Performance comparison between TeMu-IQA and LoDa

on KonIQ-10k for 10 epochs. The x-axis represents cumulative

time for training and evaluation, while the y-axis denotes the aver-

age of SRCC and PLCC.

9. Training Time Comparison

We compare the performance and training time of TeMu-

IQA-S and TeMu-IQA-I with those of LoDa [37], which

contains only 9M trainable parameters. For a fair compari-

son, we use ViT-B/16, the backbone of LoDa. Specifically,

we use a ViT pretrained on multi-modal data. By contrast,

LoDa uses a ViT pretrained on ImageNet-21K [29]. We

use the train–test split of LoDa and train models on KonIQ-

10k for 10 epochs. The data points in Fig. 6 indicate the

performance and cumulative time recorded at the end of

training and evaluation for each epoch. As shown in Fig. 6,

our models show faster training and outperform LoDa. In

LoDa, a pretrained CNN and ViT are frozen, and trainable

extractors and injectors are built to allow ViT to integrate in-

formation from low-level to high-level features from CNN.

However, LoDa encounters challenges when applied to a

ViT pretrained on multi-modal data, highlighting the need

for further research. We believe that our study serves as an

initial step toward addressing these challenges.

KonIQ-10k FLIVE

Method SRCC PLCC SRCC PLCC

CLIP-IQA+ 0.895 0.909 0.606 0.641
TOPIQ-ResNet50 0.928 0.941 0.633 0.722
DEIQT 0.921 0.934 0.571 0.663
ATT-IQA 0.942 0.952 0.632 0.742

TeMu-IQA-S 0.943 0.954 0.766 0.797
TeMu-IQA-S† 0.940 0.954 0.765 0.797
TeMu-IQA-I 0.946 0.957 0.770 0.798
TeMu-IQA-I† 0.948 0.959 0.767 0.799

Table 7. Results on KonIQ-10k and FLIVE with “†” models and

previous works. Bold and underline indicate best and second best

results.

Figure 7. Layer optimization. Using the features up to the 14th

layer shows the best performance on KonIQ-10k.

10. Layer Optimization

Fig. 8 shows the performance of TeMu-IQA-S trained on

KonIQ-10k using the patch features from each single layer

of CLIP-ViT on CSIQ [18], KADID-10k [21], KonIQ-10k

test set [13], LIVE [28], CLIVE [11], and SPAQ [9] using

the Q-ALIGN [36] train–test split. As shown in Fig. 8, it is

hard to guarantee consistently optimal performance across

all datasets using only a specific layer. For example, the

13th layer that performs best on KonIQ-10k shows lower

performance on KADID-10k, where the best performance

is achieved with the 20th layer. Therefore, using multi-

level features can minimize discrepancies among datasets.

In the main paper, we utilize patch features and [cls] to-

kens from all layers for TeMu-IQA. Here, we aim to inves-

tigate whether using only up to a specific layer may yield

more effective results. As shown in Fig. 7, TeMu-IQA-I,

which uses the patch features and the [cls] tokens up to the

14th layer, achieves optimal performance on KonIQ-10k.

In Tabs. 7 and 8, our models marked with the “†” symbol

use up to the 14th layer, whereas models without the “†”

symbol use all layers. Although the “†” models demon-
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Figure 8. Performance comparison of TeMu-IQA using patch features from each single layer of CLIP-ViT.

Train KonIQ-10k SPAQ CLIVE

Test SPAQ CLIVE CSIQ KonIQ-10k CLIVE CSIQ KonIQ-10k SPAQ CSIQ

TeMu-IQA-S 0.891/0.891 0.864/0.905 0.869/0.898 0.827/0.858 0.857/0.880 0.901/0.901 0.819/0.862 0.880/0.880 0.915/0.926

TeMu-IQA-S† 0.892/0.890 0.832/0.882 0.854/0.877 0.829/0.858 0.839/0.859 0.767/0.819 0.814/0.866 0.887/0.885 0.741/0.789

TeMu-IQA-I 0.895/0.895 0.867/0.906 0.891/0.911 0.846/0.874 0.862/0.881 0.881/0.894 0.809/0.868 0.888/0.890 0.879/0.899

TeMu-IQA-I† 0.897/0.895 0.847/0.896 0.849/0.877 0.834/0.866 0.834/0.862 0.812/0.842 0.822/0.868 0.892/0.891 0.835/0.853

Table 8. Results of cross-dataset evaluation. Models are trained on KonIQ-10k, SPAQ, and CLIVE. Bold indicates best results. Using

specific layers optimized for a specific dataset (models marked with the “†” symbol) worsens the model’s generalization ability. Metrics

are SRCC and PLCC, respectively.

strate improved performance in Tab. 7, this effect is mini-

mal. Moreover, as shown in Tab. 8, this optimization wors-

ens the model’s generalization ability. In particular, TeMu-

IQA-I trained on SPAQ outperforms TeMu-IQA-I† by 8.5%

in SRCC and 6.2% in PLCC on CSIQ. To retain the model’s

generalization ability, we recommend using all layers. Note

that we use a single train–test split for all experiments in

Tab. 8.

