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A1. Extended Analysis

A1.1. Augmenting Current Method with PHS
In this study, we examine the performance of augmenting
the FA method with our proposed approach. The FA method
involves an attention additive operation, while our method
involves an attention head selection operation. These two
methods can be implemented simultaneously without any
conflicts. The experimental results, presented in Tab. A1,
clearly indicate a complementary relationship between FA
and our method. Notably, the combined approach, denoted
as FA+Ours, achieves the highest accuracies across all ex-
perimental conditions.

Dataset Model Method
Size CBIR[1] FA[9] Ours FA+Ours

COCO

small 54.8 55.3 54.9 55.5
base 57.4 57.9 60.6 61.1
large 58.4 58.8 61.3 61.6
giant 58.5 58.8 60.7 61.0

PASCAL
VOC

small 77.2 77.8 77.4 77.9
base 78.6 79.0 80.9 81.2
large 77.8 78.1 80.3 80.5
giant 78.3 78.5 79.6 79.8

Visual
Genome

small 30.1 30.2 30.1 30.2
base 29.6 29.8 31.4 31.5
large 29.1 29.1 30.2 30.3
giant 29.1 29.2 29.9 29.9

Table A1. FOIR results when augmenting FA with our method
(Model: DINOv2, Metric: MP@100 (%)).

A1.2. Method Variations & Parameter Analysis
Our approach offers two distinct modes of operation: (1)
Query-Only PHS and (2) Query-DB PHS. The retrieval pro-
cess of Query-Only PHS mode is compatible with standard
prompt-based methods, where PHS is performed solely on
the query image. In contrast, Query-DB PHS mode ex-
tends the head selection process to the images in the re-

Dataset Model DINOv2 CLIP
Size FA[9] Ours(QO) Ours(QD) FA[9] Ours(QO) Ours(QD)

COCO

small 55.3 54.9 55.2 - - -
base 57.9 60.6 60.5 53.3 55.7 55.8
large 58.8 61.3 60.8 55.2 58.0 58.4
giant 58.8 60.7 61.4 - - -

PASCAL
VOC

small 77.8 77.4 77.3 - - -
base 79.0 80.9 80.6 72.2 73.8 73.5
large 78.1 80.3 79.8 72.0 74.2 73.7
giant 78.5 79.6 79.9 - - -

Visual
Genome

small 30.2 30.1 30.2 - - -
base 29.8 31.4 31.3 29.5 30.1 29.8
large 29.1 30.2 30.4 29.1 30.2 29.9
giant 29.2 29.9 30.0 - - -

Table A2. FOIR results of method variations. Ours(QO) denotes
our method with Query-Only PHS. Ours(QD) denotes our method
with Query-DB PHS (Metric: MP@100 (%)).
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Figure A1. FOIR results with various number of selected heads
(Dataset: COCO, Model: DINOv2 base).

trieval database, dynamically adapting it for each query.
Specifically, this mode modifies each feature in the retrieval
database by performing head selection with the same atten-
tion heads selected by using the query. By doing so, Query-
DB PHS intuitively enhances the feature space of both the
query and retrieval database with a query prompt, improv-
ing performance in certain scenarios. We mainly report the
results of Query-Only PHS as our method in the main paper
for its compatible retrieval process. Here, we report addi-
tional results for comparing Query-Only PHS and Query-
DB PHS.

In our method variations, both Query-Only PHS (QO)
and Query-DB PHS (QD) perform similarly and outperform
FA generally, as shown in Tab. A2. This indicates that ap-



plying our method to query only is sufficient to improve
overall performance, while QD shows its advantage in cer-
tain conditions, highlighting the effectiveness of database-
side PHS. The advantage of QD can be observed by investi-
gating the parameter of the number of selected heads, hon.
We perform a parameter scan for hon. The results in Fig. A1
indicate that while both variations achieve similar perfor-
mance when hon is set to 5, QD demonstrates superior ro-
bustness in the selection of hon. This enhancement can be
attributed to its retrieval database side PHS component.

