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1. Other Teams
1.1. Okkk
Description: Our reflection removal approach improves the
Reversible Decoupling Network (RDNet [22]) to enhance
the effectiveness of single-image reflection removal.

Figure 1. The overall structure of RDNet

RDNet introduces a Reversible Decoupled Network
(RDNet) architecture, which employs a reversible encoder
to preserve critical information while flexibly decoupling
features related to the transmission layer and reflection layer
during forward propagation. Additionally, RDNet incorpo-
rates a transmission rate-aware prompt generator to dynam-
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Figure 2. Enhanced Hybrid Attention

ically calibrate features, further enhancing performance.
RDNet’s design overcomes two key challenges:

1. Loss of high-level semantic information: As features
propagate through layers, high-level semantic cues tend
to be compressed or discarded, affecting the quality of
reflection removal.

2. Limitations of fixed interaction patterns: The interac-
tions between layers in dual-stream networks typically
follow a fixed pattern, restricting overall model perfor-
mance.

Therefore, we choose RDNet for our Baseline, and op-
timize the design of experiments to better achieve single-
image reflection removal.

The overall structure of RDNet is shown in Fig. 1, which
consists of three main core modules: the multi-column re-
versible encoder (MCRE), transmission-rate-aware prompt
generator (TAPG) and the hierarchy decoder (HDec).

The Pretrained Hierarchy Extractor (PHE) extracts se-
mantically rich hierarchical representations from the in-
put image and passes them to each layer in the first col-
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umn of the MCRE. Meanwhile, TAPG learns channel-level
transmission-reflection ratio priors from the data and maps
these learned parameters into cues to guide feature decou-
pling in the MCRE network. Finally, each column of the
MCRE utilizes HDec to decode the hierarchical informa-
tion while providing effective lateral guidance. Ultimately,
the decoding results from the last column of the MCRE gen-
erate the final reflection removal output.

In the RDNet architecture, each layer relies solely on
convolution operations to extract local features. However,
due to the inherent limitations of convolutions, the model
struggles to effectively capture long-range dependencies,
weakening its ability to understand the global context of
reflection regions. To address this issue, we propose an
Enhanced Hybrid Attention (EHA) mechanism, as illus-
trated in Fig. 2, which optimizes feature processing through
a dual-path design: channel attention dynamically adjusts
the importance of feature channels to suppress irrelevant
reflection information, while spatial attention enhances the
precise localization of reflection boundaries. These two at-
tention mechanisms are adaptively fused through a learn-
able gate mechanism, allowing the model to retain the lo-
cal detail modeling capability of convolutions while signif-
icantly improving its ability to capture global information,
ultimately achieving more precise reflection removal. The
enhanced hybrid attention mechanism we designed has sig-
nificant advantages in the reflection removal task in the fol-
lowing four aspects.

1. Cross-Dimensional Dynamic Feature Calibration:
The Enhanced Hybrid Attention (EHA) module achieves
precise multi-dimensional modeling of reflection regions
through parallel channel attention and spatial attention path-
ways. Channel attention (global average pooling + bottle-
neck structure) analyzes the global statistical information
of feature channels, effectively suppressing irrelevant high-
frequency components related to reflections. Meanwhile,
spatial attention (group convolution + pointwise convolu-
tion) focuses on local structural differences, enhancing the
weighting distribution along reflection boundaries. The dy-
namic fusion of these two attention mechanisms is con-
trolled by a learnable gating coefficient, enabling adaptive
adjustment of the attention type ratio based on the reflection
intensity of the input image. This cross-dimensional syn-
ergy overcomes the over-smoothing issue commonly seen
in conventional convolutional operations when handling re-
flection regions, significantly improving the recognition ac-
curacy of complex reflection patterns.