11. Local Distortion Guidance

We present more results of local distortion guidance in

Fig. 10. As shown in Fig. 10, LDG helps the model alle-

viate the over-localized problem across all datasets. Here,

we use CW-SSIM [27] for a fidelity score function. In con-

trast, Fig. 11 shows the prediction results obtained from a

model trained on CLIVE [11] using LDG with f(·, ·) =
0, 0.3, 0.5, 0.7. According to Eq. (10), we expect that as the

value of the function decreases, the predicted quality scores

of the distorted images also decline. As shown in Fig. 11,

the model trained with LDG reflects the user’s desired di-

rection, thereby escaping from the over-localized problem.

12. Epochs & Generalization Ability

All experiments, except for FLIVE [40], are performed with

30 epochs as default. However, our model shows promising

performance even with fewer training epochs because of a



Figure 9. Illustration of options (a), (b), and (c) with CLIP-IQA

framework.

few trainable parameters. As shown in Tab. 9, TeMu-IQA-

I achieves state-of-the-art performance and strong general-

ization ability with only 5 epochs. Additionally, as shown

in Tab. 10, TeMu-IQA-I trained on SPAQ shows competi-

tive generalization ability compared to MUSIQ [14], CLIP-

IQA+ [33], LIQE [44], MANIQA [38], TOPIQ [4], and Q-

ALIGN [36]. All results in Tabs. 9 and 10, except for those

of TeMu-IQA, MANIQA, and TOPIQ, are derived from Q-

ALIGN, and we follow the train–test split from Q-ALIGN

to ensure a fair comparison.

13. Layer-wise Performance of CLIP-IQA

We present the layer-wise performance of the CLIP-IQA

framework in Tabs. 11 to 13. In Fig. 9, option (a) refers to

using the [cls] token from the last layer to create the im-

age representation vector, as in the CLIP-IQA method. Op-

tion (b) indicates using the [cls] token from a specific layer.

Option (c) denotes using the [cls] tokens from all layers.

Specifically, for (c), we average the vectors created from

each layer to produce an aggregated image representation

vector. We evaluate the performance for three backbones:

CLIP-ViT-L/14, CLIP-ViT-B/32, and CLIP-ViT-B/16.



0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

Ps
eu

do
 G

T

TPS

PLCC: 0.8950
SRCC: 0.8939

0.00 0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

MLP Scoring

PLCC: 0.8808
SRCC: 0.8808

0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

Ps
eu

do
 G

T

TPS + LDG

PLCC: 0.9175 (+2.51%)
SRCC: 0.9172 (+2.60%)

0.00 0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

MLP Scoring + LDG

PLCC: 0.9190 (+4.33%)
SRCC: 0.9180 (+4.23%)

(a) SPAQ

0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

Ps
eu

do
 G

T

TPS

PLCC: 0.9022
SRCC: 0.8753

0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

MLP Scoring

PLCC: 0.8696
SRCC: 0.8328

0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

Ps
eu

do
 G

T

TPS + LDG

PLCC: 0.9206 (+2.04%)
SRCC: 0.8965 (+2.42%)

0.25 0.50 0.75
Predicted

0.00

0.25

0.50

0.75

MLP Scoring + LDG

PLCC: 0.9240 (+6.24%)
SRCC: 0.9000 (+8.05%)

(b) CLIVE

0.00 0.25 0.50 0.75
Predicted

0.0

0.5
Ps

eu
do

 G
T

TPS

PLCC: 0.8758
SRCC: 0.8927

0.00 0.25 0.50 0.75
Predicted

0.0

0.5

MLP Scoring

PLCC: 0.8581
SRCC: 0.8758

0.00 0.25 0.50 0.75
Predicted

0.0

0.5

Ps
eu

do
 G

T

TPS + LDG

PLCC: 0.9310 (+6.30%)
SRCC: 0.9344 (+4.66%)

0.0 0.5
Predicted

0.0

0.5

MLP Scoring + LDG

PLCC: 0.9309 (+8.48%)
SRCC: 0.9332 (+6.54%)

(c) KADID-10k

Figure 10. Scatter plots depicting the ground truth and predicted scores for generated SPAQ, CLIVE and KADID-10k.
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Figure 11. Results on using different fidelity score functions for LDG: f(·, ·) = 0, 0.3, 0.5, 0.7.



