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A. Related Works

A.1. TAD Frameworks

The absence of a standardized framework for temporal action
detection has historically led researchers to either develop
methods from scratch or build upon specific open-source
implementations. While some methods have provided par-
tial foundations, they remain limited in scope. For example,
GTAD [63] was implemented on top of BMN [31] and was
later adopted by subsequent works such as TSI [34] and BC-
GNN [2]. However, these methods are tailored to specific
designs and lack the flexibility to accommodate broader inno-
vations. Additionally, adapting a feature-based method (e.g.,
[70]) to an end-to-end training paradigm (e.g., [71]) often
requires extensive and tedious code modifications, such as re-
structuring feature extraction and training components. This
lack of interoperability hinders efficient experimentation and
fair benchmarking.

Although several works have proposed distinct “frame-
works" for TAD, they primarily focus on specific paradigms
rather than providing a truly unified solution. Examples in-
clude the one-stage framework in TriDet [48], the multi-level
cross-scale framework in VSGN [70], the end-to-end detec-
tion framework in TadTR [39], and the efficient end-to-end
framework in AdaTAD [37]. These frameworks are designed
independently, making cross-method comparison and inte-
gration challenging. Some methods, such as BMN [31] and
TSI [34], describe their approaches as “unified frameworks,"
but they primarily refer to the joint training of multiple com-
ponents within a single model rather than a framework that
accommodates diverse methodologies.

To address these limitations, OpenTAD introduces
the first truly unified framework for TAD, integrating a
broad range of approaches—including one-stage, two-stage,
DETR-based, and end-to-end methods—within a single, co-
hesive implementation. By supporting both feature-based
and end-to-end learning paradigms, OpenTAD simplifies the
development, adaptation, and evaluation of new methods,
ensuring a standardized and extensible platform for future
research.

A.2. TAD Surveys

Several survey papers on temporal action detection provide
comprehensive overviews of various methods [18, 55, 56].
These reviews categorize TAD approaches based on the origi-
nal modularization described in each paper and directly com-
pare reported performance across different methods. How-

ever, they do not account for inconsistencies in experimental
configurations, such as data resolution, preprocessing, and
post-processing, which can lead to unfair comparisons and
obscure the true effectiveness of individual techniques.

In contrast, OpenTAD offers a unified framework that
systematically re-modularizes and reimplements existing
methods to ensure consistency across different architectures
and training pipelines. This standardization enables faithful
comparison and rigorous analysis, providing deeper insights
into the impact of specific design choices. Unlike previous
survey papers, which evaluate methods based on heteroge-
neous configurations, OpenTAD facilitates direct, controlled
comparisons under a unified setting. Furthermore, while
prior reviews independently classify TAD methods into cate-
gories, OpenTAD integrates diverse approaches—including
one-stage, two-stage, DETR-based, and end-to-end meth-
ods—into a single, cohesive implementation, enabling a
more comprehensive and adaptable benchmarking platform.

B. Evaluation Protocol and Implementation De-
tails

Evaluation Protocol. Although mean Average Precision
(mAP) is the standard evaluation metric for TAD, inconsis-
tencies in evaluation code, ground-truth annotations, and
tIoU thresholds across previous methods have led to difficul-
ties in fair comparisons. In the OpenTAD framework, we
standardize the evaluation protocol across datasets and meth-
ods, ensuring consistency. We report the mean and standard
deviation of performance metrics over five different random
seeds to account for variability in training.
Implementation Details. OpenTAD is implemented using
PyTorch 2.0 and runs on a single NVIDIA A100 GPU. We
adhere to each method’s original hyperparameter settings,
including learning rate, number of training epochs, and other
relevant parameters. Unless otherwise stated, we use pre-
extracted TSP features on ActivityNet and I3D features on
THUMOS for our ablation studies. Batch sizes and opti-
mizer configurations are kept consistent with each method’s
original implementation.

C. Introduction and Categorization of Imple-
mented Methods

OpenTAD implements 16 representative temporal action
detection methods. To align each paper’s original design
with OpenTAD’s modular framework, we categorize the
methods based on their sub-components, such as neck, dense



Table 7. Re-implemented results of different methods in OpenTAD in terms of mAP (%). N/A means not provided in the paper or
released code. For THUMOS-14, previous papers usually reported 5 numbers from mAP at tIoU={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and some
reported average mAP values, which mean differently across papers. Here, we standardize average mAP as the average of the mAP values at
tIoU={0.3, 0.4, 0.5, 0.6, 0.7}, compute this number based on the reported mAP at these 5 tIoUs. For ActivityNet, we compute the average
mAP at tIoU={0.5:0.95:0.05}.