2. Hierarchical Reflection Suppression: To accommo-
date the multiscale nature of reflection removal, we intro-
duce the hybrid attention module at higher network lev-
els (level ≥ 2) . Since high-level features contain richer
semantic information, incorporating attention at this stage
helps distinguish background content from reflection arti-

facts. Specifically, we alternate convolutional blocks with
attention modules (inserting one EHA after every two Con-
vNeXtBlocks), forming a cascaded process of local feature
extraction – global context calibration. This design en-
hances reflection removal performance while maintaining
computational efficiency.

3. Efficient Attention Optimization: We optimize the at-
tention module to enhance computational efficiency. The
channel attention adopts a 4× channel compression ratio,
reducing parameters to within 8% of the original convo-
lutional block. The spatial attention employs a cascaded
structure of grouped convolutions and 1×1 convolutions,
preserving the receptive field of 3×3 convolutions while re-
ducing computational cost by 75%. Additionally, the gat-
ing network predicts weights using a single-layer adaptive
pooling mechanism, eliminating complex computations and
ensuring efficient inference.

4. Physics-Guided Attention Learning: The unique
physical properties of reflection removal, such as higher
brightness and lower sharpness in reflection regions, are ex-
plicitly incorporated into the design of our attention mecha-
nism. The channel attention module, utilizing a Sigmoid ac-
tivation function, naturally suppresses high-brightness fea-
ture responses, aligning with the optical characteristics of
reflections. Meanwhile, the spatial attention module em-
ploys grouped convolutions, which inherently preserve lo-
cal gradient variations, making it more effective at capturing
abrupt transitions at reflection boundaries.

By deeply integrating domain knowledge into the atten-
tion design, our approach enables the model to maintain
stable performance even with limited training data. Fur-
thermore, extensive cross-dataset evaluations demonstrate
its superior generalization ability, effectively adapting to di-
verse real-world reflection patterns.
Implementation: During the training phase, we only uti-
lized the 800 training image pairs provided by the offi-
cial dataset and loaded the pre-trained weights of RDNet.
These weights were pre-trained on multiple reflection re-
moval datasets, including Real20 [21], Objects, Postcard,
and Wild [17]. RDNet adopts a two-stage training strat-
egy, where we fine-tuned the model based on the pre-trained
weights. In the first stage, we froze the ConvNeXt structure
and fine-tuned only the TPAG head. In the second stage, we
unfroze the MCRE module for end-to-end optimization.

Specifically, we trained the model for 180 epochs on a
VGPU-32GB with an initial learning rate of 1× 10−4 . The
first 100 epochs utilized a step-based learning rate sched-
ule, followed by 80 epochs with cosine annealing. During
the testing phase, we further applied Test-Time Augmenta-
tion (TTA) to enhance the reflection removal performance.
Specifically, we performed horizontal flipping, vertical flip-
ping, and 90°, 180°, and 270° rotations on the input images,
conducted reflection removal for each transformation, and



Figure 3. Dual-Architecture Interactive Encoder (DAIE) and a Dual-Stream Interactive Decoder (DSID). [8]

then fused the results to optimize the final output.

1.2. MVP Lab
Description: Our overall architecture comprises a Dual-
Architecture Interactive Encoder (DAIE) and a Dual-
Stream Interactive Decoder (DSID), which is shown in
Fig. 3. The mixed global information is then injected into
the dual-stream local flows via Cross-Architecture Interac-
tions (CAI), ensuring comprehensive information utiliza-
tion. Subsequently, the DSID separates and aggregates the
embeddings hierarchically through Dual-Attention Interac-
tive Block.
Implementation: In the training phase, we adopted the
model scheme of DSIT [8], but because the dataset reso-
lution of the competition was larger than that of the open
datasets, we changed the original input resolution of 384 to
768. We trained 100 epochs on the additional open datasets
as pre-training. Specifically, we used 7,643 images from the
Pascal VOC dataset [7] (center-cropped as 224 x 224 slices
to synthesize training pairs), 90 real-world training pairs
provided by Zhang et al. [21], 200 real-world training pairs
provided by IBCLN [11]. Then, 200 epochs are trained on
the dataset of the competition, resulting in a weight file. In
addition, we find that the quality of enhancement can be im-
proved by replacing the pixels in the non-reflective region
of the enhanced image with the original image, in which the

DSIT model can obtain the corresponding non-reflective re-
gion. So we ended up with post-processing by replacing the
non-reflective area. Our models are implemented using the
PyTorch framework and use the Adam optimizer. The learn-
ing rate is fixed as 10−4 with a batch size of 1 on a single
RTX 4090 GPU.

