RADLER: Radar Object Detection Leveraging Semantic 3D City Models and
Self-Supervised Radar-Image Learning

Supplementary Material

7. RadarCity Dataset

7.1. Sensor and Device Setup

The sensor platform for collecting the dataset contains a Go-
Pro HERO11 Black camera and a 77GHz FMCW mmWave
radar from Texas Instrument, model AWR1843Boost. The
radar’s field of view (FoV) after post-processing is 1-33.7m,
+60° horizontally. The GoPro camera uses the ultra-wide
mode to enable a horizontal FoV of also +60°. The frame
rate of the camera recording is 30 frames per second (FPS),
and for the radar, it is 15 FPS.

Attempts have been made to record radar data at 30 FPS
to facilitate data alignment. However, under our radar con-
figuration, the radar data recording could only last around
five minutes at 30 FPS due to limited bandwidth for data
transmission. The collected radar data is initially stored in
the onboard storage and then transmitted to the computer
via Ethernet, as depicted in Fig. 10. However, there is a
mismatch in the data collection and transmission rate, caus-
ing the onboard storage to be filled up after a certain time.
Subsequently, any collected data beyond the storage capac-
ity will be abandoned, leading to data loss. To maintain data
integrity, it is required to reduce the frame rate of the radar
data recording to 15 FPS.
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Figure 10. A simplified workflow for the radar data collection.
Two transmitters emit signals from the FMCW signal source,
while four receivers collect the signals reflected by the target.
These signals are then converted to digital signals, stored in on-
board storage of the DCA1000EVM board, and transmitted to the
computer.

However, to ensure that every second camera image
frame matches a radar frame, it is essential to start record-
ing simultaneously on both the camera and radar. The pro-
posed method uses a synchronized software trigger to start
the recording on both devices. For the GoPro camera, a lab
firmware is available, offering the functionality to synchro-
nize the built-in clock of the GoPro camera with the com-
puter’s system clock. Additionally, the GoPro camera can
start recording automatically at a given time.

The radar board is controlled through mmWave Studio,

a GUI from Texas Instruments that allows configuration
and control of mmWave sensor modules and collection of
analog-to-digital data for offline analysis. A script has been
developed to read the computer’s system clock so the but-
tons to trigger the radar data recording can be clicked at a
specified time.

As aresult, the GoPro camera and radar can be triggered
to record data automatically and simultaneously based on
the computer’s system clock.

7.2. Data Clusters

After collecting the data, they are organized into clusters
based on object types and their positions in the scene. Tab. 3
shows detailed information about the data clusters. Data
clusters 1 and 2 contain three common objects on the street:
pedestrians, cyclists, and cars. These objects are also the
targets of interest in many other machine learning models
for radar object detection.

Data cluster 1 and 2 are further split based on where
those objects are. Fig. 11a shows an example of data clus-
ter 1 where the cars are on the driving lane, and a cyclist
is riding on the bicycle lanes. Fig. 11b, an example data
from data cluster 2, contains the same object classes. How-
ever, the cyclist there is riding on the pedestrian walk in-
stead of the bicycle lane. This separation is prepared for
further analysis of how to use the prior information from
the semantic 3D city models, as the initial thought is that
the traffic lanes in the street model should facilitate the de-
tection of common objects traveling on them. Objects, such
as the bus in Fig. 11c, are out of our current research inter-
est.

7.3. Dataset Annotation Overview

Data clusters 1 and 2 were selected for training and eval-
uating the performance of RADLER against the baseline
RODNet models. Based on the workflow of contrastive
SSL, the data in data clusters 1 and 2 are further split into
the pretext and downstream task datasets. The pretext task
dataset has around 35 000 radar-image data pairs, while the
downstream task dataset has 10000 data pairs with 8000
for training and 2000 for testing. Although SSL can save
the efforts of annotating the pretext task dataset, the down-
stream task dataset still needs to be annotated. In this case,
the downstream task dataset is purely manually annotated,
hence incurring some offsets in the annotations despite great
carefulness. The distribution of the annotations of differ-
ent object classes in the downstream dataset is presented in



Table 3. Data Clusters in the RadarCity Dataset.

Data Cluster  Object Classes Objects’ Position Number of Data Pairs
1 pedestrians, cyclists, and cars In the corresponding lanes 38800
2 pedestrians, cyclists, and cars Not in the corresponding lanes 5300
3 Besides mentioned above, trucks, May or may not be in the corre- 18700

vans, scooters, motorbikes, and bi-
cycles for delivery, etc.

sponding lanes

(a) Data Cluster 1: the objects are in the corre- (b) Data Cluster 2: the objects are not in the corre- (c) Data Cluster 3: objects other than cars, cyclists,

sponding lanes as the car and cyclist here. sponding lanes.

and pedestrians.

Figure 11. Examples from different data clusters.

Fig. 12. More cars are annotated than pedestrians and cy-
clists since those cars are annotated repeatedly among the
radar data frames.
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Figure 12. Statistics of the downstream task dataset annotations.

8. Evaluation Results

8.1. Impact of OLS in L-NMS

The OLS value used in L-NMS is chosen through an ex-
perimental evaluation. The results of mAP and mAR
for RADLER and RODNet under different OLS values as
thresholds for L-NMS are shown in Fig. 13. An observa-

tion applied for all is that mAP and mAR improve as the
OLS value increases.

Notably, RODNet-HG performs better than other mod-
els at lower OLS values (from 0.2 to 0.4). This suggests
that RODNet-HG produces more separated peaks in the
ConfMaps, leading to fewer overlaps and, therefore, lower
similarities between the peaks to have them survive the
L-NMS. As the OLS value increases, RADLER, particu-
larly the variant integrated with SDM, starts to outperform
the others, with its advantage becoming most apparent at an
OLS value of 0.8, where it achieves a mAP of nearly 95%
and a mAR of around 96%.

While the exact reasons for this performance trend across
different OLS values may not be immediately clear, this ex-
periment highlights how the distribution of confidence val-
ues in the ConfMaps varies across models. The same OLS
threshold applied to different models yields different target
lists, indicating the differences in how the confidence values
of a detected object from different models are numerically
distributed on the ConfMaps, resulting in the quality of the
target list generated through L-NMS.

8.2. Additional Qualitative Results

Fig. 14 shows more visualized detection results from the test
data. Here, the OLS value for L-NMS is set to be 0.8 for all
models. RADLER demonstrates a clear advantage over the
RODNet models. As shown in every column, RADLER can
produce a more accurate and confident detection for each
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Figure 13. The mAP and mAR of RADLER and RODNet under different OLS values as the threshold for L-NMS.

object as the RODNet models tend to produce redundant
detection for one object with lower confidence values.

In the 1st column, SDM contribute to the detection of the
cyclist by increasing its confidence score by 0.09. Also, in
the last column, the usage of SDM increases the confidence
of the detected cyclist by 0.06.

However, SDM are not always contributive. In the 1st
column, the detected car on the left in the middle of the
street is 0.03 lower in confidence score compared to the
detection from RADLER without SDM. Also, in the 3rd
column, SDM have lowered the confidence of the detected
cyclist by 0.03.




Images

RA Maps

cyclist
40.89

Ours without SDM

corar
aar $08%7 o
ar 098 o 100
@, 045
100

Ours with SDM

RODNet-CDC

“%EEEHSH

car eyelist
.0.92 2

RODNet-HG

@i
038

cyclist
.69

RODNet-HGwlI

Figure 14. Example results: the first row displays the images, and the second row shows the corresponding RA maps. Subsequent rows
display predicted ConfMaps from different models.



