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Abstract

In order to train a model or evaluate its safety, high qual-
ity labels are necessary. Human labeling is considered gold
standard in object detection and object classification prob-
lems. This approach is natural - humans do very well in
finding cars or pedestrians in an image. However the an-
swers to the same question, provided by different human ex-
perts, or even the same expert asked multiple times tend not
to be completely identical. In this paper we show better
performance of neural networks over humans in 2D object
detection tasks by showing neural network labels are closer
to human consensus than any particular human labeler. The
method we present here may be used to validate labels gen-
erated using automated labeling methods, thereby decreas-
ing the need for costly human labeling. For this task we
created a dataset of 630 automotive images labeled by 10
different labelers each. Additionally we compare predic-
tions of humans and networks given only single camera im-
ages to more accurate labels created using multiple sen-
sors and sequences of images (from Waymo and nuImages
datasets). Using the second method we again show better
performance of the networks.

1. Introduction
In order to train a model or evaluate its safety, high qual-
ity labels are necessary. Human labeling is considered gold
standard in object detection and object classification prob-
lems, for both general purpose (e.g., COCO [14], Ima-
genet [5]) and automotive (e.g., KITTI [7], Waymo [23],
NuScenes [2]) datasets. This approach is natural – after all,
humans do very well in finding cars or pedestrians in an
image. However, the answers to the same question, pro-
vided by different human experts, or even the same expert
asked multiple times tend not to be completely identical.
Famous examples of noisy judgements in social sciences
include widely variable crime sentences [24] or insurance
claim assessments [12]. Kahneman [12] popularized the

idea of noise audits – estimating what is the distribution
of answers to a specific question, rather than relying on a
single point estimate.
In this paper, we propose to apply a similar noise audit to
human generated 2D bounding boxes for objects detected
in an image. Specifically, we want to check how the pre-
dictions made by object detection neural networks compare
to the whole distribution of human-generated labels. In or-
der to test our approach, we created a dataset consisting of
630 images labeled multiple times (using base images from
KITTI, Waymo and nuImages). Each of the images was
labeled by 10 distinct labelers, tasked with generating 2D
bounding boxes for cars, pedestrians, cyclists and other ve-
hicles. Output of each labeler was subsequently reviewed
and improved by a different labeler. We used this dataset
to assess how good are 15 versions of leading neural net-
works (11 with vanilla weights and 4 after transfer learn-
ing) at the object detection task when compared to human
labelers, taking into account the differences in judgement
between human labelers. Additionaly we calculate classical
KPIs comparing labels from humans and neural networks to
official labels from authors of Waymo and nuImages. Our
method is graphically represented in Figure 1.
Contributions:
1. We introduced a novel method to assess the quality of

bounding box annotations in the presence of multiple la-
belers based on the deviation from labeler consensus.

2. We created a dataset of 630 images, each labeled with
2D bounding boxes by 10 human labelers.

3. We performed comprehensive comparison of the quality
of human generated and automatically generated labels
using both our method and classical KPIs.

2. Related Work
Since 2015, neural networks are known to outperform hu-
mans in object classification tasks, with the seminal work
of He et al. [9] showing above human performance on Im-
agenet [5]. Typically, in such comparisons, the neural net-
work is trained on the train part of the dataset, and later



Figure 1. Diagram showing the idea of methodology implemented
in the paper.
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inference is performed on the validation part of the dataset.
Then, a human labeler is asked to perform the classifica-
tion task on the same images in the validation set . Finally,
one compares the prediction accuracy between the neural
network and the human labeler. Due to high cost of hu-
man labeling, such comparisons are done on relatively small
datasets. For example, Russakovsy et al. [20] used 1.5k im-
ages to estimate human-level performance on Imagenet [5]
object classification task.
As the neural networks surpassed the human performance
benchmark, a natural question arose - is it the model mak-
ing a mistake, or did the human labeler make a mistake
when classifying an object. One reason for bad labels, may
be lack of skill on the part of labelers. For example, Van
Horn et al. [25] found that at least 4% of birds in ImageNet
dataset are misclassified. Other papers exploring mistaken
labels in ImageNet in a more general setting include North-
cut et al. [17] and Lee et al. [13].
More recently, Vasudevan et al. [26] decided to explore
whether it is the model making wrong predictions, or did
the labelers misclassify examples. As a starting point they
chose the ViT model [6], pretrained on JFT-3B [22] and
finetuned on ImageNet-1K [5]. They manually reviewed
each mistake made by the model by in the imagenet2012
multilabel dataset [21]. The model made 676 mistakes on
a 20k image validation set. After manual review in 44% of
the initial mistakes cases model was deemed to be correct
in its prediction.
The problem of object detection (i.e., finding the smallest
rectangular bounding boxes containing objects of particular
class) is much higher dimensional and harder. While for ob-
ject classification there is one major form of labeling error
(image can be classified as incorrect class), object detection
can fail in many more ways. A non exhaustive list of object

