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Abstract

Machine learning models typically perform reliably only
on inputs drawn from the distribution they were trained on,
making Out-of-Distribution (OOD) detection essential for
safety-critical applications. While exposing models to ex-
ample outliers during training is one of the most effective
ways to enhance OOD detection, recent studies suggest that
synthetically generated outliers can also act as regulariz-
ers for deep neural networks. In this paper, we propose an
augmentation scheme for synthetic outliers that regularizes
a classifier’s energy function by adversarially lowering the
outliers’ energy during training. We demonstrate that our
method improves OOD detection performance and adversar-
ial robustness on OOD data on several image classification
benchmarks. Additionally, we show that our approach pre-
serves in-distribution generalization. Our code is publicly
available.1

1. Introduction
Out-of-Distribution (OOD) detection, which aims to identify
inputs with low probability under the training distribution of
a machine learning model, has garnered significant attention
in recent years [34]. State-of-the-art methods are largely
based on outlier exposure (OE), which improves OOD de-
tection by training models against an auxiliary dataset of
outliers [18]. Additionally, baseline classifiers can be inter-
preted as energy-based models [14, 25], where inputs are
assigned a scalar energy value – low for in-distribution (ID)
data and high for OOD data – making energy-based methods
an efficient approach for OOD detection.

Beyond naturally occurring OOD samples, deep neural
networks (DNNs) are also susceptible to adversarial exam-
ples – carefully manipulated inputs that resemble ID data yet
cause high-confidence misclassifications. A common strat-
egy to increase adversarial robustness is adversarial training,

†These authors contributed equally to this work.
1https://github.com/2mey10/Adversarial-OE
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Figure 1. Illustration of Adversarial Outlier Exposure (AOE) on a
two-dimensional dataset. AOE moves the training outliers (black)
along the gradient of the model’s energy function. Throughout
the training, this process adjusts the energy function to assign
higher outlier scores to augmented outliers, ultimately tightening
the decision boundary.

where models are trained against examples subjected to spe-
cific adversarial perturbations [13]. However, this approach
has been shown to degrade generalization on ID data [32].

While adversarial robustness and OOD detection are of-
ten studied independently, Song et al. [30] explored the
relationship between them, identifying a tradeoff: improving
robustness against adversarial attacks tends to weaken OOD
detection performance.

In this work, we propose Adversarial Outlier Exposure
(AOE), a novel approach that integrates adversarial training
with outlier exposure by augmenting synthetic outliers with
adversarial perturbations. Specifically, we modify outliers
sampled from generative models by perturbing them along
the direction of the classifier’s energy gradient. This process

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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regularizes the classifier’s energy function in low-density
regions of the input space, thereby enhancing its robustness.
For an intuitive example, see Fig. 1.

Our contributions are as follows:
1. We introduce a novel adversarial training framework for

outlier exposure, in which synthetic outliers are aug-
mented with adversarial perturbations that decrease their
energy-based outlier scores.

2. We demonstrate that our method not only improves ad-
versarial robustness against OOD data but also preserves
classification accuracy on ID data.

3. We provide empirical evidence that our approach en-
hances OOD detection performance, even for non-
adversarial OOD data.

The remainder of this paper is structured as follows. First,
we provide an overview of recent developments in OOD
detection and adversarial training in Sec. 2. Next, we intro-
duce our proposed Adversarial Outlier Exposure method in
Sec. 3. In the following Sec. 4, we review related work. In
Sec. 5, we present extensive experiments and ablation stud-
ies, demonstrating the effectiveness of AOE across multiple
datasets. Finally, we conclude our work in Sec. 6.

2. Background
In the following, we will consider a classifier fθ : X → RK

that maps inputs x ∈ X ⊆ RM to logits to model the
conditional distribution p(y | x) by learning from a dataset
sampled from a training distribution p(x).

2.1. Out-of-Distribution Detection

Classifiers, as discussed above, can produce highly confident
yet incorrect predictions for inputs that are unlikely under
the data distribution p(x). Any input x ∈ X satisfying
p(x) < α, for some suitably small threshold α, can be
considered OOD – that is, unlikely to have been drawn from
p. While we will use this definition of OOD in the following,
it should be noted that other definitions exist. [34]

To identify such OOD points, a detector D(x) : X → R
maps inputs to outlier scores. Classification as ID or OOD
is determined by applying a threshold τ :

outlier(x) =

{
ID if D(x) < τ,

OOD else.
(1)

In recent years, OOD detection has developed into a broad
field, with several publications providing comprehensive
surveys [26, 34]. The following provides a brief overview.

