
Hierarchical Semantic Segmentation with Autoregressive Language Modeling

Supplementary Material

This document supplements the main paper with the fol-
lowing content:
1. Proof showing our proposed captions belong to a

context-free language. (supplements Section 3)
2. Issues with LLM-as-a-Judge metric for our task. (sup-

plements Section 4.1)
3. Breakdown of category-level performance. (supple-

ments Section 4.2)
4. Additional qualitative results. (supplements Section 4.2)

1. Captions as Context-Free Language

We show that the language, L, for our proposed hi-
erarchical captions is context-free and thus machine-
comprehensible [3]. To do this, we construct a context-
free grammar (CFG) consisting of terminal symbols Σ, non-
terminal symbols V , productions rules R, and a start symbol
S, that generates all valid strings in L.

Language Definition. The language L consists of strings
that describe the decomposition of an object into its compo-
nents using special tags with indices representing the po-
sitions of entities, proceeding breadth-first to the subpart
level. For readability, we omit standard mask-as-embedding
tags: <SEG>, <p>, and </p>.

Each string in L follows the general format: [OBJECT
1] <D1> [OBJECT 2] <D2> ... [OBJECT
N] <DN> . <C1> [OBJECT 1 PART 1] ...
<CN> [OBJECT N PART M SUBPART K] ...
</DN+M> ... </D1>, where N is the number of
objects, M is the number of parts, and K is the number of
subparts. The tags <Di> and </Di> denote the start and
end of the decomposition of the i-th entity and <Ci> denote
the content (children) of the i-th entity.

Assumptions. We assume that indices for our special to-
kens are bounded by the maximum number of nodes present
in a given training dataset. This assumption aligns with
practical implementations where the tokenizer for a lan-
guage model must be aware of all special tokens a priori
to correctly parse them. Without this boundedness, the lan-
guage would become context-sensitive due to the possibil-
ity of an unbounded number of entities. Specifically, pro-
duction rules could allow a single non-terminal symbol (the
left-hand side) to be replaced by an arbitrarily long string
of symbols (the right-hand side). This unrestricted growth
would require the grammar to maintain an infinite num-
ber of states or counts, which exceeds the capabilities of
a context-free grammar.

Context-Free Grammar Construction. We now con-
struct the context-free grammar G = (V,Σ, R, S) by defin-
ing our symbols and production rules.

Terminal Symbols (Σ). The set of terminal sym-
bols includes: Σ = {[OBJECT 1], [OBJECT
i], [OBJECT i PART j], [OBJECT i PART
j SUBPART k], <Dl>, </Dl>, <Cm>, .}, where
• i ∈ {1 . . . , N} (object indices)
• j ∈ {1, . . . ,M} (part indices)
• k ∈ {1, . . . ,K} (subpart indices)
• l,m ∈ {1, . . . , N+M} (decomposition indices/children)
Each tag, along with its specific index, is treated as a unique
terminal symbol. This approach ensures that opening and
closing tags (e.g., <Di> and </Di>) are correctly matched
without requiring cross-referencing mechanisms, which are
beyond the capabilities of a context-free grammar (CFG).
We define our rules such that children are always derived
in the context of their parents, implicitly maintaining the
associating between indices.

Non-terminal Symbols (V). The set of non-terminal
symbols includes: V = {S, Di, Ci, Ei | i =
1, 2, . . . , N + M}, where S is the start symbol, Di rep-
resents the decomposition of the i-th entity, Ci represents
the content (child) of the i-th entity, and Ei represents the
entity content (e.g., children) of the i-th entity.

Production Rules (R). We define the production rules,
for each entity index i ∈ {1, . . . ,M +N}, as:
1. Start Rule:

S → [OBJECT 1] D1

2. Decomposition Rule:

Di → <Di> CiDnext(i) </Di>

where Dnext(i) handles the decomposition of the next en-
tity. For breadth-first traversal, we define:

Dnext(i) =

{
Di+1<Di>, if i < N +M

ϵ, if i ≥ N +M

where ϵ is the empty string. This creates a sequence
where each entity at the current level is expanded before
moving on to entities at a deeper level. The recursive
nature of Dnext(i) allows the CFG to handle all entities
at a given breadth level before descending to the parts
or subparts within those entities. This rule ensures that

each layer of the hierarchy is processed in sequence, en-
forcing the breadth-first property.

