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This document provides additional material regarding
CondiMen: Conditional Multi-Person Mesh Recovery. In
Sec. 1, 2 and 3 we report results of additional experiments
aiming at better characterizing properties of CondiMen.
Sec. 4 contains experimental results considering different
Bayesian network connectivity, complementing results pre-
sented in the main paper. Lastly, in Sec. 5 we describe some
implementation details used in our experiments.

1. Attributes dependency modeling

In addition to the numerical results reported in the main pa-
per, Fig. 1 provides qualitative results of counterfactual ex-
periments that illustrate the ability of our approach to model
dependencies between attributes in the mesh recovery prob-
lem. In Fig. la, we vary the principal component of body
shape parameters (as external inputs) while keeping camera
intrinsics constant, and observe the effect on predicted dis-
tances to the camera. Similarly, Fig. 1b illustrates the effect
of setting different focal lengths as inputs, demonstrating
how this variation influences other variables, particularly
the distance to the camera.

2. Uncertainty modeling

Empirically, we observe a correlation between the condi-
tional likelihoods of our predictions — i.e. the value of con-
ditional probability densities predicted by our Bayesian net-
work — and actual prediction errors, as illustrated in Fig. 2
for various test sets. This suggests that the proposed model
is able to capture the uncertainty of its predictions to some
extent, which could be useful in downstream applications.

3. Failure cases

Overall, CondiMen produces plausible predictions. How-
ever, it also inherits common limitations of existing mesh
recovery methods. Notable failure cases (not specific to
our method) include unusual poses that deviate significantly
from the training data (Fig. 3 top row). Additionally, scenes

with mutually occluding persons introduce ambiguity in the
detection task (Fig. 3 bottom row).

4. Bayesian network connectivity

Beyond CondiMen and the Naive Bayes baseline presented
in the main paper, we also experimented with two additional
variants to study the impact of Bayesian network connectiv-
ity on numerical performances. Fig. 4 shows the full con-
nectivity of the different Bayesian networks considered in
this study, from which the graphical model Fig. 1 of the
main paper is extracted. Variantl features a denser set of
conditional dependency connections compared to Condi-
Men, and in Variant2 the dependency order between body
shape and encoded depth variables is furthermore permuted.
We report results of quantitative evaluations in Table 1. The
dependency order in Variant2 prevents from properly ex-
ploiting external camera intrinsics and body shape inputs,
leading to much larger absolute position errors in this set-
ting than with CondiMen and Variantl, but still outper-
forming the Naive Bayes baseline (e.g. on Human3.6M in
Single-View intr-shape setup, PE = 676.9mm for Variant2
vs. 284.6mm for CondiMen, 366.2mm for Variantl, and
898.0mm for Naive Bayes). Overall, CondiMen achieves
better numerical performances than Variantl. The restricted
connectivity of CondiMen imposes stronger inductive bi-
ases than the connectivity of Variantl, and we posit it helps
learning meaningful correlations between human attributes.
This observation is arguably dependent of our training strat-
egy, and we expect that further increasing the amount and
variability of training data would diminish the benefits of
imposing such inductive priors.

5. Implementation details

5.1. Additional synthetic data

Fig. 5 illustrates the additional synthetic data generated
to train our method. The images were rendered using
Blender [1]. We created a collection of 3D scenes, each



(b) Predictions assuming different focal lengths.

Figure 1. Counterfactual experiments using different external inputs. Input image (left) and predictions using different external inputs
visualized from camera (middle) and side view (right).
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Figure 2. Relationship between prediction error and predicted likelihood across datasets. The predicted likelihood values are corre-
lated with the test error, providing a proxy for prediction confidence. Trend curves (shown in red, yellow, and green) are calculated using

a sliding window of 400 samples.

comprising a reconstructed indoor environment, an envi-
ronment map for background and outdoor lighting, human
characters, additional indoor light sources and cameras for
rendering. These components were procedurally selected
and combined to enhance the realism of the scenes. Specif-
ically, we used scene meshes from Matterport3D [5], Gib-
son [7] and Habitat [6], along with environment maps from

PolyHaven [3]. The characters were generated using Hum-
Gen3D [2], a human generator plug-in for Blender. Our
synthetic data features a body shape distribution with a
thicker tail than BEDLLAM for increased diversity, as illus-
trated in Fig. 6.
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Figure 3. Limitations. Like other existing approaches, our method struggles with unusual poses far from the training data (top row).
Images depicting multiple person with reference keypoints (head) reprojecting at similar 2D locations can lead to missed detections and

ambiguous predictions (bottom row).

5.2. Matching

Matching additional inputs To perform experiments
with external body shape (resp. distance) inputs, we asso-
ciate to each prediction the shape (resp. distance) of the
closest ground truth annotation, according to the 2D dis-
tance between their reference keypoints.

Evaluation For evaluation, we associate each ground
truth mesh with the closest prediction, according to their
PA-PJE distance.
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Table 1. Quantitative evaluation for different Bayesian network connectivity settings, with different additional inputs: camera intrinsics
(intr), distance to the camera (dist), or known body shape (shape).