Posteriors From the logits produced by the classifier, a
posterior probability distribution over classes can be obtained
via the softmax function. A baseline OOD detection method
is Maximum Softmax Probability (MSP) [17], which uses

−maxy p(y | x) as an outlier score, where p is the posterior
predicted by the model. Other methods based on statistics
of the posterior include KL-matching [16] and Monte Carlo
Dropout [11].

Logits Logit-based methods omit the softmax normaliza-
tion and directly compute outlier scores from the classi-
fier’s output. Examples include MaxLogit [16], which uses
the negative maximum of the logits, −maxy fθ(x)y , where
fθ(x)y denotes the yth logit, and energy-based OOD de-
tection (see Sec. 2.2), which can be viewed as a smooth
approximation of the MaxLogit method.

Latent Representations Feature-based methods operate
on latent representations from intermediate layers of a DNN
classifier. Examples include the Mahalanobis method [23],
which models the latent features of each class using a Gaus-
sian distribution and computes the Mahalanobis distance as
an outlier score. Simplified Hopfield Energy (SHE) [38]
learns a center µy for each ID class and uses −µ⊤

y ϕ(x) as
the outlier score, where y is the maximum a posteriori class
for x and ϕ(x) denotes its latent representation.

2.2. Energy-based OOD Detection

Grathwohl et al. [14] demonstrated that any classifier – as
described above – can be reinterpreted as an energy-based
model for the data distribution p(x). Specifically, the density
function takes the form

pθ(x) =
exp(−Eθ(x))

Z(θ)
∝ exp(−Eθ(x)), (2)

where Eθ : X → R is the energy function, and Z(θ) is the
partition function, which ensures proper normalization. For
a classifier fθ, the energy function is defined as

Eθ(x) ≜ − log

K∑
i=1

exp(fθ(x)i), (3)

where fθ(x)i denotes the ith logit. As can be seen from
Eq. (2), the energy function is theoretically aligned with the
data density pθ(x), in the sense that higher energy corre-
sponds to lower density. This makes the energy a natural
criterion for OOD detection. Building on this interpreta-
tion, Liu et al. [25] introduced energy-based OOD detection
(EBO), which utilizes the energy function to distinguish ID
and OOD samples.

2.3. Outlier Exposure

Outlier exposure (OE), introduced by Hendrycks et al. [18],
significantly improves outlier detection in neural networks
by using a dataset of auxiliary outliers. OE achieves this
by incorporating an additional penalty term, LOE , into the
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training objective, promoting lower confidence for training
outliers. The complete objective function is defined as:

E(x,y)∼DID

[
L(fθ(x), y)

]
+ λEx′∼Dtrain

OOD

[
LOE(fθ(x

′), fθ(x), y)
]
, (4)

where DID and Dtrain
OOD represent the ID and OOD training

distributions, respectively, L is the loss used for ID data –
typically cross-entropy – and LOE is cross-entropy between
the predicted posterior for x′ and the uniform distribution:

LOE =
1

K

K∑
i=1

fθ(x
′)i − log

K∑
i=1

exp(fθ(x
′)i) . (5)

Variants of OE that directly regularize the energy function
rather than the posteriors have also been proposed [25].

Synthetic Outliers While outlier exposure reliably in-
creases the OOD detection performance of DNNs, it is based
on the assumption that a set of representative example out-
liers is available during model optimization. However, it
is possible to instead sample outliers from low likelihood
regions of generative models of ID data, which can be done
in the input space X [9, 21], as well as some latent space of
the classifier fθ [10]. This strategy eliminates the need for
a curated set of outliers and allows to flexibly parameterize
Dtrain

OOD with various types of generators, such as Generative
Adversarial Networks (GAN) [12] or denoising diffusion
models [7]. Furthermore, the method can be used with pre-
trained generative models, which makes it computationally
efficient.