Method Backbone
THUMOS-14 ActivityNet-v1.3

Original OpenTAD Original OpenTAD Original OpenTAD
tIoU=0.5 tIoU=0.5 Average Average Average Average

ActionFormer [68] I3D | TSP 71.00 73.16 66.84 68.44 36.60 37.07
TemporalMaxer [52] I3D | TSP 71.80 71.66 67.70 68.33 N/A N/A
TriDet [48] I3D | TSP 72.90 73.41 69.28 69.60 36.80 36.51
CausalTAD [36] I3D | TSP 73.57 73.57 69.75 69.75 37.46 37.46
DyFADet [64] VideoMAEv2-G | TSP 73.70 76.32 70.50 71.70 38.50 38.62
VideoMambaSuite [9] InternVideo2 76.90 77.17 72.72 73.24 42.02 42.80

BMN [31] TSN 38.80 47.56 38.48 46.19 33.85 34.21
GTAD [63] TSN 43.04 48.50 41.41 46.49 34.09 34.18
TSI [34] TSN | TSP 42.60 46.14 42.26 44.75 35.24 35.36
VSGN [70] TSN | TSP 45.52 49.37 43.37 47.25 35.94 36.89

TadTR [39] I3D | TSP 60.10 59.00 56.68 56.23 36.75 N/A

AFSD [27] I3D | TSP 55.50 60.16 52.00 55.96 34.40 36.10
E2E-TAD [38] I3D 47.00 59.00 45.08 56.23 N/A N/A
ETAD [35] R(2+1)D 56.17 58.23 54.66 55.56 38.25 38.76
Re2TAL [71] Re2SlowFast-101 64.90 74.27 61.52 70.19 37.01 37.55
AdaTAD [37] VideoMAEv2-G 80.90 81.24 76.88 77.07 41.93 41.85

Table 8. Detection performance on all 9 supported datasetsusing ActionFormer [68], measured by average mAP(%). N/A. means not
implemented in ActionFormer’s original codebase.

Method THUMOS-14 ActivityNet-v1.3 EPIC-Kitchens Ego4D-MQ HACS

Original 66.83 36.56 21.88 | 23.51 23.29 N/A
OpenTAD 68.44 37.07 22.33 | 24.93 25.57 37.71

Method Multi-THUMOS Charades FineAction EPIC-Sounds

Original N/A N/A N/A N/A
OpenTAD 39.18 19.39 19.62 13.89

head, RoI, loss functions, and more. Table 14 provides
a detailed mapping of these components. We classify the
methods into four categories: one-stage, two-stage, DETR-
based, and end-to-end methods. From this table, we can
clearly see that the primary difference between one-stage
and two-stage methods is that the latter includes an additional
step involving RoI extraction to further refine the candidate
actions.

For reproducibility, we re-implemented all 16 meth-
ods on the ActivityNet and THUMOS datasets, with re-
sults reported in Table 7. Our results closely match the
original papers, and in some cases, such as BMN, we
achieve significantly better performance. Additionally, Open-
TAD also supports 9 widely used temporal action detection
datasets: ActivityNet-v1.3 [4], THUMOS-14 [20], EPIC-
Kitchens 100 [10], Ego4D-MQ [16], HACS [72], Multi-
THUMOS [66], Charades [49], FineAction [40], and EPIC-
Sounds [19]. We benchmarked ActionFormer as the base
model across all datasets, with results presented in Table 8.

D. Benchmark Results

In this section, we present the benchmark results for all im-
plemented methods within the OpenTAD framework. For
ActivityNet, we use TSP features with standardized evalu-
ation annotations across all methods. For THUMOS, we
adopt two-stream I3D features while ensuring consistency
in evaluation annotations. The results are reported in Table 9
and Table 10.

From our benchmarks, we observe that one-stage detec-
tion methods have emerged as the preferred choice for both
datasets. On THUMOS, two-stage methods such as GTAD
and BMN, which rely on external classifiers for action clas-
sification, generally underperform compared to recent one-
stage methods. However, on ActivityNet, where both one-
stage and two-stage methods leverage external video-level
classification results, two-stage methods with cascaded pro-
posal refinements still achieve slightly better performance
than their one-stage counterparts.



Table 9. Benchmarking results on ActivityNet-v1.3 with TSP feature in terms of mAP (%).