Experiments Human3.6M HI4D RICH 3DPW MuPOTS
Ext. input  Connectivity | PVE| PA-PVE| PE| |PVE| PA-PVE| PE| |PVE| PA-PVE| PE| |PJE| PA-PJE| PE| |PCK-Matchedf PCK-AllT
Naive-Bayes| 113.6 ~ 55.3 808.5 | 92.8 477  168.7| 119.6 46.4 7753|1739 479  662.6 84.8 73.4
non CondiMen | 98.9 543 11452 814 48.0  144.7|106.5 46.6 785.1 | 69.2  46.4 7289 85.2 74.5
one Variant1 1039 584  1221.0| 91.2 49.0  268.8| 130.0 49.8 7103 | 712 474 8375 85.1 74.5
Variant2 100.6  55.1 1227.8|101.5  47.7  182.1| 1275 46.6 612.2 | 702 47.0 9082 83.9 74.6
Naive-Bayes | 104.0  54.1 904.3 | 933 477  391.3|118.0 46.5 1060.5| 73.8 477 4284 84.0 727
intr CondiMen | 94.3 53.9 648.2 | 83.0 48.0  305.3|106.6 46.7 9723 | 69.5 464 3372 84.7 74.0
Variant1 1003 575 646.8 | 90.1 48.6  286.7| 129.3 49.8 1029.9| 71.0 472  298.0 85.4 74.8
5 Variant2 95.4 54.2 682.8 | 101.0  47.5 394.5| 126.1 46.5 1049.6| 70.0 469  365.6 83.7 74.5
?.) Naive-Bayes | 104.0  54.0 98.1 | 933 477 83.3 | 118.0 46.4 1151 | 81.2 52,6 1128 - -
ED intr-dist CondiMen | 94.3 53.9 89.4 | 83.0 48.0 69.7 | 106.6 46.7 99.1 | 764 512 104.1 - -
a ) Variant1 100.8 574 90.1 | 90.1 48.6 77.6 | 129.7 50.0 12441715 515 1013 - -

Variant2 95.4 54.2 88.5 | 100.8 474 90.7 | 126.1 46.6 1148 | 758 51.0 1063 - -

Naive-Bayes | 73.6 54.1 898.0 | 70.9 473  385.0| 84.2 479 105521 73.5  50.0 437.8 - -
CondiMen 70.3 53.7 284.6 | 62.8 47.6 132.2] 82.3 48.1 417.3 | 69.9 487 3542 - -
Variant1l 80.2 57.4 366.2 | 62.9 482  113.9| 875 51.3 508.7 | 72.4  49.6 2679 - -
Variant2 72.8 54.5 676.9 | 65.4 47.1  382.0| 823 48.1 1038.8| 70.4 493 3755 - -

Naive-Bayes | 73.6 54.1 56.4 | 70.8 473 59.0 | 84.2 47.8 76.8 | 759 51.0 101.6 - -
CondiMen 70.3 53.7 56.1 | 62.8 47.6 46.2 | 82.3 48.1 735 | 720 496 998 - -
Variant] 80.5 57.4 652 | 62.8 48.2 46.4 | 88.0 51.4 779 | 739 504 975 - -
Variant2 73.1 54.5 579 | 65.5 47.1 51.6 | 829 482 702 | 72.0 502 975 - -

Naive-Bayes | 104.8 ~ 43.8 828.8 | 85.0 353 1622|1058 37.1 7705 | - - - - -
CondiMen 90.6 42.6 11483 | 75.2 355  1429] 93.0 36.2 7245 | - - - - -
Variant] 96.0 45.3 1214.8| 83.4 353 2756|1134 36.8 6228 | - - - - -
Variant2 88.4 42.7 1240.7 | 94.7 353 181.8| 115.4 36.5 613.0 | - - - - -

Naive-Bayes | 98.9 43.6 8959 | 85.6 354 381.8|104.3 37.1 1057.1| - - - - -
CondiMen 88.8 42.6 679.1 | 77.0 355 3089 92.8 36.2 9034 | - - - - -

intr-shape

intr-shape-dist

none

intr

Variantl 048 452 6689 | 82.8 353 281.0(112.8 368 9307 | - - - - -

% Variant2 848 424 6788|944 353 3854|1141 365 10500 - - - - -
5

> Naive-Bayes| 989 436 968 | 855 354 7871043 371 1034 | - - - - -

E odi  CondiMen | 888 426 903 | 770 355 688|928 362 898 | - - - - -

s Variantl 954 454 904 | 829 353 757 |1135 370 1152 - - - - -

Variant2 849 425 816 | 943 353 882 (1142 367 1078 | - - - - -

Naive-Bayes| 673 439 8902 | 63.1 349 376.3| 803 392  1053.8| - - - - -

irshape | CondiMen | 628 420 2750 | 571 352 1369|772 386 4390 | - - - - -

1P Variantl 718 454 3507 | 558 350 116.0| 823 393 5182 | - - - - -

Variant2 652 428 6737|583 351 3736|789 389  10402| - - - - -

Naive-Bayes | 67.3 439 55.8 | 63.0 34.9 543 | 80.3 39.2 75.5 - - - - -

chanedis CondiMen | 628 429 542 | 570 352 457|772 386 741 | - - - - -

1tEshape-Gist variant1 722 455 625 | 558 351 450 830 395 805 | - - - - -

Varian2 | 655 429 565 | 587 351 484|797 391 722 | - - - - -
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(a) Naive Bayes.

(c) Variant1. (d) Variant2. Figure 6. Body shape statistics on BEDLAM [4] and our syn-

. .. . . . thetic data.
Figure 4. Connectivity of different Bayesian networks consid-

ered for this study. Deterministic dependencies between vari-
ables are represented in green.

Figure 5. Examples of synthetic renderings used in our train-
ing.
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