
Enforcing View-Consistency in Class-Agnostic 3D Segmentation Fields

Supplementary Material

6. Additional discussion

6.1. Analysis of confidence
In Fig. 8, we visualize the confidence estimation of our ob-
ject network. We define confidence as the maximum value
per-pixel across all object slots. Low-confidence regions of-
ten correspond to objects that were not correctly identified,
such as the bottles in the room scene or the isolated patch of
table in the kitchen. In future work, an interesting direction
would be to adaptively generate 2D mask supervision for
regions with low object field confidence.

6.2. Detailed quantitative results
In Tab. 2, we provide the complete results of our method and
baselines on the Mip-NeRF 360 dataset. The ground truth
masks are segmented by hand and cover all pixels in their
respective images. The first and the one-hundredth images
of each scene are selected for evaluation, and the number
of object per-image ranges between 5 and 38. Similarly
to the aggregated results reported, our method outperforms
baselines for all tested scenes and for all metrics.

6.3. Limitations
Despite our proposed matching and regularization to reduce
the effect of 2D mask inconsistency, we observed that thin
structures remain a challenge. As illustrated in Fig. 9 with
the bicycle scene, our method is unable to assign a single
object slot to the bench, which is partially occluded by the
bicycle. Thin structures are challenging to reconstruct ac-
curately for NeRFs, and SAM often fails to capture them
and tends to produce masks that encapsulate more than the
object itself.

Furthermore, partially occluded objects may not be satis-
fyingly reconstructed by the initial NeRF. As a result, object
extraction will sometimes reveal NeRF floaters in regions of
space which are not supervised by the ground-truth images.
This effect is visible in Fig. 10, where the table underneath
the pedestal includes some reconstruction artifact.

7. Implementation details

7.1. Mask generation
We generate the 2D supervision masks with SAM [21].
Specifically, we used the pretrained ViT-H model weights
and the Automatic Mask Generator class, which takes as
input an RGB image and no prompt, and outputs a set of
masks separating objects in the image. Since SAM pads
images to be square, we first crop the input images to

squares in order to produce higher quality masks. In post-
processing, we remove masks which are included in another
mask. We also discard masks that take up less than 3% of
the total image in pixels. For each mask generated, SAM
estimates a predicted IoU score and a stability score. We
additionally discard masks for which any of these scores is
below 70%. Note that the union of these masks may not
cover each pixel. This is taken into consideration in our
method, and some object slots may not be matched with a
mask at every iteration.

For our experiments on the Mip-NeRF 360 dataset, we
select a SAM granularity parameter g ∈ [1, 3] such that at
least 5 different masks are produced for each scene. Pre-
cisely, we use granularity levels of 1 for bicycle, 0 for bon-
sai, and 2 for the remaining scenes. Since the images in
this dataset are very high resolution, we downscale images
by a factor of 4 prior to mask generation, and observe that
this tends to lead to smoother masks. For this same reason,
we dilate masks by 5 pixels to reduce the effect of possible
artifacts produced by SAM. For object-centric scenes, we
additionally generate a background mask by masking the
region outside of the unit-sphere in the 3D NeRF. The fore-
ground is then given to SAM as input to generate masks for
the remaining objects.

7.2. NeRF reconstruction
In this section, we describe the NeRF implementation used
in our approach. Note that this NeRF reconstruction is not
central to our method and could easily be replaced with an-
other implementation. In fact, our work could be extended
to other differentiable rendering techniques as the only re-
quirement of our method is a differentiable method to pro-
duce 2D object images from a learned 3D field.

We first encode the position x using learned hash grid
features. We start NeRF optimization with the 4 lowest res-
olution hash grids initially, and increase the number of ac-
tivated hash grids every 50 iterations, up to a maximum of
16. The interpolated features are then decoded by a multi-
layer perceptron with 3 hidden layers and a hidden layer
dimension of 64. Afterwards, features of dimension 15 are
concatenated to the view direction and fed to the color de-
coder, which has 3 hidden layers of 32 dimensions.

