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Supplementary Material

Additional Extended Methodology
In this section, we expand upon the mathematical founda-
tions of our framework, detailing the operations performed
in both the spatial and frequency domains, as well as their
fusion and calibration.

1. Spatial Domain Processing: For an input image
Dh×w×3, each color channel Di (with i ∈ {R,G,B}) is
processed independently. The initial multi-scale feature ex-
traction is given by:

f1i = Φi(Di), (18)

where Φi(·) denotes convolutional operations with kernel
sizes 3 × 3 (for R), 5 × 5 (for G), and 7 × 7 (for B). To
enhance these features, a two-stage attention mechanism is
applied.

First, channel attention is computed as:

Wchannel = σ
(
W2 · ϕ

(
W1 · g(f1i )

))
, (19)

where g(f1i ) denotes global average pooling, ϕ(·) is a ReLU
activation, and W1 and W2 are learnable weight matrices.
The feature map is then scaled element-wise:

fchannel-att =Wchannel ⊙ f1i . (20)

Next, spatial attention is defined by:

Wspatial = σ
(
ψ
(
[Pavg(fchannel-att);Pmax(fchannel-att)]

))
,

(21)
where Pavg and Pmax denote average and max pooling, re-
spectively, and ψ(·) is a convolutional mapping. The refined
spatial features are obtained as:

f2i =Wspatial ⊙
(
Wchannel ⊙ f1i

)
. (22)

Finally, a residual connection ensures low-level features are
preserved:

f3i = f2i + f1i , ∀i ∈ {R,G,B}. (23)

2. Frequency Domain Processing: Each channel Di is
transformed into the frequency domain using the 2D Fast
Fourier Transform (FFT):

Fi(u, v) =

h−1∑
x=0

w−1∑
y=0

Di(x, y) e
−j2π(ux

h + vy
w ). (24)

The magnitude of the frequency representation is computed
as:

|Fi(u, v)| =
√

Re(Fi(u, v))2 + Im(Fi(u, v))2. (25)

To refine the magnitude features, we perform a linear trans-
formation:

F̂i =W2 · ϕ
(
W1 · |Fi|

)
, (26)

followed by frequency attention:

Wfreq = σ
(
W4 · ϕ

(
W3 · F̄i

))
, F̄i =

1

hw

∑
u,v

|Fi(u, v)|.

(27)
The refined magnitude is:

|Fi|refined =Wfreq ⊙ |Fi|. (28)

The phase information Θi(u, v) is preserved as:

Θi(u, v) = arctan
( Im(Fi(u, v))

Re(Fi(u, v))

)
, (29)

and the refined complex representation is reconstructed by:

F ′
i (u, v) = |Fi|refined · ejΘi(u,v). (30)

Finally, the inverse FFT recovers the spatial features:

ffreq,i(x, y) =
1

hw

h−1∑
u=0

w−1∑
v=0

F ′
i (u, v) e

j2π(ux
h + vy

w ). (31)

3. Frequency Guided Fusion (FGF): The spatial fea-
tures f3i and frequency features ffreq,i are fused to form a
unified representation:

fconcat,i = Concat
(
f3i , ffreq,i

)
. (32)

A convolutional layer then integrates these features:

ffused,i = ϕ
(
Wi ∗ fconcat,i + bi

)
, (33)

where ∗ denotes convolution and bi is the bias term.
4. Inter-Channel Fusion and Channel Calibration:

Fused representations from the three channels are concate-
nated:

fall = Concat
(
ffused,R, ffused,G, ffused,B

)
. (34)

This aggregated feature is projected into a higher-
dimensional space:

fd = ϕ
(
Td(fall)

)
, (35)

and further integrated with frequency features through a
learned transformation:

ffusion = ϕ
(
Tf (fd, ffreq)

)
. (36)



A global attention mechanism refines this fused representa-
tion:

fattn = A
(
ffusion, fall

)
, (37)

followed by the reconstruction of a preliminary enhanced
image:

E = ϕ
(
Te(fattn)

)
. (38)

Finally, adaptive channel calibration is performed:

Wcalibration = σ
(
W2 · ϕ

(
W1 · g(E)

))
, (39)

Efinal = E ⊙Wcalibration, (40)

ensuring that the final enhanced image Efinal exhibits bal-
anced color distributions and preserved structural details.

Hardware and Training Details
We run all our experiments on a NVIDIA Tesla P100
GPU (Pascal architecture) with 16 GB of HBM2 memory
and 3,584 CUDA cores, delivering up to 9.3 TFLOPS of
single-precision performance. Since our method focuses
on lightweight design and real-time feasibility, testing on
a GPU with minimal compute ensures efficiency without
relying on heavy hardware. We also use automatic mixed-
precision (AMP) to speed up training and reduce memory
usage, making the process even more efficient.