Modifying the retrieval database in QD incurs higher
computational costs. However, the head selection process
occurs on the last layer, allowing for caching of query, key,
and value features before the attention module. This means
that only calculations in half of the last layer are needed,
which can be efficiently achieved through GPU parallel pro-
cessing. Additionally, since LN and FFN operations in Eq.
(4) or Eq. (5) of the main paper are applied independently to
each token, only the [CLS] token needs to be extracted and
calculated, further reducing computational requirements.

A1.3. Extended Analysis on Number of Objects
Here, we present an extended analysis on the relationship
between the performance of methods and the number of ob-
jects in query images. Fig. A2 illustrates the relative per-
formance of the methods with respect to CBIR, where we
consider only query images with the number of contained
objects equal to or greater than the values on the horizontal
axis. This result shows that, except for the DINOv2 small
model, our method demonstrates substantial enhancements
in MP@100 even though the number of objects increases.
On the other hand, the Mask method consistently exhibits
lower performance compared to CBIR as the number of
objects increases. In the case of DINOv2 large or giant
for the PASCAL VOC, the Mask method outperforms our
method when considering all the queries including single-
object ones. However, our method outperforms the Mask
method in both cases of DINOv2 large with two or more
objects and DINOv2 giant with five or more objects, which
demonstrates the effectiveness of our method in image re-
trieval containing many objects.

A1.4. Visual Prompt Noise Analysis: Extended Re-
sults

In this study, we examine the influence of noise in visual
prompts on the effectiveness of our proposed method when
comparing to existing methods. Note that users typically
do not generate perfect prompts, necessitating the ability
of a prompt-driven method to tolerate some level of noise.
To simulate this, we introduce noise into the Box prompts
by randomly shifting and resizing as described in Sec. A3.
The findings, as depicted in Tab. A3, demonstrate that our
method’s accuracies remain consistently stable even in the
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(c) DINOv2 small
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(d) DINOv2 base
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(e) DINOv2 large
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Figure A2. Relative performance to CBIR. Figures A2a to A2f
show the results for different models, respectively. The horizontal
axis represents that only query images with the number of con-
tained objects equal to or greater than that value are taken into
account.

presence of prompt noise. This suggests that our method
effectively handles imperfect prompts due to its percep-
tion matching mechanism. FA also performs relatively ro-
bust in our experiments due to its attention blending opera-
tion, although the accuracies in general are lower than our
method. However, Mask’s accuracies deteriorate when ap-
plying prompt noise, indicating the inherent limitation in



image alteration methods.

Dataset Model Method and Noise
Size CBIR[1] Mask Mask-N FA[9] FA-N Ours Ours-N

COCO

small 54.8 35.1 31.4 55.3 55.2 54.9 54.8
base 57.4 43.2 38.5 57.9 57.8 60.6 59.6
large 58.4 47.5 42.1 58.8 58.7 61.3 60.6
giant 58.5 50.4 44.6 58.8 58.7 60.7 60.4

PASCAL
VOC

small 77.2 72.7 65.4 77.8 77.6 77.4 77.1
base 78.6 79.0 70.5 79.0 78.9 80.9 79.8
large 77.8 80.4 72.1 78.1 78.0 80.3 79.7
giant 78.3 82.4 74.1 78.5 78.4 79.6 79.4

Visual
Genome

small 30.1 20.5 19.0 30.2 30.2 30.1 30.0
base 29.6 23.9 21.8 29.8 29.7 31.4 30.9
large 29.1 24.3 21.9 29.1 29.1 30.2 29.9
giant 29.1 26.1 22.9 29.2 29.2 29.9 29.7

Table A3. FOIR results with noisy prompts. Method names
end with -N represent noisy prompts (Model: DINOv2, Metric:
MP@100 (%)).

