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This document provides additional material regarding
CondiMen: Conditional Multi-Person Mesh Recovery. In
Sec. 1, 2 and 3 we report results of additional experiments
aiming at better characterizing properties of CondiMen.
Sec. 4 contains experimental results considering different
Bayesian network connectivity, complementing results pre-
sented in the main paper. Lastly, in Sec. 5 we describe some
implementation details used in our experiments.

1. Attributes dependency modeling
In addition to the numerical results reported in the main pa-
per, Fig. 1 provides qualitative results of counterfactual ex-
periments that illustrate the ability of our approach to model
dependencies between attributes in the mesh recovery prob-
lem. In Fig. 1a, we vary the principal component of body
shape parameters (as external inputs) while keeping camera
intrinsics constant, and observe the effect on predicted dis-
tances to the camera. Similarly, Fig. 1b illustrates the effect
of setting different focal lengths as inputs, demonstrating
how this variation influences other variables, particularly
the distance to the camera.

2. Uncertainty modeling
Empirically, we observe a correlation between the condi-
tional likelihoods of our predictions – i.e. the value of con-
ditional probability densities predicted by our Bayesian net-
work – and actual prediction errors, as illustrated in Fig. 2
for various test sets. This suggests that the proposed model
is able to capture the uncertainty of its predictions to some
extent, which could be useful in downstream applications.

3. Failure cases
Overall, CondiMen produces plausible predictions. How-
ever, it also inherits common limitations of existing mesh
recovery methods. Notable failure cases (not specific to
our method) include unusual poses that deviate significantly
from the training data (Fig. 3 top row). Additionally, scenes

with mutually occluding persons introduce ambiguity in the
detection task (Fig. 3 bottom row).

4. Bayesian network connectivity

Beyond CondiMen and the Naive Bayes baseline presented
in the main paper, we also experimented with two additional
variants to study the impact of Bayesian network connectiv-
ity on numerical performances. Fig. 4 shows the full con-
nectivity of the different Bayesian networks considered in
this study, from which the graphical model Fig. 1 of the
main paper is extracted. Variant1 features a denser set of
conditional dependency connections compared to Condi-
Men, and in Variant2 the dependency order between body
shape and encoded depth variables is furthermore permuted.
We report results of quantitative evaluations in Table 1. The
dependency order in Variant2 prevents from properly ex-
ploiting external camera intrinsics and body shape inputs,
leading to much larger absolute position errors in this set-
ting than with CondiMen and Variant1, but still outper-
forming the Naive Bayes baseline (e.g. on Human3.6M in
Single-View intr-shape setup, PE = 676.9mm for Variant2
vs. 284.6mm for CondiMen, 366.2mm for Variant1, and
898.0mm for Naive Bayes). Overall, CondiMen achieves
better numerical performances than Variant1. The restricted
connectivity of CondiMen imposes stronger inductive bi-
ases than the connectivity of Variant1, and we posit it helps
learning meaningful correlations between human attributes.
This observation is arguably dependent of our training strat-
egy, and we expect that further increasing the amount and
variability of training data would diminish the benefits of
imposing such inductive priors.

5. Implementation details

5.1. Additional synthetic data
Fig. 5 illustrates the additional synthetic data generated
to train our method. The images were rendered using
Blender [1]. We created a collection of 3D scenes, each
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(a) Predictions assuming different body shapes.

(b) Predictions assuming different focal lengths.

Figure 1. Counterfactual experiments using different external inputs. Input image (left) and predictions using different external inputs
visualized from camera (middle) and side view (right).



(a) Shape likelihood.

(b) Pose likelihood.

(c) Joint likelihood p(t̂, θ̂, β̂|I).