1.3. KLETech-CEVI
Description: We propose Reversible Hierarchical Reflec-
tion Removal Decoupling Network (RRR), as described in
Fig. 4. In our experiment we employ RDNet [22] as our
baseline model. Our proposed model retains key strengths
of RDNet while introducing significant enhancements. The
multicolumn reversible encoder now comprises five lev-
els with an extra convolution block at the added level to
deepen feature extraction. The column embedding layer
uses a 7 × 7 convolution (stride 2) to generate overlapping
patches F−1 for further processing. For the i-th column (i ∈
{1, 2, . . . , N}), each level feature F i

j (for j ∈ {0, 1, . . . , 5})
is computed as:

F i
j = ω

(
θ(F i

j−1) + δ(F i−1
j+1)

)
+ γF i−1

j , (1)

where ω denotes the network operation as described by RD-
Net [22]. The Prompt Generator (PrG) is similar to that
in RDNet, with the only modification being the addition of
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Figure 4. Our proposed framework (RRR) comprises three primary modules that collectively address reflection removal in images.

an extra convolution layer while retaining all other compo-
nents. In RDNet, a simplified ConvNext model estimates
six parameters α{R,G,B} and β{R,G,B} by minimizing

∥αiT + βi − I∥2,

for each i ∈ {R,G,B}. A three-layer MLP then produces a
prompt P , which modulates the column embeddings via the
Hadamard product P ◦ F . Finally, the hierarchical decoder
fuses multiscale features using pixel-shuffle upsampling to
generate layer residuals (T̄S and R̄S), which are added to
the original input to yield the final transmission (T̄ ) and re-
flection (R̄) outputs.
Implementation: We train our proposed method, RRR, us-
ing Python (v3.8) and the PyTorch framework. The train-
ing is executed on an NVIDIA RTX 6000 Ada generation
GPU in conjunction with an Intel Xeon Gold CPU with a
batch size of 1. We employ the Adam optimizer throughout
the process. Initially, we use RDNet [22] as our baseline
model and train it for 20 epochs. Subsequently, we fine-tune
the network for an additional 80 epochs to achieve optimal
reflection-free image outputs.

1.4. ACVLab
Description: As shown in Fig. 5, our solution builds upon
OmniSR, proposed by Xu et al. [18]. Initially, reflection-
affected input images are processed by DINOv2 [15] to
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Figure 5. Network architecture of proposed solution.

extract semantic features and by Depth Anything V2 [19]
to generate depth maps, from which normal maps are de-
rived via gradient-based transformations. The original RGB
image is then concatenated with the depth map to form
an RGBD input, which is fed into the model. Seman-
tic features from DINOv2 are concatenated with bottle-
neck features and subsequently processed by a decoder en-
hanced with the FreqFusion module [1]. By incorporat-
ing this frequency-aware fusion mechanism, we effectively



recover high-frequency texture details impacted by reflec-
tions, enabling reflection-free image reconstruction, with-
out any postprocessing.
Implementation: For the dataset preparation, we aug-
ment the training data using random cropping to 512×512
patches, along with random flipping and 90-degree rota-
tions, before feeding it into the model for training. The
training dataset exclusively comprises data provided by Co-
dalab, with no additional external data used to assist train-
ing. To enable the reconstruction of full high-resolution im-
ages during inference, we employ a sliding window strat-
egy in both the inference and testing phases. This ap-
proach, with a window size of 512 pixels and an overlap
of 64 pixels, ensures that high-resolution inputs are pro-
cessed seamlessly while maintaining compatibility with the
model’s patch-based design.