Training Settings: We train our model using the Adam
optimizer with a starting learning rate of 2 × 10−4, β1 =
0.5, and β2 = 0.999. Training runs for up to 1,000 epochs
with a batch size of 4, but we use early stopping based on
LPIPS. We choose LPIPS since it closely aligns with human
perception, ensuring that the model focuses on producing
visually improved underwater images.

Computation-Related Info:

===== Model Performance Report =====
GPU Memory Used: 50.46 MB
Peak GPU Memory: 260.34 MB
Inference Time: 1.8147 seconds
Estimated FPS: 0.55 frames per second
Total FLOPs: 18.41 GFLOPs

Supplementary Results
+

In these supplementary results, we provide additional
quantitative and qualitative visualizations to further illus-
trate the performance and efficiency of our proposed FU-
SION framework. In addition to the primary metrics pre-
sented in the main paper, these supplementary results in-
clude detailed ablation studies, bar plots comparing qual-
ity metrics across the UIEB, EUVP, and SUIM-E datasets,

Figure 7. Line chart comparing PSNR values across the UIEB,
EUVP, and SUIM-E datasets.

Figure 8. Line chart comparing SSIM values across the UIEB,
EUVP, and SUIM-E datasets.

as well as extended efficiency analyses. These visualiza-
tions are closely tied to the mathematical formulations de-
scribed in Section 3 and underscore the importance of our
dual-domain processing.

The above figure (9) illustrates the impact of ablating key
components of our proposed model. We observe that re-
moving individual modules results in visible degradations,
which verifies the necessity of each part for achieving opti-
mal performance.

Figure 10 presents a qualitative comparison between our
FUSION framework and several traditional image process-
ing techniques. Notably, while methods such as histogram
equalization and dark channel priors provide some level of
enhancement, they fall short of recovering natural color bal-
ance and structural details, as achieved by our method.
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Figure 9. Ablation Study Visual Comparisons. This figure displays the enhancement results for a representative underwater image using
our model with various component ablations: Original, No Frequency Attention, No Frequency Branch, No Frequency Guided Fusion, No
Channel Calibration, No Local Attention, No Global Attention, and Spatial Only. The qualitative differences underscore the contribution
of each module to the final enhancement quality.

Table 7. Evaluation on SUIM-E test set with the best-published
works for UIE. First, second, and third best performances are rep-
resented in red, blue, and green colors, respectively. ↓ indicates
lower is better.

Method PSNR SSIM LPIPS↓ UIQM UISM BRISQUE↓
UDCP [5] 12.074 0.513 0.270 1.648 7.537 22.788
GBdehaze [13] 14.339 0.599 0.355 2.255 7.400 20.175
IBLA [26] 18.024 0.685 0.209 1.826 7.341 20.957
ULAP [30] 19.148 0.744 0.231 2.115 7.475 21.250
CBF [2] 20.395 0.834 0.194 3.003 7.360 21.115
UGAN [6] 24.704 0.826 0.190 2.894 7.175 20.288
UGAN-P [6] 25.050 0.827 0.188 2.901 7.184 18.768
FUnIE-GAN [10] 23.590 0.825 0.189 2.918 7.121 22.560
SGUIE-Net [28] 25.987 0.857 0.153 2.637 7.090 25.927
DWNet [29] 24.850 0.861 0.133 2.707 7.381 20.757
Ushape [24] 22.647 0.783 0.213 2.873 7.061 22.876
Lit-Net [27] 25.117 0.884 0.118 2.918 7.368 19.602
FUSION (Ours) 25.989 0.850 0.118 3.183 7.679 18.655

Figures 7 and 8 plot PSNR and SSIM values across
the datasets. The PSNR chart shows FUSION consistently
achieves higher reconstruction fidelity with elevated PSNR
values. The SSIM chart reveals superior structural similar-
ity compared to other approaches, even under challenging
conditions. These plots highlight that FUSION enhances lo-
cal details and color balance while preserving global image
structure, reinforcing its effectiveness in underwater image
enhancement tasks.

On the SUIM-E test set (Table 7), our approach further
confirms its robustness by achieving comparable PSNR,
SSIM, and LPIPS scores. Additionally, FUSION exhibits
favorable performance in perceptual quality metrics, with
competitive UIQM, UISM, and BRISQUE scores across all
datasets.