Method #Param. (M) 0.5 0.75 0.95 Avg. mAP

TSI [34] 4.54 52.44 35.57 9.80 35.36
TemporalMaxer [52] 1.38 54.59 37.13 7.11 36.03
AFSD [27] 13.41 54.44 36.72 8.69 36.10
GTAD [63] 5.58 52.33 37.58 8.42 36.20
BMN [31] 2.80 52.90 37.30 9.67 36.40
TriDet [48] 12.81 54.84 37.46 7.98 36.51
VSGN [70] 6.50 54.80 37.35 9.80 36.89
ActionFormer [68] 6.94 55.08 38.27 8.91 37.07
VideoMambaSuite [9] 4.30 55.61 38.49 9.18 37.45
CausalTAD [36] 12.75 55.62 38.51 9.40 37.46
ETAD [35] 8.52 54.91 38.98 9.09 37.73

Table 10. Benchmarking results on THUMOS14 with I3D feature in terms of mAP (%).

Method #Param.(M) 0.3 0.4 0.5 0.6 0.7 Avg. mAP

TSI [34] 4.84 62.56 57.00 50.22 40.18 30.17 48.03
GTAD [63] 6.14 64.35 59.07 51.76 42.65 31.66 49.70
BMN [31] 3.10 64.99 60.70 54.54 44.11 34.16 51.80
VSGN [70] 8.37 68.25 62.46 54.99 44.07 32.36 52.43
ETAD [35] 5.37 67.74 64.22 58.23 49.19 38.41 55.56
AFSD [27] 14.24 73.20 68.45 60.16 46.74 31.24 55.96
TadTR [39] 8.66 71.90 67.29 59.00 48.34 34.61 56.23
TemporalMaxer [52] 7.12 83.17 79.09 71.66 61.72 46.00 68.33
ActionFormer [68] 29.25 83.78 80.06 73.16 60.46 44.72 68.44
VideoMambaSuite [9] 18.57 84.33 80.60 74.19 61.99 46.71 69.57
TriDet [48] 15.99 84.46 81.05 73.41 62.58 46.51 69.60
CausalTAD [36] 52.11 84.43 80.75 73.57 62.70 47.33 69.75

E. Supplementary Experiments

E.1. Ablation Study on Neck Design in the THU-
MOS Dataset

To further examine the impact of neck design, we conduct
an ablation study on the ActivityNet dataset, with results
presented in Table 11. These findings align with those re-
ported in Table 2 of the main paper. Our experiments show
that LSTM achieves performance comparable to or even
better than the SSM module in BMN and GTAD. Further-
more, by integrating both designs, we obtain the best overall
performance across all four evaluated methods.

E.2. Ablation Study on Loss Functions

In this section, we analyze commonly used loss functions
in TAD methods and conduct an ablation study on the effec-
tiveness of the actionness loss proposed for the one-stage
method, ActionFormer.

Action Category Losses. These losses are typically
classification-based, as action categories are discrete. TAD
methods can employ either binary or multi-class classifi-
cation losses, depending on the objective—distinguishing
action from non-action segments or classifying specific ac-
tion categories. Methods that incorporate external class
labels during post-processing (e.g., G-TAD [63] and Action-

Former [68] on ActivityNet) typically use binary classifica-
tion for all category losses within the network. Conversely,
methods without such external annotations use multi-class
classification for final category predictions while still em-
ploying binary classification for intermediate stages. Com-
mon classification losses include focal loss [32] for binary
classification, as used in VSGN [70], and cross-entropy loss
for multi-class classification, as seen in ActionFormer [68].
Some approaches, such as BSN [30] and BMN [31], instead
regress action confidence based on the IoU between pro-
posals and ground-truth actions, treating the problem as a
regression task rather than a strict binary classification.

Action Boundary Losses. These losses aim to refine the
boundaries between predicted and ground-truth action seg-
ments, as precise boundary localization is crucial for TAD
performance. Various methods improve boundary regres-
sion accuracy by directly predicting the distances to start
and end locations (e.g., ActionFormer [68], VSGN [70]) or
by regressing offsets relative to predefined anchors, as in
PGCN [33].