The training process is divided into two distinct phases,
each with tailored hyperparameter configurations. During
the first phase, we adopt the Charbonnier Loss due to its ro-
bustness against outliers commonly found in reflection re-
gions. This phase employs a CosineAnnealingLR sched-
uler (T max=10, eta min=5e-5), with the learning rate ini-
tialized at 2e-4 and optimized using the AdamW optimizer
across 2000 epochs. In the second phase, the model under-
goes fine-tuning using L2 Loss to enhance texture fidelity
further. Here, a ReduceLROnPlateau scheduler is applied,
starting with a learning rate of 1e-5 and decaying it by a
factor of 0.85 based on validation performance. Both train-
ing phases use a batch size of 10 and are initialized with
weights pre-trained on OmniSR [18]. All experiments are
conducted on three NVIDIA GeForce RTX 3090 GPUs us-
ing PyTorch 2.0.1.

1.5. i am a bug

Figure 6. Network architecture of proposed solution.

Description: Most of the existing methods of SD model
start from random noise to reconstruct the transmission im-
age under the guidance of the given blended image in Sin-
gle Image Reflection Removal (SIRR), Meanwhile, the ran-
dom noise introduces uncertainty in the output, which is un-

friendly to SIRR tasks. To address these issues, we propose
a simple and effective way:

a. It only requires training a Lora [9] and does not require
any modifications to the training process of the SD model,
to predict the compensation image of the reflective area in
the blended image.

b. A refine model is used to integrate the difference be-
tween the blended image and the transmission image, and
the clean transmission image is obtained.

The network architecture is shown as Fig. 6.
Implementation: In train stage1, we use Flux.1-dev as the
base SD model to train Lora(rank=16) to predict the reflec-
tion compensation image; In train stage2, we use a trans-
former model (pretrained on the ImageNet) to predict clean
transmission image based on the blended image and com-
pensation image in first stage. Specifically, we build a trans-
former model consisting of 6 layers of transformer blocks,
each of which uses cross-attention optimization to compen-
sate image in first stage. Then we calculate the difference
between blended image and compensate image to obtain
a clean projection image. At the same time, we use L1
loss, ssim loss and perceptual loss by VGG16. The learn-
ing rate is fixed as 2e-4 on a single NVIDIA A100(80G).
In the testing phase, we first use the flux+lora model to pre-
dict the reflectance compensation image of all images in test
set. Then, we input the predicted compensation images and
blended images into the transformer model to obtain the fi-
nal prediction results.

Only 100 images of data provided by the competition
can be used to train a Lora that can predict accurate com-
pensation image in train stage1; After completing the train
stage1, This Lora can be used to generate the data needed
for the train stage2. In the end, we only used the 800 train-
ing images provided by the competition to achieve a high
evaluation index.

1.6. ImageLab
Description: The Lightweight Self-Calibrated Attention-
Based Reflection Removal (LSCA-RR) network, as shown
in Fig. 7, is a compact yet effective architecture designed
to suppress reflections while preserving essential image de-
tails. The proposed network features a three-stage encoder
with convolutional layers of 16, 16, and 32 filters, each en-
hanced by Residual Dense Attention (RDA) [13] blocks to
effectively extract and refine spatial features while main-
taining contextual consistency. At the network’s front-end,
the image undergoes a series of Self-Calibrated Convolu-
tions with Pixel Attention (SCPA) [14, 29] blocks, which
adaptively enhance pixel-level features and guide the net-
work’s focus toward non-reflective regions. The encoded
features are progressively compressed via MaxPooling lay-
ers, and skip connections are preserved for later use in the
decoding stages. The decoder path comprises two convo-



Figure 7. Architecture diagram.

lutional stages (with 16 filters each), also equipped with
Residual Dense Attention (RDA) [12] blocks for deep hi-
erarchical feature integration. Upsampling is performed us-
ing Sub-Pixel Convolutional Blocks to preserve texture and
avoid checkerboard artifacts.