A1.5. ROI Attention Strategy Analysis
In our proposed method, we utilize the Sum operation of at-
tention values within the region of interest (ROI) defined by
the user-defined prompt to compute the ROI attention for
each head. These ROI attentions are then used to determine
the selected heads. Alternatively, the Max operation can
be employed to compute the ROI attention by identifying
the patch with the highest value in the ROI. We conducted
an ablation study to compare the performance of these two
strategies for ROI attention computation. The results pre-
sented in Tab. A4 consistently demonstrate that our method,
which employs the Sum strategy, achieves superior perfor-
mance across multiple datasets.

Dataset ROI Attention Strategy
CBIR[1] Max Sum (ours)

COCO 58.4 60.3 61.3
PASCAL VOC 77.8 79.2 80.3
Visual Genome 29.1 29.7 30.2

Table A4. FOIR results with different ROI attention computation
strategies (Model: DINOv2 large, Metric: MP@100 (%)).

A1.6. Head Selection Strategy Analysis
In this study, we investigate various strategies for head se-
lection mechanisms. Our method is inspired by Ref. [6],
where head selection is performed prior to the output lin-
ear projection layer of the MHA module, and the output of
the selected heads is multiplied by a scaling factor. It is
important to note that alternative head selection strategies
exist. For instance, Ref. [2] applies head selection after the
output linear projection layer without the use of a scaling
factor. Ref. [8] performs head selection before the output
linear projection layer, also without using a scaling factor.

Additionally, Refs. [3, 5] replaces the attention matrix of
selected heads with an identity matrix, which we refer to as
the identity type.

In our evaluation, we consider strategies related to the
position of head selection and the inclusion of the scaling
factor. In Tab. A5, we denote Before and After to indicate
the position of the head selection operation relative to the
output linear projection layer. The inclusion of the scaling
factor is denoted as Scale, and the identity type is denoted
as Identity. From the results presented in Tab. A5, our ap-
proach (Before+Scale) demonstrates the highest accuracy
among various strategies. This ablation analysis highlights
the significance of both the position of head selection and
the scaling factor in enhancing the performance of image
retrieval.

Dataset Head Selection Strategy
Identity After Before After+Scale Before+Scale (ours)

COCO 59.5 58.3 59.8 57.9 61.3
PASCAL VOC 75.5 77.2 78.7 76.9 80.3
Visual Genome 29.0 28.8 29.3 28.8 30.2

Table A5. Comparisons of head selection strategies. Before and
After indicate the position of head selection operation in relative
to output linear projection layer. Scale represents the inclusion
of scaling factor. Identity denotes the identity matrix replacement
method (Model: DINOv2 large, Metric: MP@100 (%)).

A1.7. Attention Manipulation Strategy Analysis

In this section, we present an additional study on the atten-
tion manipulation strategy in the FOIR task. We create a
comparative method called Attention Mask, where instead
of selecting attention heads, we employ the visual prompt
to mask the attentions in the final layer of the ViT model.
The results, presented in Tab. A6, demonstrate that the At-
tention Mask approach generally outperforms the previous
work of FA method. However, our proposed method, PHS,
still achieves superior performance compared to Attention
Mask. Nonetheless, it is worth highlighting that the appli-
cation of the attention mask in the attention mechanism en-
sures a more stable performance, avoiding the potential in-
stability that may arise when directly applying the mask to
the input image, as shown in the result of Mask.

Dataset ROI Attention Strategy
CBIR[1] Mask FA[9] Attention Mask ours

COCO 58.4 47.5 58.8 59.9 61.3
PASCAL VOC 77.8 80.4 78.1 78.6 80.3
Visual Genome 29.1 24.3 29.1 29.5 30.2

Table A6. FOIR results with different attention manipulation
strategies (Model: DINOv2 large, Metric: MP@100 (%)).