Figure 2. Relationship between prediction error and predicted likelihood across datasets. The predicted likelihood values are corre-
lated with the test error, providing a proxy for prediction confidence. Trend curves (shown in red, yellow, and green) are calculated using
a sliding window of 400 samples.

comprising a reconstructed indoor environment, an envi-
ronment map for background and outdoor lighting, human
characters, additional indoor light sources and cameras for
rendering. These components were procedurally selected
and combined to enhance the realism of the scenes. Specif-
ically, we used scene meshes from Matterport3D [5], Gib-
son [7] and Habitat [6], along with environment maps from

PolyHaven [3]. The characters were generated using Hum-
Gen3D [2], a human generator plug-in for Blender. Our
synthetic data features a body shape distribution with a
thicker tail than BEDLAM for increased diversity, as illus-
trated in Fig. 6.



Input Ref. keypoint detection Prediction Side-view

Figure 3. Limitations. Like other existing approaches, our method struggles with unusual poses far from the training data (top row).
Images depicting multiple person with reference keypoints (head) reprojecting at similar 2D locations can lead to missed detections and
ambiguous predictions (bottom row).

5.2. Matching
Matching additional inputs To perform experiments
with external body shape (resp. distance) inputs, we asso-
ciate to each prediction the shape (resp. distance) of the
closest ground truth annotation, according to the 2D dis-
tance between their reference keypoints.
Evaluation For evaluation, we associate each ground
truth mesh with the closest prediction, according to their
PA-PJE distance.
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Table 1. Quantitative evaluation for different Bayesian network connectivity settings, with different additional inputs: camera intrinsics
(intr), distance to the camera (dist), or known body shape (shape).

Experiments Human3.6M HI4D RICH 3DPW MuPOTS
Ext. input Connectivity PVE↓ PA-PVE↓ PE↓ PVE↓ PA-PVE↓ PE↓ PVE↓ PA- PVE↓ PE↓ PJE↓ PA-PJE↓ PE↓ PCK-Matched↑ PCK-All↑

Si
ng

le
-V

ie
w

none

Naive-Bayes 113.6 55.3 808.5 92.8 47.7 168.7 119.6 46.4 775.3 73.9 47.9 662.6 84.8 73.4
CondiMen 98.9 54.3 1145.2 81.4 48.0 144.7 106.5 46.6 785.1 69.2 46.4 728.9 85.2 74.5
Variant1 103.9 58.4 1221.0 91.2 49.0 268.8 130.0 49.8 710.3 71.2 47.4 837.5 85.1 74.5
Variant2 100.6 55.1 1227.8 101.5 47.7 182.1 127.5 46.6 612.2 70.2 47.0 908.2 83.9 74.6

intr

Naive-Bayes 104.0 54.1 904.3 93.3 47.7 391.3 118.0 46.5 1060.5 73.8 47.7 428.4 84.0 72.7
CondiMen 94.3 53.9 648.2 83.0 48.0 305.3 106.6 46.7 972.3 69.5 46.4 337.2 84.7 74.0
Variant1 100.3 57.5 646.8 90.1 48.6 286.7 129.3 49.8 1029.9 71.0 47.2 298.0 85.4 74.8
Variant2 95.4 54.2 682.8 101.0 47.5 394.5 126.1 46.5 1049.6 70.0 46.9 365.6 83.7 74.5

intr-dist

Naive-Bayes 104.0 54.0 98.1 93.3 47.7 83.3 118.0 46.4 115.1 81.2 52.6 112.8 – –
CondiMen 94.3 53.9 89.4 83.0 48.0 69.7 106.6 46.7 99.1 76.4 51.2 104.1 – –
Variant1 100.8 57.4 90.1 90.1 48.6 77.6 129.7 50.0 124.4 77.5 51.5 101.3 – –
Variant2 95.4 54.2 88.5 100.8 47.4 90.7 126.1 46.6 114.8 75.8 51.0 106.3 – –