The network generates three intermediate outputs: OX

(shallow-refined output), E1 (primary decoder output), and
E2 (auxiliary enhancement path output)[2]. These, along
with the original input image I , are fused using an element-
wise addition operation to produce the final output Î , for-
mally expressed as:

Î = OX + E1 + E2 + I (2)

This multi-path fusion strategy allows the model to leverage
both deep contextual and shallow spatial features, enabling
high-quality reflection suppression in a computationally ef-
ficient manner.

The model is trained on the proposed loss function,
which combines structural similarity, pixel-wise accuracy,
and edge-preserving constraints to guide high-quality re-
flection removal. Let I be the ground truth image, and Î
be the predicted image. The total loss function Ltotal is de-
fined as:

Ltotal = 0.5 ·
(
1− SSIM(I, Î)

)
+ MAE(I, Î) + Lgrad + ϵ

(3)
where SSIM(I, Î) is the Structural Similarity Index, and

the Mean Absolute Error is given by:

MAE(I, Î) =
1

N

N∑
i=1

∣∣∣Ii − Îi

∣∣∣ (4)

The gradient loss Lgrad is used to enforce edge fidelity
and is defined as:

Lgrad =
1

N

N∑
i=1

(∣∣∣∇xÎi −∇xIi

∣∣∣+ ∣∣∣∇y Îi −∇yIi

∣∣∣) (5)

Here, ∇x and ∇y denote image gradients in the hori-
zontal and vertical directions, respectively, and ϵ is a small
constant added for numerical stability. This composite loss
ensures that the output not only matches the ground truth
in intensity and structure but also preserves edge sharpness,
leading to perceptually superior reflection suppression.
Implementation: The proposed network was trained using
the NVIDIA Tesla P100 with 16GB RAM and the Tensor-
Flow Keras platform. The 400x400x3 patches are randomly
extracted from the image. The model was trained using
4281 training patches and 755 validation patches. The aug-
mentation was applied to training the model. We utilized
the Adam optimizer, with a learning rate decreasing from
0.001 to 0.00001 over 250 epochs.

1.7. PSU TEAM
Description: We propose OptimalDiff, a novel image en-
hancement framework tailored for low-light image restora-
tion, with a visual overview presented in Fig. 8. It refor-
mulates the enhancement task as an optimal transport prob-
lem between degraded and clean image distributions using
Schrödinger Bridge theory. The method integrates:
1. A hierarchical Swin Transformer-based encoder-decoder

that effectively captures long-range dependencies and hi-
erarchical context using window-based self-attention.

2. A Schrödinger Bridge diffusion module [3] that models
the bidirectional transformation between noise and clean
images through a forward degradation process and a con-
ditional reverse denoising process.

3. A multi-scale refinement network that preserves global
structure while enhancing fine details at full resolution.

4. A PatchGAN-based adversarial discriminator that en-
courages perceptually realistic outputs with natural tex-
tures.

The network is trained end-to-end using a composite loss
function that includes diffusion loss, optimal transport loss
(Sinkhorn divergence), multi-scale SSIM+L1 loss for per-
ceptual quality, and adversarial loss:

Ltotal = Ldiff + λ1LOT + λ2LMS-SSIM+L1 + λ3Ladv (6)

where:
• Ldiff: diffusion noise prediction loss,
• LOT: Sinkhorn divergence for optimal transport,
• LMS-SSIM+L1: perceptual and structural loss,
• Ladv: PatchGAN-based adversarial loss.
We used the AdamW optimizer with a cosine annealing
learning rate schedule, a batch size of 16, and trained the
model for 300 epochs.



OptiMalDiff: Hybrid Image Restoration with Optimal Transport and Schrödinger Bridge
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losses. Schrödinger Bridge-based optimal transport aligns degraded and clean image distributions for enhanced restoration.