2.4. Adversarial Training

Adversarial attacks seek a small perturbation δ ∈ RM for
an input x such that the classifier fθ produces an incorrect
prediction for x + δ. Here, δ is usually norm-bounded by
enforcing ∥δ∥p < η, where ∥ · ∥p is some p-norm. [1, 4]

Various attack and defense strategies have been proposed.
A computationally efficient, non-iterative attack is the Fast
Gradient Sign Method (FGSM), defined as

x̃ ≜ x+ ϵ sign(∇xL(fθ(x), y)), (6)

where x̃ is the adversarially perturbed input, and ϵ ∈ R+ is
a scalar step size. [13] Iterative methods such as Projected
Gradient Descent (PGD) [27] offer stronger attacks at the
cost of increased computational complexity.

A common method to increase the robustness of clas-
sifiers against such attacks is adversarial training, which
involves training on adversarially perturbed images. How-
ever, training on ID data with adversarial perturbations has
been shown to degrade generalization to clean in-distribution
samples [32] and weaken the model’s ability to detect OOD
data [30].

3. Adversarial Outlier Exposure
While adversarial attacks are typically used to improve adver-
sarial robustness on in-distribution training data, we propose
applying adversarial perturbations to out-of-distribution data
used during training instead. Such an attack can be per-
formed by reducing the energy of an OOD input x – thus
lowering its energy-based outlier score – by descending
along the gradient of the model’s energy function ∇xEθ(x).

Inspired by FGSM (Eq. (6)), we propose to perturb the
auxiliary training outliers with the sign of the gradient:

x̂ ≜ x− ϵ sign(∇xEθ(x)). (7)

Since FGSM is non-iterative, the magnitude of this perturba-
tion δ in terms of the ℓ∞-norm is simply

∥ϵ sign(∇xEθ(x))∥∞ = ∥δ∥∞ = ϵ. (8)

This adversarial perturbation can shift x into a lower-energy
region, which corresponds to a higher likelihood under the
energy-based interpretation of Eq. (2). The second term in
the outlier exposure objective (Eq. (4)) then becomes:

λE
x′∼Dtrain

OOD

[
LOE(fθ(x̂

′), fθ(x), y)
]
. (9)

During optimization, the model adapts its parameters to map
perturbed OOD samples to high-energy regions, reinforcing
their separation from ID data.

Intuition An intuitive visualization of this approach for
a two-dimensional setting is shown in Fig. 1. Taking a
step along the negative energy gradient of the classifier fθ
can move OOD samples into lower-energy regions, possi-
bly closer to ID samples. By training the model to reject
such adversarially perturbed outliers, we expect the resulting
decision boundary to be tighter.

Some examples of synthetic OOD images with increas-
ing perturbation strength are provided in Fig. 2. Perturbed
OOD images do not resemble ID data but tend to have lower
energy-based outlier scores.

A histogram of energy values for ID and OOD samples
from CIFAR-100, both pre- and post-perturbation, is shown
in Fig. 3. We observe that applying small perturbations low-
ers the energy of OOD samples, aligning them more closely
with the energy distribution of ID samples. This observation
suggests that adversarially perturbed OOD samples could
be misclassified as ID with high confidence. Training on
such samples encourages the model to increase the sample’s
energy, thereby improving OOD detection.

Perturbing ID Data In principle, ID inputs could also be
perturbed to increase their energy, incentivizing the model
to maintain low energy scores for slightly modified inliers.
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Figure 2. Synthetic outliers drawn from a BigGAN trained on CIFAR-100 (sampled at σ2 = 2) with increasingly strong adversarial
perturbation targeting the classifier’s energy function. Perturbed OOD images do not resemble ID data yet tend to receive low energy-based
outlier scores. Results are based on the pre-trained WideResNet provided by [17].
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Figure 3. Distribution of energy scores for CIFAR-100 ID test
data, as well as synthetic outliers before and after applying the
adversarial perturbation with ϵ = 0.1. The distribution of energy
scores of the perturbed OOD samples more closely resembles the
distribution of ID samples.

However, in line with previous findings, we observed that
this significantly degrades performance. As a result, we
restrict our augmentation scheme to OOD samples only.

4. Related Work

While several related approaches have been explored in the
literature, to the best of our knowledge, we are the first
to propose the specific training scheme presented in this
work. Below, we provide a brief overview of closely related
methods:

Augmenting Outliers The idea of applying perturbations
to inputs to improve OOD discrimination is well-established.
ODIN [24] perturbs test-time inputs via gradient ascent and
uses temperature scaling to distinguish between in- and out-
of-distribution samples. PixMix [19], on the other hand,
enhances robustness by mixing in-distribution images with
outliers during training to improve safety metrics.