3. Content Rule: For each i ∈ {1, 2, . . . , N +M}:

Ci → <Ci>(Ei)
∗ | ϵ

Each <Ci> acts as an independent symbol that can recur-
sively expand into its corresponding child entities. The
CFG implicitly manages these expansions without need-
ing cross-referencing, as the recursive nature of the pro-
duction rules ensures that all entities sharing the same
<C> tag are parsed in sequence.

4. Entity Content Rules:
For object entities, we define:

Ei −→ [OBJECT i PART j]

| [OBJECT i PART j]Ei

and for (sub)part entities:

Ei −→ [OBJECT i PART j SUBPART k]

| [OBJECT i PART j SUBPART k]Ei

This rule allows for the recursive decomposition of enti-
ties (e.g., parts into subparts).

5. Terminal Entities: For entities with no further decom-
position (e.g., subparts):

EN+M+k → ϵ, DN+M+k → ϵ

for k ∈ {1, 2, . . . ,K}, where ϵ represent the empty
string. These rules represent the leaf nodes of the hi-
erarchy, ending the decomposition.

Example. We now show a simple example of our gram-
mar and rules using a hierarchy with 1 object, 2 parts, and
a single subpart. The target string, L, for this sequence
is “[OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]
[OBJECT 1 PART 2]<D2> <C2> [OBJECT 1 PART
1 SUBPART 1] </D2> </D1>”.

To determine if L can be constructed by our CFG, we
first start with our start string, [OBJECT 1] and expand
based on our production rules:
1. [OBJECT 1] D1

2. [OBJECT 1] <D1> C1 </D1> D2

3. [OBJECT 1] <D1> <C1> E1* <C2> D2 </D1>
4. [OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]

[OBJECT 1 PART 2] D2 </D1>
5. [OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]

[OBJECT 1 PART 2] <D2> C2 </D2> ϵ </D1>
6. [OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]

[OBJECT 1 PART 2] <D2> <C2> E2* </C2>
</D2> ϵ </D1>

7. [OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]
[OBJECT 1 PART 2] <D2> <C2> [OBJECT 1
PART 1 SUBPART 1] </C2> </D2> ϵ </D1>

8. [OBJECT 1] <D1> <C1> [OBJECT 1 PART 1]
[OBJECT 1 PART 2] <D2> <C2> [OBJECT 1
PART 1 SUBPART 1] </D2> </D1>

which matches our target string.

Conclusion. By constructing the context-free grammar
G = (V,Σ, R, S) that generates the language L, we have
shown that L is context-free and capable of producing hier-
archical structures with nested tags.

2. LLM-as-a-Judge Metric
We initially attempted to use the LLM-as-a-judge [5] eval-
uation metric to compare predicted and ground truth cap-
tions, as it has been shown to align better with human judg-
ments than traditional metrics like METEOR [1]. However,
we found it to be unsuitable for our novel task. Specifically,
using the proposed open-source model Llama [4], we found
it could not classify outputs as partially correct. Rather, it
tended to classify predictions as either fully correct—even
if entities were missing—or fully incorrect, even when only
one entity was missing. A potential reason for this is the
lack of hierarchical relationships present in the training data
of these LLMs [2]. This lack of understanding caused the
LLM to be unsuitable for evaluating captions in our task.

3. Qualitative Results
Additional quantitative results for HALLUMI are presented
in Figure 1. We observe that segmentation quality remains
relatively stable as the number of entities within a hierarchy
increases. This reflect findings from the main paper that
caption length does not have a significant impact on seg-
mentation performance. However, the rightmost hierarchy
illustrates a failure case where HALLUMI misclassifies the
windshield as the window, a closely related entity. Future
work could address this limitation by ensuring that segmen-
tations at a given hierarchy level do not share pixels. This
could potentially be achieved through a loss function that
penalizes overlap between entities within the same level.

