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1. Differential Top-K Operation
In the main paper, we explain how the perturbed maximum
method [1, 2, 5] is used to make the Top-K operator differ-
entiable, enabling the training of the token scorer networks.
Building on this, we solve Equation 3 (in the main paper),
and as outlined in [5], we carry out the following forward
and backward operations to enable end-to-end training of
the scorer networks with Top-K operations.

Forward Pass A smooth approximation of the Top-K op-
eration from the main paper’s Equation 3 can be imple-
mented by introducing random perturbations and taking the
expectation over these perturbations:

Yσ = EZ

[
argmax

Y∈C

〈
Y, r′1⊤ + σZ

〉]
(1)

where Z denote a random noise vector drawn from a
standard Gaussian distribution, with σ as the hyperparame-
ter controlling the noise variance. The symbol ⟨·, ·⟩ repre-
sents the inner product operation throughout the main paper
and supplementary material. In practice, we execute the
Top-K operation n times (where n = 500, as determined
empirically to perform effectively across all experiments)
and compute the average across these iterations.

Backward Pass As described in [2, 5], the Jacobian for
the forward pass can be computed as:

JsY = EZ

[
argmax

Y∈C

〈
Y, r′1⊤ + σZ

〉
Z⊤/σ

]
(2)

This expression simplifies in the case where Z is nor-
mally distributed, allowing for efficient backpropagation
through the Top-K operation.

We train the backbone models along with the token se-
lection networks using a cross-entropy loss (described in
equation 2 in the main paper). During training, the learned
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Top-K operation (implemented in PyTorch [3]) is applied in
the forward pass to enhance performance. By continuously
applying random noise, the network becomes aware of the
Top-K operation, allowing it to improve over time.

2. Query Memory Bank
Query Memory Bank (QMB) differs from the fixed visual
memory bank, which stores static visual features. Instead,
it accumulates input queries over time, denoted as Θt =
Concat[θ1,θ2, . . . ,θt],Θt ∈ RtL×D, creating a dynamic
memory that captures the model’s evolving understanding
of each frame up to the current timestep through the Q-
Former. This Query Memory Bank also serves as the key
and value: Q = θtWQ, K = ΘtWK , V = ΘtWV

as previously described. At each timestep, the learned query
θt encapsulates critical information specific to the video
up to that point. Unlike the static visual memory bank,
these input queries θt are progressively refined through cas-
caded Q-Former blocks during training, enabling the cap-
ture of distinct video concepts and patterns at increasingly
abstract levels. As a result, each self-attention layer is asso-
ciated with a unique Query Memory Bank, where the stored
queries are continuously updated during training.

3. GFLOPs Calculation
To evaluate our method’s computational efficiency, we used
giga floating-point operations (GFLOPs), a common metric
for assessing efficiency in machine learning models. We
employed the ptflop python package [4] to calculate the
GFLOPs for different components of our method. As noted
in the main paper, the GFLOPs presented in the results ta-
bles are specific to the LLM adapter for a single pass. They
exclude the LLM itself and are estimates, as certain com-
ponents were manually calculated. Since we used the same
LLM model with the same input token size as the baseline
and focused exclusively on improving the adapter, we re-
ported only the measurements related to the adapter for a
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Table 1. Hyperparameters used in experiments across different
datasets for the untrimmed video classification task.

Datasets Breakfast ActivityNet
LLM Vicuna-7B
Initial Training Epoch 5
Main Training Epoch 20
Learning Rate 1e-4
Batch Size 64
AdamW β (0.9, 0.999)
Weight Decay 0.05
Image Resolution 224
Beam Size 5
Frame Length 20
Memory Bank Length 10
Score Balance Weight α 0.7 0.9
Selected Spatial Tokens 100 144
Prompt “What type

of breakfast
is shown in
the video?”

“what is
the person
doing in

the video?”

fair comparison and to enhance the reader’s convenience.
It is important to note that the estimated GFLOPs mea-

surement for Video-Llama [6] is not directly comparable to
MA-LMM or our approach, as Video-Llama processes the
entire video in one pass without requiring an online iterative
process. However, we included it for reference. Addition-
ally, ‘N/A’ is indicated for non-LLM methods in the results
tables since they do not involve an LLM adapter, and we
only reported GFLOPs for the LLM adapter.

4. Experiment Configurations

The hyperparameters used in our experiments across differ-
ent tasks and datasets are outlined in Tables 1, 2, and 3,
detailing the configurations for untrimmed video classifica-
tion, video question answering, and video captioning, re-
spectively. These hyperparameters were determined empir-
ically through systematic experimentation. For further de-
tails, the configuration files are available on GitHub along-
side the codebase.
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