In contrast to these methods, our approach exclusively
augments outliers during training with adversarial perturba-
tions and leaves ID inputs unchanged.

Robust Optimization Hein et al. [15] propose an ad-
versarial training scheme that maximizes the model’s log-
confidence, using Gaussian noise as auxiliary outliers and a
modified Projected Gradient Descent (PGD) strategy. Sim-
ilarly, Chen et al. [5] introduces an adversarial training
method using real auxiliary outlier images and PGD. Bit-
terwolf et al. [2] proposes a loss that enforces low softmax
confidence in an ℓ∞-ball around OOD inputs by penalizing
the maximum logit difference.

In contrast, our method employs the more efficient FGSM
and directly targets the model’s energy function, which has
a theoretical connection to the data density (see Sec. 2.2).
Furthermore, while our approach is agnostic to the choice of
Dtrain

OOD, in our experiments, we use synthetic outliers sampled
from a GAN.

Regularizing the Energy Function Several works attempt
to regularize a model’s energy landscape using auxiliary
outliers. For instance, the energy-bounded learning loss [25]
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encourages a separation between ID and OOD samples in
terms of energy.

Unlike these methods, our approach actively perturbs
outliers during training to shape the energy function more
directly.

Synthetic Outliers Several prior works explore different
strategies for generating outliers. Du et al. [9] use a diffusion-
based model to synthesize outliers, while in Virtual Outlier
Synthesis, Du et al. [10] sample from low-likelihood regions
of a Gaussian fitted to the latent representations of ID data.
Hein et al. [15] utilize simple noise-based distributions to
sample outliers.

Our method does not impose specific assumptions on the
outlier generator and could be readily applied to augment
arbitrary outliers.

5. Experiments

For our experiments, we use a WideResNet [37] pre-trained
on the respective in-distribution dataset, as this model is
widely used in OOD detection papers [17, 25]. We apply
standard data augmentation techniques, including random
cropping and flipping, and fine-tune the pre-trained models
using stochastic gradient descent (SGD) with a Nesterov
momentum of 0.9. All models use ℓ2 regularization with a
coefficient of 5×10−4 and a cosine annealing schedule with
an initial learning rate of 5 × 10−4 that decays gradually
over 10 epochs. For AOE and OE, we set λ = 0.5 and for
AOE ϵ = 0.5 if not specified otherwise. Our implementation
is based on PyTorch [29] and PyTorch-OOD [20].

The confidence intervals provided in the following figures
correspond to the standard error of the mean of the respective
metrics as estimated over eight different OOD datasets.

5.1. Datasets

As in-distribution data, we use CIFAR-10/100 [22].

Training Outliers As auxiliary training outliers Dtrain
OOD, we

use ≈ 10, 000 artificially generated images sampled from a
BigGAN trained exclusively on ID data [3, 21]. To generate
outliers, we sample from this generative model with σ2 = 2.
Some examples are provided in Fig. 2.

Test Outliers We test all models against eight different
OOD datasets: resized images from Fooling Images [28] and
Textures [6], cropped and resized TinyImageNet [8], and
randomly cropped and resized images from the Large-Scale
Scene Understanding dataset (LSUN) [36]. Additionally, we
included 1000 samples of Gaussian and uniform noise each.

5.2. OOD Detection Metrics

We evaluate each method’s OOD detection performance us-
ing two different metrics, averaging results across all outlier
datasets.

AUROC The area under the receiver operating charac-
teristic curve (ROC) measures the tradeoff between the
false positive and true positive rates, providing a threshold-
independent metric for binary classification. It ranges from
0 to 1, with higher values indicating better OOD detection
performance. A value of 0.5 corresponds to random guess-
ing.

FPR95 The false positive rate at 95% true positive rate rep-
resents the false positive rate at the threshold τ (see Eq. (1))
where the true positive rate is 95%. It corresponds to a single
point on the ROC curve.

5.3. In-Distribution Classification

While adversarial training on in-distribution data typically
increases robustness, it often reduces performance on clean
ID samples. We compare the ID classification accuracy in
Tab. 1. The results suggest that our training scheme does not
significantly impact ID classification accuracy compared to
adversarial training on ID data.