We assume the region of interest is located within
the [−1, 1]3 cube, and contract the background region
[−128,−1] × [1, 128] such that we only sample points in
[−2, 2], as described in [2]. Additionally, we optimize a
proposal network with 2 hidden layers of 16 dimensions. In
our experiments, we observed that a satisfying 3D segmen-
tation was learned within the first minute of training. We



(a) Counter (b) Kitchen (c) Room

Figure 8. Visualization of object prediction confidence, defined as the maximal object value per-pixel. Bright regions indicate high
confidence and a well-defined object.

(a) Ground-truth (b) Segmentation (c) Confidence

Figure 9. Limitations. Accurately segmenting thin structures remains a challenge.

further train for a total of 10000 iterations to attain conver-
gence, which takes between 10 and 30 minutes depending
on the complexity of the scene and the number of images.

All networks are trained on a single A100 GPU with 40Gb
of VRAM.

In order to prevent NeRF floaters and simplify object ex-



Input Metric DFFv2 Instance-
NeRF

Panoptic
Lifting

PL+SAM Ours

bicycle
IoU 70.29 26.04 26.04 75.06 79.24
BD 82.47 51.23 51.23 84.56 87.51

SBD 79.56 40.24 40.24 83.82 85.34

bonsai
IoU 76.57 34.68 39.15 85.26 88.63
BD 83.51 53.16 70.59 94.85 91.12

SBD 83.14 49.55 53.19 89.73 90.33

counter
IoU 49.08 25.66 19.77 46.00 69.86
BD 60.84 52.76 44.83 65.45 83.33

SBD 59.62 35.33 27.53 55.24 78.52

garden
IoU 85.64 57.57 34.45 58.85 93.67
BD 88.66 72.04 62.86 72.58 97.03

SBD 88.66 69.00 49.87 71.16 96.33

kitchen
IoU 68.28 19.98 20.81 86.05 88.87
BD 77.56 40.95 41.75 93.84 95.36

SBD 77.56 32.82 33.93 90.06 92.80

room
IoU 43.76 26.36 35.75 33.49 59.95
BD 54.39 52.34 61.21 58.60 73.64

SBD 54.39 38.22 45.64 47.38 71.70

Average
IoU 65.60 31.71 29.33 64.12 79.24
BD 74.57 53.75 55.41 78.32 87.51

SBD 73.82 44.19 41.73 72.90 85.34

Table 2. Segmentation results on the Mip-NeRF 360 [2] dataset.

(a) Render (b) Object field (c) Decomposition

Figure 10. Object decomposition of the bonsai model.

traction, we add an L1 loss on the densities of points ran-
domly sampled in [−2, 2], referred to as Lempty . This loss
is paired with a very small λempty = 10−4 to regularize
unseen regions of space without interfering with the actual
geometry.

7.3. Object Field

We optimize the object field for 2000 iterations with a batch
size of B = 5. This batch size defines the number of ran-
domly sampled views each iteration, where each view is as-
sociated to up to K masks. In our experiments, K ranges
from 5 to 60 based on the selected granularity level and



the complexity of the scene. Note that the matching of ob-
ject slots and masks is performed per-view, such that differ-
ent views don’t interfere with each other and the matching
method is computed B times per iteration.

For a 3D point x, we first encode x using a learned fea-
ture hash grid with 8 levels. Then, these features are de-
coded by a fully-connected network with 2 hidden layers
and a hidden dimension of 32. The final layer outputs N
values, where N is the maximum number of objects. Fi-
nally, the resulting vector is fed to a softmax layer. We set
the initial learning rate to 0.15, and apply a learning rate
decay of 0.005 after 20 iterations of warm-up. The loss
weights are set to λTV = λFP = 0.01.

Note that we freeze the weights of the NeRF reconstruc-
tion in order to train the object field. Previous work [38] has
shown that without a stop gradient on the semantic loss, ad-
ditional floaters appeared in the 3D reconstruction. Further-
more, we optimize NeRFs by sampling random rays across
all views, whereas the object network is trained by sampling
an image and considering all masks available for that image.
This major difference in training method and the results of
previous work explain our decision to not jointly train our
NeRF and object field networks.