Our methodology leverages multi-scale convolutions,

adaptive attention mechanisms, and frequency-domain
transformations to address the complex degradations in un-
derwater images. To offer deeper insight into our approach,
we now provide additional mathematical details that further
elaborate on the operations used in FUSION.

Metric-wise Bar Plots
To provide a granular view of the performance across dif-
ferent metrics, we present bar plots (Figures 13-18)for
each quality measure across the UIEB, EUVP, and SUIM-
E datasets. These plots allow us to compare how various
methods perform in terms of perceptual quality (BRISQUE
and LPIPS), reconstruction fidelity (PSNR and SSIM), re-
construction (MSE), and overall image quality (UIQM and
UISM).

Additional Efficiency Analysis
The efficiency of underwater image enhancement mod-
els is crucial for practical deployment, particularly on au-
tonomous underwater vehicles (AUVs) and other resource-
constrained platforms. In this section, we provide a side-
by-side comparison of the model parameters and compu-
tational complexity (GFLOPs) for various SOTA methods.
As described in our methodology, the efficient design of
FUSION is achieved by leveraging dual-domain processing
and optimized fusion strategies, which are mathematically
formulated in Equations (1) through (9) for the spatial and
frequency domains, respectively.

Figure 12 illustrates the trade-off between the parameter
count and GFLOPs. This side-by-side visualization clearly
shows that FUSION achieves competitive computational ef-
ficiency, with a remarkably low parameter count (0.28M)
while maintaining a GFLOPs score of 36.73G. This balance



Figure 10. Comparison with Traditional Image Processing Techniques. The figure compares the original underwater image with images
processed by conventional methods: histogram equalization, CLAHE, white balance, gamma correction, dark channel prior, underwater
dark channel prior, and red channel prior. These comparisons highlight the limitations of traditional methods relative to our approach.

is a direct result of the adaptive attention mechanisms and
efficient convolutional designs implemented within the net-
work.
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Figure 11. Visual comparisons on the SUIM-E dataset.

Table 8. Ablation performance on SUIM-E.

Config Freq. Attn Freq. Branch Freq. Fusion Chan. Calib Local Attn Global Attn UIQM UISM LPIPS BRISQUE
Full Model (FUSION) ✓ ✓ ✓ ✓ ✓ ✓ 3.183 7.679 0.118 18.655
no frequency attention ✗ ✓ ✓ ✓ ✓ ✓ 2.626 5.832 0.242 23.91
no frequency branch ✓ ✗ ✓ ✓ ✓ ✓ 2.806 5.674 0.285 25.73
no frequency guided fusion ✓ ✓ ✗ ✓ ✓ ✓ 2.703 6.010 0.230 23.24
no channel calibration ✓ ✓ ✓ ✗ ✓ ✓ 2.721 6.096 0.225 22.98
no local attention ✓ ✓ ✓ ✓ ✗ ✓ 2.736 6.034 0.228 23.15
no global attention ✓ ✓ ✓ ✓ ✓ ✗ 2.746 6.023 0.229 23.21
spatial only ✗ ✗ ✗ ✓ ✓ ✓ 2.645 5.506 0.265 24.62
minimal model ✗ ✗ ✗ ✗ ✗ ✗ 2.445 5.149 0.292 26.18

Figure 12. Side-by-side comparison of model parameters and GFLOPs for various UIE methods. FUSION achieves low computational
cost without compromising enhancement performance.

(a) UIEB (b) EUVP (c) SUIM-E

Figure 13. Bar plots comparing BRISQUE scores (lower is better) across the UIEB, EUVP, and SUIM-E datasets.



(a) UIEB (b) EUVP (c) SUIM-E

Figure 14. Bar plots comparing LPIPS scores (lower is better) across the three datasets. Lower LPIPS values indicate that FUSION
produces enhanced images that are perceptually closer to the ground truth.

(a) UIEB (b) EUVP (c) SUIM-E

Figure 15. Bar plots comparing PSNR values across the UIEB, EUVP, and SUIM-E datasets. Higher PSNR values achieved by FUSION
indicate its reconstruction fidelity.

(a) UIEB (b) EUVP (c) SUIM-E

Figure 16. Bar plots comparing SSIM values across the three datasets. FUSION consistently achieves higher SSIM values.

(a) UIEB (b) EUVP (c) SUIM-E

Figure 17. Bar plots comparing UIQM scores across the UIEB, EUVP, and SUIM-E datasets. The UIQM metric reflects overall image
quality improvements achieved by FUSION.

(a) UIEB (b) EUVP (c) SUIM-E

Figure 18. Bar plots comparing UISM scores across the three datasets. Higher UISM scores for FUSION indicate improved sharpness and
detail retention in the enhanced images.