Test KonIQ-10k SPAQ CLIVE AGIQA-3K KADID-10k CSIQ

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

MUSIQ 0.929 0.924 0.863 0.868 0.830 0.789 0.630 0.722 0.556 0.575 - -
CLIP-IQA+ 0.895 0.909 0.864 0.866 0.805 0.832 0.685 0.736 0.654 0.653 0.731 0.771
TOPIQ-ResNet50 0.927 0.942 0.869 0.872 0.803 0.816 0.660 0.729 0.547 0.568 0.717 0.731
LIQE 0.928 0.912 0.833 0.846 0.870 0.830 0.708 0.772 0.662 0.667 - -
Q-ALIGN 0.940 0.941 0.887 0.886 0.860 0.853 0.735 0.772 0.684 0.674 0.700 0.759

5 epochs 0.942 0.954 0.898 0.899 0.889 0.907 0.712 0.765 0.707 0.708 0.802 0.830
10 epochs 0.942 0.953 0.900 0.900 0.889 0.910 0.713 0.769 0.695 0.696 0.800 0.832
15 epochs 0.942 0.953 0.900 0.901 0.884 0.904 0.710 0.768 0.693 0.698 0.800 0.832
20 epochs 0.945 0.956 0.900 0.900 0.885 0.906 0.715 0.772 0.689 0.694 0.813 0.842

25 epochs 0.945 0.956 0.899 0.900 0.890 0.910 0.714 0.771 0.688 0.693 0.812 0.842

30 epochs 0.946 0.957 0.900 0.901 0.889 0.909 0.715 0.772 0.689 0.694 0.812 0.842

Table 9. Results of cross-dataset evaluation. Models are trained on KonIQ-10k. Bottom shows the performance of TeMu-IQA-I for each

epoch. Bold indicates best results.

Test KonIQ-10k SPAQ CLIVE AGIQA-3K KADID-10k CSIQ

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

MUSIQ 0.753 0.680 0.917 0.921 0.813 0.789 0.564 0.675 0.349 0.429 - -
CLIP-IQA+ 0.753 0.777 0.881 0.883 0.719 0.755 0.577 0.614 0.633 0.638 - -
LIQE 0.826 0.847 0.922 0.919 0.805 0.866 0.672 0.722 0.639 0.627 - -
MANIQA 0.784 0.831 0.924 0.926 0.826 0.859 0.625 0.690 0.541 0.569 0.714 0.742
TOPIQ-ResNet50 0.806 0.816 0.921 0.925 0.805 0.834 0.546 0.638 0.441 0.492 0.660 0.709
Q-ALIGN 0.848 0.879 0.930 0.933 0.865 0.873 0.723 0.786 0.743 0.740 0.733 0.781

TeMu-IQA-S 0.815 0.855 0.930 0.934 0.867 0.873 0.667 0.748 0.679 0.688 0.813 0.849

TeMu-IQA-I 0.848 0.877 0.929 0.933 0.868 0.879 0.675 0.746 0.656 0.668 0.806 0.839

Table 10. Results of cross-dataset evaluation. Models are trained on SPAQ. Bold and underline indicate best and second-best results,

respectively.