Table 1. In-distribution classification performance. All values in
percent. Best values underlined. Even though we use an adversarial
training scheme, our approach mostly maintains ID classification
performance.

Accuracy ↑
Training Scheme CIFAR-10 CIFAR-100

Cross-Entropy 94.6 75.5
Outlier Exposure [18] 94.5 75.5
Outlier Exposure + Noise 94.5 75.0
AOE (Ours) 94.4 74.8

Figure 4 shows the ID classification accuracy of models
trained with different values of ϵ. We observe a steady but
slight accuracy drop over the entire ϵ range, with a maximum
reduction of 0.35% and 1.0% for CIFAR-10 and 100, respec-
tively. These results indicate that AOE does not significantly
degrade ID classification accuracy in the tested ϵ range.

5.4. Out-of-Distribution Detection

Results for OOD detection are provided in Tab. 2, showing
that AOE outperforms outlier exposure for both the MSE
and the EBO detector, as well as other methods that do not
utilize auxiliary outliers during training.
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Figure 4. Classification accuracy for different levels of ϵ. Small
perturbations only slightly impact ID classification performance.

The average AUROC for different values of ϵ is shown
in Fig. 5. Note that ϵ = 0 corresponds to vanilla outlier
exposure without any perturbation. We observe that AOE
consistently improves OOD detection performance. Perfor-
mance increases as attack strength grows until saturation and
then slightly decreases again. These trends hold for both
CIFAR-10 and CIFAR-100.
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Figure 5. OOD detection performance vs. perturbation strength
ϵ used during training. Note that ϵ = 0 corresponds to standard
outlier exposure.

5.5. Adversarial Robustness on OOD Data

Given that AOE trains models to assign high outlier scores to
adversarially manipulated OOD data, we expect the training
to increase the model’s robustness to adversarially perturbed
OOD data, similar to adversarial training on ID data.

To perform adversarial attacks on an OOD data point x,
we modify the point to maximize its outlier exposure loss
LOE as defined by Eq. (5), using FGSM. This attack in-
centivizes OOD samples to receive high maximum softmax
values. We evaluate the adversarial robustness of models
against an FGSM adversary that maximizes LOE with vary-
ing attack budgets ∥δ∥∞. The results are shown in Fig. 6.
When comparing the OOD detection performance of models
trained with AOE to those trained with vanilla OE, we ob-

serve that AOE-trained models are significantly more robust
across all perturbation levels and never degrade to random
guessing. In contrast, for models trained with vanilla out-
lier exposure, perturbations with ϵ > 0.75 reduce AUROC
values below random guessing for some OOD datasets. Ad-
ditionally, performance degradation occurs more gradually
in models trained with AOE, as indicated by the lower slope
in AUROC decline.

5.6. Near and Far OOD Data

OOD data can be broadly categorized into near OOD, which
shares visual similarity with the ID data, and far OOD, which
is more perceptually distinct [35]. In Fig. 7, we report
CIFAR-100 results for OE and AOE for individual OOD
datasets, ordered from far to near OOD. While all approaches
show degraded performance on datasets that are more similar
to the IN data, AOE overall maintains more stable perfor-
mance across the near-to-far OOD continuum.

5.7. Ablation Studies

This section provides additional ablation studies to examine
the contribution of individual components and the influence
of different design aspects of our approach.

Comparison to Random Perturbations To better under-
stand the contribution of our targeted perturbations, we con-
trast AOE with a model trained using random noise during
outlier exposure. In this setting, auxiliary outliers are per-
turbed according to

x̊ = x′ + δ with δ ∼ N (0, ϵI) (10)

where x′ represents the original auxiliary outlier. We evalu-
ate performance across a range of ϵ values, as shown in Fig. 8.
While injecting Gaussian noise can offer some gains, our
gradient-guided perturbations consistently achieve higher
OOD detection performance – particularly on the more chal-
lenging CIFAR-100 benchmark. These findings indicate that
gradient-driven augmentations can enhance OOD detection
more effectively than random noise.

Selection of Sampling Parameters Following [21], differ-
ent sampling parameters σ2 can be used to sample synthetic
outliers from a noise-conditioned generative model. The
impact of varying this hyperparameter is shown in Fig. 9.
As expected, performance slightly improves for σ2 > 1,
where sampled outliers become increasingly dissimilar to ID
data. However, for larger σ2 values, performance remains
relatively stable over a wide range of values, demonstrating
the robustness of our approach to this hyperparameter.