4. Fine-grained Category-level Performance
A breakdown of the category-level performance results
from Section 4.2 is provided in Table 1. For this analy-
sis, we group common subparts and use a Kruskal-Wallis
test to assess differences in the distribution of IoU values.
For most groupings, we find no significant difference in
intra-group IoU distributions. However, in 14 out of 38
groupings, there is significant evidence that at least one
intra-group IoU distribution differs from the rest. This sup-
ports our conclusion that shared subpart groupings are rep-
resented with varying degrees of performance.

bottle <D1> . <C1> bottle body
<D2> . <C3> bottle body neck <C3>
bottle body label </D3> </D1> .

Body

Neck Label

Bottle

bird <D1>. <C1> bird head <D2> <C1> bird torso
<D3> . <C2> bird head neck <C2> bird head
forehead <C2> bird head eyes <C2> bird head beak
</D2> . <C3> bird torso belly <C3> bird torso
breast</D3> </D1> .

Bird

Torso Head

Belly Breast Neck Eyes

Forehead Beak

 car <D1>. <C1> car body <D2> <C1> car side mirror
<D3> <C1> car wheel <D4> . <C2> car body window
<C2> car body decal <C2> car body windshield <C2>
car body door </D2>. <C3> car side mirror housing
</D3> . <C4> car wheel tire </D4> </D1> .

Car

Wheel Body Side Mirror

Tire HousingWindow Windshield

Decals Door

Figure 1. Results from HALLUMI on hierarchies with few entities (left), a moderate number of entities (center), and a large number of
entities (right). Segmentation quality remains consistent as the number of entities increases. The right figure illustrates a failure case where
HALLUMI misclassifies the windshield as the closely related window.

Metric Cheek Forehead Eyes Nostrils Back Lobe Fins Mouth Neck Side Surface Tire Fender Rim Cap Snout Belly Beam Nose Ears

Groups 3 5 6 3 5 2 3 5 8 3 2 2 2 3 3 2 3 2 2 3
p < α ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗

Metric Area Toes Wrist/Ankle Shank/Forearm Fork Tube Arm Shoulders Chest Heel Window Hood Windshield Light Knee Decals Stabilizer Claws

Groups 2 3 2 3 2 4 3 3 2 2 2 2 3 2 2 3 2 2
p < α ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Table 1. Category-level performance results with statistical significance from a Kruskal-Wallis test. We observe that 14 out of 38 subpart
groupings have at least one significantly different IoU distribution. We use α = 0.05 for all tests, with a Bonferonni correction that adjusted
α for the number of pairwise comparisons.

References
[1] Chongyan Chen, Mengchen Liu, Noel Codella, Yunsheng Li,

Lu Yuan, and Danna Gurari. Fully authentic visual question
answering dataset from online communities. arXiv preprint
arXiv:2311.15562, 2023. 2

[2] Josh Myers-Dean, Jarek Reynolds, Brian Price, Yifei Fan, and
Danna Gurari. Spin: Hierarchical segmentation withsubpart
granularity innatural images. In Computer Vision – ECCV
2024, pages 275–292, Cham, 2025. Springer Nature Switzer-
land. 2

[3] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and
Dana Angluin. What formal languages can transformers ex-
press? a survey. Transactions of the Association for Compu-
tational Linguistics, 12:543–561, 2024. 1

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. Llama: Open and efficient foundation language mod-

els. arXiv preprint arXiv:2302.13971, 2023. 2
[5] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm:

Fine-tuned large language models are scalable judges. arXiv
preprint arXiv:2310.17631, 2023. 2

	. Captions as Context-Free Language
	. LLM-as-a-Judge Metric
	. Qualitative Results
	. Fine-grained Category-level Performance