Effect of Actionness Loss. Beyond classification and
boundary regression losses, the two-stage method BMN in-
troduces a Temporal Evaluation Module, which classifies
each timestep based on actionness/startness/endness to en-
hance boundary learning. However, this design has been



Table 11. Analysis of the neck design choices, measured by average mAP(%) on ActivityNet-v1.3. The 4 macro-block regions mean
the following respectively. Top region: macro blocks with their original sequential modules are adopted as a whole; Transformer Block:
self-attention modules in Transformer blocks are replaced with different sequential modules; Mamba Block: SSM modules in Mamba
blocks are replaced with different sequential modules; Bottom region: a combination of two blocks. Note that in Row 1, BMN and GTAD
directly use identity mapping since they don’t downscale temporally. TSP [1] features are used.

Neck Method

Macro Block Sequential Module ActionFormer TriDet BMN GTAD

Convolution Block Convolution 36.88±0.03 36.87±0.02 36.44±0.05 36.36±0.09
GCN Block Graph convolution 37.03±0.04 37.00±0.05 36.41±0.02 36.24±0.04
Transformer Block Self-attention 37.00±0.05 36.93±0.09 36.50±0.03 36.31±0.06
Mamba Block SSM 37.40±0.03 37.33±0.07 36.36±0.05 36.36±0.06

Transformer Block

Convolution 36.99±0.02 36.93±0.09 36.40±0.07 36.31±0.07
Graph convolution 37.15±0.03 36.98±0.07 36.41±0.02 36.13±0.08
Self-attention 37.00±0.05 36.93±0.09 36.50±0.03 36.31±0.06
LSTM 37.18±0.04 36.95±0.07 36.87±0.09 36.47±0.12
SSM 37.40±0.04 37.33±0.07 36.58±0.23 36.21±0.08

Mamba Block

Convolution 37.07±0.03 36.97±0.07 36.40±0.05 36.17±0.08
Graph convolution 37.13±0.07 37.06±0.04 36.33±0.05 36.16±0.09
Self-attention 36.21±0.22 36.33±0.14 36.35±0.07 36.12±0.04
LSTM 36.95±0.11 36.57±0.07 36.42±0.08 36.23±0.05
SSM 37.40±0.03 37.33±0.07 36.36±0.05 36.36±0.06

Mamba + Transf. SSM + Self-attention 37.48±0.03 37.35±0.08 36.74±0.27 36.25±0.02
Mamba + Transf. SSM + LSTM 37.50±0.07 37.41±0.05 36.94±0.05 36.52±0.08

Table 12. Analysis of the RoI extraction design choices, measured by average mAP (%) on two datasets. N/A means not applicable to the
model.

ActivityNet-v1.3 THUMOS-14

RoI Extraction BMN GTAD VSGN BMN GTAD VSGN

Keypoint Sample [70] 34.29±0.07 32.68±0.05 36.71±0.13 43.36±0.24 45.34±0.59 52.42±0.31
RoI Align [17] 36.06±0.05 35.99±0.13 36.74±0.02 49.48±0.67 49.40±0.46 52.53±0.41
SGAlign [63] 36.28±0.12 36.24±0.04 36.66±0.14 49.00±0.45 50.36±0.29 52.38±0.64
Boundary Match [31] 36.44±0.07 36.34±0.07 N/A 51.40±0.58 50.48±0.35 N/A

Table 13. Analysis of the loss design choices on ActionFormer.

Category Boundary Actionness ActivityNet-v1.3 THUMOS-14

✓ ✓ 37.00±0.05 67.93±0.19
✓ ✓ ✓ 37.19±0.05 67.11±0.30

primarily used in two-stage methods. To evaluate its ef-
fectiveness in a one-stage setting, we integrate a temporal
evaluation head into ActionFormer and apply actionness loss
supervision. The results, shown in Table 13, indicate that
while actionness loss provides a minor improvement on Ac-
tivityNet, it negatively impacts performance on THUMOS.
Given its marginal benefit on ActivityNet and its detrimental
effect on THUMOS, we exclude actionness loss from our
final design.

F. Limitations
OpenTAD provides a unified framework for implementing
and benchmarking various temporal action detection meth-
ods, supporting eight datasets. However, it currently focuses
exclusively on fully supervised TAD and does not yet support
weakly-supervised or open-vocabulary TAD.

Another limitation lies in the scale of existing TAD
datasets. Current datasets are relatively small, leading to
high variance in experimental results across different ran-
dom seeds. This variability poses challenges for ensuring
training stability and reproducibility. Addressing the scal-
ability of TAD datasets and improving the robustness of
training pipelines remains an open research direction that
warrants further exploration.



Table 14. Components mapping from each method to OpenTAD. Cls. and Reg. denote classification loss and regression loss respectively.
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