Convergence Figure 10 depicts the performance over fine-
tuning epochs. Most performance gains are obtained during
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Table 2. OOD detection performance on CIFAR-10 and CIFAR-100. Higher AUROC values and lower FPR95 are preferable. Best values
underlined. All values in percent.

Loss Detector ϵ CIFAR-10 CIFAR-100

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
Cross-Entropy ODIN [24] 84.0 43.5 80.2 53.0
Cross-Entropy SHE [38] 84.6 48.3 56.1 100.0
Cross-Entropy DICE [31] 87.0 43.6 82.0 47.1
Cross-Entropy MaxLogit [16] 87.1 42.9 82.1 47.6
Cross-Entropy KL-Matching [16] 87.2 56.3 81.0 53.3
Cross-Entropy ViM [33] 95.1 20.5 90.1 31.1
Cross-Entropy Mahalanobis [23] 95.6 17.0 86.8 36.3

Cross-Entropy MSP [17] 89.4 33.1 79.2 54.2
Outlier Exposure [18] MSP [17] 94.4 21.2 81.7 48.8
Outlier Exposure + Noise MSP [17] 0.5 94.7 17.4 84.5 43.5
AOE (ours) MSP [17] 0.5 95.1 16.9 86.1 42.0

Cross-Entropy EBO [25] 86.9 43.7 81.8 47.5
Outlier Exposure [18] EBO [25] 93.8 28.9 84.4 42.4
Outlier Exposure + Noise EBO [25] 0.5 96.6 16.3 91.1 31.2
AOE (ours) EBO [25] 0.5 96.8 16.0 93.7 24.7
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Figure 6. We investigate the robustness of the EBO detector [25] against adversarial attacks on OOD data during test time. The plot illustrates
FPR95 and AUROC for various attack budgets ∥δ∥∞, where ∥δ∥∞ = 0 represents baseline performance. As we can see, the performance
for models trained with AOE deteriorates less rapidly and always significantly exceeds random guessing, while the detection performance
for models trained with vanilla OE rapidly deteriorates as the attack budget increases.

the first three epochs, after which the performance tends to
converge.

Number of Auxiliary Outliers Fig. 11 depicts the model’s
performance based on the number of different outliers used
during fine-tuning. As we can see, performance tends to
increase as we increase the number of outliers, but even a
small number of outliers leads to reasonable performance.

This is in line with Kirchheim et al. [21], who observed
that a larger number of auxiliary outliers is associated with
increased performance gains. However, in our experiments,
performance saturates earlier, which we attribute to addi-
tional data augmentation.

Different Adversaries As described above, AOE im-
proves OOD detection metrics on CIFAR-10 and CIFAR-
100 when applied with FGSM-style training, as defined
in Eq. (7). However, the method can also be used with
more computationally intensive adversaries, which may of-
fer stronger perturbations. Interestingly, we found that train-
ing against stronger adversaries, such as Projected Gradient
Descent [27], is consistently outperformed by FGSM.

6. Conclusion

In this paper, we proposed a novel method for regularizing a
classifier’s energy function by incorporating synthetic out-
liers enhanced with adversarial perturbations during training.
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Figure 7. OOD detection performance of EBO on CIFAR-100 over
individual OOD datasets for different training schemes.
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Figure 8. OOD detection performance of EBO detector for models
trained with AOE vs. models trained with outliers augmented with
Gaussian noise. ϵ = 0 corresponds to vanilla outlier exposure. We
observe that adversarial perturbations increase performance more
than noise.

Our approach led to substantial improvements in OOD detec-
tion performance and adversarial robustness across multiple
datasets while mostly preserving accuracy on in-distribution
data.

Future research may explore the applicability of this
method to higher-resolution datasets and alternative prob-
lem domains, such as image segmentation and object de-
tection. Furthermore, evaluating its performance with real,
non-synthetic outliers could provide valuable insights.
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Figure 9. OOD detection performance for different values of the
parameters σ2 used to sample outliers from the BigGAN. Higher
values produce more unrealistic auxiliary outliers on average. We
observe that the results are stable, indicating the robustness of our
method to this hyperparameter.
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Figure 10. OOD detection performance over training epochs.
Epoch 0 corresponds to pre-trained models without any AOE fine-
tuning.
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