KonIQ-10k SPAQ CLIVE

Method SRCC PLCC SRCC PLCC SRCC PLCC

layer1 0.2790 0.3125 -0.0082 0.0870 0.2020 0.2914

layer2 0.4249 0.4390 0.3798 0.3917 0.3517 0.4023

layer3 0.4781 0.4592 0.5438 0.5428 0.4374 0.4630

layer4 0.4522 0.4501 0.6155 0.6045 0.3258 0.3601

layer5 0.5121 0.5103 0.6806 0.6564 0.3639 0.4301

layer6 0.6307 0.6190 0.6686 0.6266 0.4314 0.4762

layer7 0.6559 0.6129 0.6974 0.6170 0.4513 0.4910

layer8 0.6477 0.6115 0.7083 0.5907 0.4042 0.4634

layer9 0.6707 0.6566 0.7050 0.6619 0.3592 0.4109

layer10 0.7062 0.7023 0.7112 0.6775 0.3580 0.4034

layer11 0.7224 0.7043 0.7221 0.7298 0.4600 0.4838

layer12 0.7230 0.7146 0.7583 0.7652 0.5772 0.5670

layer13 0.7242 0.7018 0.7696 0.7754 0.6214 0.6222

layer14 0.7411 0.7098 0.7910 0.7958 0.6793 0.6584

layer15 0.7523 0.7128 0.7805 0.7671 0.7094 0.6896

layer16 0.7661 0.6968 0.7977 0.7345 0.7289 0.7233

layer17 0.7598 0.7121 0.7842 0.7401 0.6838 0.6810

layer18 0.7526 0.7202 0.7527 0.7234 0.7294 0.7075

layer19 0.7383 0.7216 0.6686 0.6600 0.6804 0.6753

layer20 0.7280 0.6936 0.6414 0.6241 0.6261 0.6115

layer21 0.6939 0.6453 0.6296 0.5939 0.6011 0.5454

layer22 0.6101 0.5295 0.5038 0.4496 0.4649 0.3997

layer23 0.6238 0.5716 0.4276 0.4104 0.4647 0.4332

layer24 (CLIP-IQA) 0.6112 0.5681 0.3800 0.3751 0.4426 0.4185

Entire layer (Option (c)) 0.7743 0.7750 0.7751 0.7732 0.6949 0.6803

Table 11. Results of the CLIP-IQA framework on KonIQ-10k, SPAQ, and CLIVE with the [cls] token from different layer. Here, we use

CLIP-ViT-L/14 as the backbone model. Bold indicates best results.



KonIQ-10k SPAQ CLIVE

Method SRCC PLCC SRCC PLCC SRCC PLCC

layer1 0.5156 0.5267 0.3860 0.3825 0.5134 0.5164

layer2 0.5846 0.5701 0.5659 0.5531 0.4325 0.4302

layer3 0.5427 0.5346 0.6412 0.6278 0.4791 0.4904

layer4 0.5755 0.5803 0.7448 0.7411 0.5253 0.5180

layer5 0.6348 0.6379 0.7454 0.7376 0.5259 0.5258

layer6 0.6826 0.6843 0.7397 0.7202 0.5121 0.5336

layer7 0.6708 0.6655 0.7434 0.7392 0.3704 0.3876

layer8 0.7373 0.7176 0.8260 0.8267 0.5342 0.5579

layer9 0.7113 0.7020 0.8231 0.8187 0.5757 0.5877

layer10 0.7044 0.6816 0.6243 0.6175 0.4748 0.4483

layer11 0.5969 0.5901 0.5917 0.5759 0.4806 0.4529

layer12 (CLIP-IQA) 0.6336 0.6422 0.6038 0.5952 0.4621 0.4532

Entire layer (Option (c)) 0.7319 0.7497 0.7803 0.7773 0.6042 0.6105

Table 12. Results of the CLIP-IQA framework on KonIQ-10k, SPAQ, and CLIVE with the [cls] token from different layer. Here, we use

CLIP-ViT-B/32 as the backbone model. Bold indicates best results.

KonIQ-10k SPAQ CLIVE

Method SRCC PLCC SRCC PLCC SRCC PLCC

layer1 0.2913 0.2664 0.5414 0.5343 0.4198 0.3919

layer2 0.3979 0.3681 0.5714 0.5541 0.4593 0.4205

layer3 0.4522 0.3937 0.4968 0.4780 0.4559 0.4011

layer4 0.5008 0.4441 0.5099 0.4989 0.4511 0.4094

layer5 0.4839 0.4256 0.5630 0.5307 0.4508 0.3988

layer6 0.5633 0.4514 0.6639 0.5498 0.5156 0.4455

layer7 0.6296 0.5149 0.7100 0.6297 0.5138 0.4044

layer8 0.6614 0.5462 0.7139 0.6322 0.6134 0.4682

layer9 0.6546 0.5074 0.7188 0.5810 0.6523 0.5304

layer10 0.5401 0.4681 0.5207 0.4519 0.4736 0.4205

layer11 0.5148 0.4289 0.5694 0.4612 0.4734 0.4083

layer12 (CLIP-IQA) 0.4658 0.4631 0.5330 0.4732 0.3818 0.3421

Entire layer (Option (c)) 0.6371 0.5438 0.6897 0.6238 0.5753 0.5100

Table 13. Results of the CLIP-IQA framework on KonIQ-10k, SPAQ, and CLIVE with the [cls] token from different layer. Here, we use

CLIP-ViT-B/16 as the backbone model. Bold indicates best results.
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