intr-shape

Naive-Bayes 73.6 54.1 898.0 70.9 47.3 385.0 84.2 47.9 1055.2 73.5 50.0 437.8 – –
CondiMen 70.3 53.7 284.6 62.8 47.6 132.2 82.3 48.1 417.3 69.9 48.7 354.2 – –
Variant1 80.2 57.4 366.2 62.9 48.2 113.9 87.5 51.3 508.7 72.4 49.6 267.9 – –
Variant2 72.8 54.5 676.9 65.4 47.1 382.0 82.3 48.1 1038.8 70.4 49.3 375.5 – –

intr-shape-dist

Naive-Bayes 73.6 54.1 56.4 70.8 47.3 59.0 84.2 47.8 76.8 75.9 51.0 101.6 – –
CondiMen 70.3 53.7 56.1 62.8 47.6 46.2 82.3 48.1 73.5 72.0 49.6 99.8 – –
Variant1 80.5 57.4 65.2 62.8 48.2 46.4 88.0 51.4 77.9 73.9 50.4 97.5 – –
Variant2 73.1 54.5 57.9 65.5 47.1 51.6 82.9 48.2 70.2 72.0 50.2 97.5 – –

M
ul

ti-
V

ie
w

none

Naive-Bayes 104.8 43.8 828.8 85.0 35.3 162.2 105.8 37.1 770.5 – – – – –
CondiMen 90.6 42.6 1148.3 75.2 35.5 142.9 93.0 36.2 724.5 – – – – –
Variant1 96.0 45.3 1214.8 83.4 35.3 275.6 113.4 36.8 622.8 – – – – –
Variant2 88.4 42.7 1240.7 94.7 35.3 181.8 115.4 36.5 613.0 – – – – –

intr

Naive-Bayes 98.9 43.6 895.9 85.6 35.4 381.8 104.3 37.1 1057.1 – – – – –
CondiMen 88.8 42.6 679.1 77.0 35.5 308.9 92.8 36.2 903.4 – – – – –
Variant1 94.8 45.2 668.9 82.8 35.3 281.0 112.8 36.8 930.7 – – – – –
Variant2 84.8 42.4 678.8 94.4 35.3 385.4 114.1 36.5 1050.0 – – – – –

intr-dist

Naive-Bayes 98.9 43.6 96.8 85.5 35.4 78.7 104.3 37.1 103.4 – – – – –
CondiMen 88.8 42.6 90.3 77.0 35.5 68.8 92.8 36.2 89.8 – – – – –
Variant1 95.4 45.4 90.4 82.9 35.3 75.7 113.5 37.0 115.2 – – – – –
Variant2 84.9 42.5 81.6 94.3 35.3 88.2 114.2 36.7 107.8 – – – – –

intr-shape

Naive-Bayes 67.3 43.9 890.2 63.1 34.9 376.3 80.3 39.2 1053.8 – – – – –
CondiMen 62.8 42.9 275.0 57.1 35.2 136.9 77.2 38.6 439.0 – – – – –
Variant1 71.8 45.4 350.7 55.8 35.0 116.0 82.3 39.3 518.2 – – – – –
Variant2 65.2 42.8 673.7 58.3 35.1 373.6 78.9 38.9 1040.2 – – – – –

intr-shape-dist

Naive-Bayes 67.3 43.9 55.8 63.0 34.9 54.3 80.3 39.2 75.5 – – – – –
CondiMen 62.8 42.9 54.2 57.1 35.2 45.7 77.2 38.6 74.1 – – – – –
Variant1 72.2 45.5 62.5 55.8 35.1 45.0 83.0 39.5 80.5 – – – – –
Variant2 65.5 42.9 56.5 58.7 35.1 48.4 79.7 39.1 72.2 – – – – –
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(a) Naive Bayes.
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(b) CondiMen (default).
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(c) Variant1.
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(d) Variant2.

Figure 4. Connectivity of different Bayesian networks consid-
ered for this study. Deterministic dependencies between vari-
ables are represented in green.

Figure 5. Examples of synthetic renderings used in our train-
ing.
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Figure 6. Body shape statistics on BEDLAM [4] and our syn-
thetic data.
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