A1.8. PHS as a Noise Reduction Technique
We conduct an additional study to investigate the potential
of our method as a noise reduction technique. In this study,
we set up image retrieval by image-region-as-query (IRQ)
query format using a crop-based preprocessing technique.
Here, we disregard the preprocessing error associated with
cropping by utilizing the bounding box labels provided in
the datasets as our box prompt. We crop the query images
based on the box prompt and resize them to meet the input
requirements of the ViT model. We assume that the result-
ing cropped and resized images contain the necessary in-
formation for the retrieval task. In this particular scenario,
our method is employed not to select the essential atten-
tion, but rather to exclude any undesired noisy attention. To
achieve this, we set the value of hon to h − 1, effectively
deactivating a single head corresponding to the undesired
noise. The results, as depicted in Tab. A7, indicate that
our method achieves superior performance compared to the
baseline approach for larger DINOv2 models, although by
a slight margin. However, for smaller models, our method
performs slightly worse, consistent with our observations in
the FOIR results. Nevertheless, it is noteworthy that our
method consistently outperforms the baseline approach for
all cases involving CLIP models. These outcomes suggest
the promising potential of our method as an effective tech-
nique for attenuating attention noise in images.

Dataset Model DINOv2 CLIP
Size CBIR[1] Ours CBIR[7] Ours

COCO

small 60.0 58.5 - -
base 66.7 66.5 45.2 46.0
large 67.3 67.4 52.3 52.5
giant 68.7 68.8 - -

PASCAL VOC

small 86.3 85.3 - -
base 86.8 86.9 76.4 77.0
large 83.9 84.1 77.8 77.9
giant 84.0 84.1 - -

Visual Genome

small 34.2 33.4 - -
base 34.7 34.6 24.0 24.4
large 33.4 33.4 25.7 25.8
giant 34.5 34.6 - -

Table A7. PHS as a noise reduction technique (Metric:
MP@100 (%)).

A1.9. Visual Analysis with Attention Map: Ex-
tended Results

Here, we present the extended results of our visualization
analysis on attention maps generated in the final layer of the
ViT model, after incorporating our proposed method. As
depicted in Fig. A3, our method demonstrates superior intu-
ition in terms of enhanced focus and noise reduction when
comparing to Vanilla ViT (used in CBIR) and FA. In con-

trast, FA typically generates attention maps that are compa-
rable to those produced by Vanilla ViT, albeit with slightly
more concentrated ROI attentions. It is noteworthy that our
approach preserves potentially valuable surrounding visual
context, which plays a crucial role in reflecting user percep-
tion.

FA OursVanilla

Figure A3. The visualization of attention maps demonstrates that
our method performs more intuitively than Vanilla and FA. Best
viewed in color (Model: DINOv2 giant).

A1.10. Visual Analysis with Attention Map Across
Multiple Model Sizes

In this section, we present a comprehensive visual analysis
and investigation of the attention maps generated by Vanilla
ViT models and our method across different model sizes.
Fig. A4 illustrates attention maps of individual heads in
the last layer of Vanilla ViT for various model sizes. The
base, large, and giant models exhibit distinct differentia-
tions across attention heads, indicating the potential of se-
lecting objects based on attention heads. However, the small
model displays limited differentiation due to its smaller



number of heads. This observation aligns with the overall
weaker results obtained with our method on the small model
in our experiments. When applying our approach, Fig. A5
demonstrates the remarkable alignment between the atten-
tion map, visual prompt, and input image with the giant and
large models. Conversely, the small model exhibits noisy
attention maps even after applying our proposed method.
The base model’s visual quality is somewhere in between.
This observation underscores the limitations of our method
when dealing with models that have a smaller number of
attention heads.