Implementation: The proposed method, OptimalDiff, was
implemented in Python using the PyTorch deep learning
framework (version 2.0+). All components including the
Transformer backbone, diffusion module, refinement net-
work, and discriminator were implemented from scratch.
The model was trained using the AdamW optimizer with
β1 = 0.9, β2 = 0.999, and weight decay of 2 × 10−4. A
cosine annealing learning rate scheduler was used with a
starting learning rate of 2e-4. The batch size was set to 16,
and the model was trained for 300 epochs. All experiments
were conducted on a machine equipped with an NVIDIA
RTX quadro 8000 GPU (48 GB VRAM).

1.8. RefLap
Description: The proposed reflection removal method
combines a Laplacian decomposition branch (DWT-FFC [5,
23]) and an image reconstruction branch (UHDM [20])
in a hierarchical neural network. The DWT-FFC branch
utilizes discrete wavelet transforms and Fast Fourier Con-
volutions in a U-Net architecture for effective multi-scale
frequency-domain information extraction. Concurrently,
the UHDM branch employs pixel unshuffling, residual
dense blocks(RDB), and scale attention modules(SAM) to
calibrate spatial features. Multi-scale residuals from the
Laplacian branch assist the UHDM decoder with adaptive
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Figure 9. The overall architecture of Team RefLap. The DWT-
FFC branch [23] aims to perceive the reflection artifacts and these
reflection degradations are transferred into the UHDM branch [20]
via multi-scale addition.

cross-scale addition fusion, facilitating detailed reflection-
free image reconstruction. This two-domain strategy lever-
ages complementary frequency and spatial features for the
efficient elimination of reflections [4, 23]. The frame of the
proposed shadow removal method is shown as Fig. 9.
Implementation: The model was implemented using Py-
torch framework. The training leveraged the Adam opti-
mizer with a base learning rate of 2e-4, and a cosine an-



nealing learning rate scheduler was used to gradually re-
duce the learning rate from 3e-4 to 1e-6 over two training
cycles, promoting stable convergence. Training was con-
ducted on a single GPU. The dataset used for training con-
sisted of paired images for image reflection removal, with
geometric augmentations applied to enhance generalization.
Images were processed in batches of 12 with patch sizes of
352 × 352 pixels, totaling 150,000 iterations. Efficient op-
timization strategies included gradient clipping to maintain
training stability and prefetching mechanisms for efficient
data loading. The loss function combined four components:
Charbonnier loss [10], structure loss [26] (weighted at 0.1)
for pixel-level accuracy, perceptual loss using VGG fea-
ture layers [16] (weighted at 0.01), and multi-scale SSIM
loss [6, 24, 25] (MSSSIM, weighted at 0.4) to enhance per-
ceptual fidelity. Overall, the training environment was care-
fully designed for high efficiency, stability, and scalability.
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Figure 10. An overview of efficient Hue Guidance Network.

Description: We proposes an efficient Hue Guidance Net-
work for Single Image Reflection Removal, which is shown
in Fig. 10. Our method is inspired by two works: SR-
Former [27] and HGNet [28]. In our framework, hue is gen-
erated, and the hue information aids reflection removal by
highlighting reflection-distorted regions in the HSV color
space. With the hue guidance, the hue features is ex-
tracted and used to locate and suppress reflection in the
whole network effectively. In detail, first, the reflection im-
age and the generated hue image serve as the two inputs.
Both of these inputs are fed into encoding modules, respec-
tively. And the two encoded features enter the permuted
self-attention blocks (PSAB) to further achieve the compact
feature representation, which is inspired by the efficiency
of SRFormer [27]. Then, these features are fused by the
fusion layer, integrating the compact information from dif-
ferent sources. The fused features then pass through the five
PSAB blocks, and the multiple repetition structure is used
for feature enhancement, optimizing the combined features
further. Finally, the processed features are fed into the de-
coding module, which converts the features back into the

clean image.
Implementation: We follow the same training strategy
and settings as employed in SRFormer [27] and data self-
ensemble is utilized during testing.
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