A2. Metrics used in Performance Evaluations

In this section, we describe the details of the performance
metrics used in our experiments. To evaluate the per-
formance of our method, we use Mean Precision at k
(MP@k) and Mean Average Precision at k (MAP@k), fol-
lowing Ref. [4]. Let C be the set of categories of ob-
jects. We assume that each query image xQ includes ob-
jects o1, o2, . . . , on(xQ). We define the category of oi as
c (oi) ∈ C, and the number of objects in category c as
nc (xQ). In our experiments, it is important to note that
the correctness of retrieved images depends on the visual
prompt, even if the query image is the same. For a query
image xQ with a visual prompt for oi, we consider the k′th
retrieved image xk′ as correct if it contains an object in cat-
egory c (oi) and incorrect if it does not. We define the score
S for xk′ as follows:

S (xk′ ,xQ, oi) =

{
1 if xk′ is correct,
0 if xk′ is incorrect.

(A1)

Then, MP@k are calculated by

P̃@k (xQ, oi) =
1

k

∑
1≤k′≤k

S (xk′ ,xQ, oi) , (A2)

P@k (c) =
1

|IQ,c|
∑

xQ∈IQ,c

∑
i:c(oi)=c

P̃@k (xQ, oi)

nc (xQ)
, (A3)

MP@k =
1

|C|
∑
c∈C

P@k (c) , (A4)

where IQ,c is the set of query images that include objects
in category c. P̃@k is the proportion of correct images in
the top-k ones for each visual prompt based query. P@k is
the average of P̃@k over visual prompt based queries for a
fixed c, and MP@k is the average of P@k over C. MAP@k

are calculated by

ÃP@k (xQ, oi) =
1

|K|
∑
k′∈K

P̃@k′ (xQ, oi) , (A5)

K = {k′ ∈ {1, 2, . . . , k} | xk′ is correct} , (A6)

AP@k (c) =
1

|IQ,c|
∑

xQ∈IQ,c

∑
i:c(oi)=c

ÃP@k (xQ, c)

nc (xQ)
,

(A7)

MAP@k =
1

|C|
∑
c∈C

AP@k (c) . (A8)

AP@k and MAP@k are metrics that value the higher-
ranking images more than P@k and MP@k. In this paper,
we employ MP@k and MAP@k as our performance met-
rics and set k to 100.

A3. Details of Visual Prompt Noise
In our experiments, visual prompt noise is added in the fol-
lowing way. For an object in each original query image, the
noiseless box prompt is specified by the positions of the up-
per left corner (x0, y0) and the lower right corner (x1, y1)
of the box. For the visual prompt with noise, we change
(x0, y0) and (x1, y1) to (x̃0, ỹ0) and (x̃1, ỹ1) randomly as
follows:

(x̃0, ỹ0) = (x0, y0) + (c̃x, c̃y)− (l̃x, l̃y), (A9)

(x̃1, ỹ1) = (x1, y1) + (c̃x, c̃y) + (l̃x, l̃y), (A10)

where c̃x, c̃y , l̃x, and l̃y are sampled from the discrete
uniform distribution over [−m,m] respectively. The box
prompt is shifted by (c̃x, c̃y) and resized by (l̃x, l̃y). In
all our experiments with noise, we set m to 40 pixels,
which is roughly 7.6% of image width and height in av-
erage for COCO, 9.4% for PASCAL VOC, and 9.0% for
Visual Genome.

A4. Licence info
Table A8 shows the license info of image used in Fig. 7 of
the paper.

Image id 563470
URL http://farm4.staticflickr.com/3370/3518451715_596120fc59_z.jpg

License CC BY-NC-SA 2.0 DEED
http://creativecommons.org/licenses/by-nc-sa/2.0/

Table A8. License info of image in Fig. 7 of the paper.

 http://farm4.staticflickr.com/3370/3518451715_596120fc59_z.jpg 
http://creativecommons.org/licenses/by-nc-sa/2.0/
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Figure A4. Attention maps visualization across different model sizes for individual attention heads in Vanilla ViT. Best viewed in color
(Model: DINOv2).
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Figure A5. Attention maps visualization across different model sizes when applying our method. Best viewed in color (Model: DINOv2).
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