detection failure modalities include:
1. object classified as incorrect class,
2. false negative – labeler did not mark an existing object,
3. false positive – labeler marked a non-existing object,
4. inexact boundaries of a bounding box.
In case of the first three failure modalities, one can agree
in most cases on a pretty clear definition of error. When it
comes to the inexact boundaries of a bounding box, defining
error is harder – multiple labelers will almost surely mark
the boundaries of bounding boxes in slightly different posi-
tions.
Nassar et al. [16] tackle the object detection problem by us-
ing Krippendorf’s alpha coefficient, which mitigates this is-
sue. Krippendorff’s alpha coefficient, is a statistical method
of assessing the level of disagreement between different an-
notators on the dataset. The main difference between our
method (defined in the Algorithm 1) and the methods rely-
ing on Krippendorff’s alpha coefficient is that the calcula-
tion of Krippendorf’s alpha requires estimating the expected
disagreement if the labels were produced by chance. Our
method does not require this step and consequently does
not require somewhat arbitrary estimation of the probability
distribution from which labels are sampled. We believe it to
be a major strong point of our method, as estimating proba-
bility distribution of bounding box labels is highly nontriv-
ial. For example, Nassar et el. [16] assume that a single
pixel can be part of at most 1 bounding box of the same
class for the purpose of estimating random distribution of
labels. Experimentally, this is not a correct assumption, as
bounding boxes can overlap (e.g. bounding boxes of cars in
a traffic jam).

3. Dataset
In our experiments we aimed at a fair comparison between
human labelers and neural networks. Hence, human label-
ers were given only images from a single camera without
data from any other sensors, such as lidar or additional cam-
eras. The resolution of camera images given to humans was
the same as the resolution of images used by the networks.
Since the chosen neural networks do not support sequential
inputs, the frames selected for annotation are not sequential
either - human labelers could not infer based on sequen-
tial data. While annotating the data, neither pre-labeling
with a baseline neural network nor any metadata were used.
Annotations and additional information about the labeling
process are provided in the supplementary material.

3.1. Choice of Images
To prepare the dataset, we used the leading open data sets
of automotive images with annotations: KITTI [7], Waymo
[23], and nuImages [2]. We used images from a single,
front-facing camera for each dataset. For Waymo and nuIm-
ages, we used the designated validation sets; for KITTI,



Algorithm 1 Calculating the Deviation from Consensus for a Single Labeler a (for a Given Class)
Require: S, sa

1: for each Sj ∈ S do
2: for each sjk ∈ S

j do
3: if k ̸= a then
4: Match the bounding boxes in sja and the bounding boxes in sjk
5: Save the mean of the IOU scores between the bounding boxes as IOU j

ak

6: end if
7: end for
8: IOU j

a ←
∑

k ̸=a

IOU
j
ak

n−1
▷ Calculate the mean of the IOU scores in the scene j

9: SCOREj
a ← 1− IOU j

a ▷ Define the deviation of a from consensus as 1-IOU j
a

10: end for
11: SCOREa ←

∑m
j=1 SCOREj

a|s
j
a|∑m

j=1 |sja|
▷ Calculate the mean score over all images, weighted by the number of true objects in the image

we used the test set as KITTI has no designated validation
set. From each of the datasets, we took 210 images. We
wanted to ensure that our dataset was diverse, so in each
dataset, we picked 30 frames per pre-defined object count
interval: three intervals for vehicles, three for pedestrians,
and one for cyclists. We used only a single interval for cy-
clists because this class is significantly less represented in
the datasets. The object count intervals for vehicles and
pedestrians are 1-4, 5-9, and 10+. We decided to label 4
classes of objects - cars, pedestrians, cyclists, and other ve-
hicles. We intend to publish the labels we generated for
Waymo and nuImages, while we do not intend to publish
the labels for KITTI, as they were generated for the test set.

3.2. Labeling Process
The manual labeling process was commmisioned at an
AGH University of Krakow labeling lab with 8 years of ex-
perience in labeling images, lidar point clouds, and radars
point clouds for academic and commercial projects. The la-
belers were asked to generate 2D bounding boxes for four
selected classes: Car, Pedestrian, Cyclist and Other Vehi-
cle. We provided the labelers with a a detailed labeling in-
struction and examples of objects from particular classes.
We used the same 10 labelers to prepare 10 distinct sets of
labels for each of the images. The labeling was done in 2
stages - preliminary labeling and review. During the prelim-
inary stage, labeler marked the bounding boxes of objects of
relevant classess. During the review process, a different la-
beler was tasked with correcting the preliminary labels. We
present results for labels both before and after review.

4. Methodology
4.1. Overview
Broadly speaking, our method requires three steps:
1. Manually labeling the same image by multiple human

labelers.
2. Calculating the Key Performance Indicators (KPI) on

how much the labels generated by each human labeler
differ from the labels generated by other human label-
ers.

3. Performing the inference using a neural network and cal-
culating how the quality of automatically-generated la-
bels compares to the quality of human-generated labels.

The manual labeling process is described in more detail in
Section 3.2, the method for calculating how much the labels
differ from each other is described in Section 4.2, and the
neural networks we have used for inference are described in
Section 4.3.

4.2. KPI - How Much the Labels Differ from Each
Other

Suppose we ask n labelers to find a list of 2D bounding
boxes of objects of a particular class in m images. Then,
for n ≥ 3 we can assess how good is a specific labeler by
comparing his labels against the labels provided by all the
other labelers.
Let S be the set of sets of bounding boxes, representing an
object of a particular class generated by each labeler. Let
Sj ∈ S be the set of sets of bounding boxes generated by
each labeler for a particular image j. Let sk ∈ S be the
set of bounding boxes generated by the labeler k. Similarly,
let sjk ∈ Sj be the set of all the bounding boxes generated
by the labeler k for image j. Moreover, we follow a con-
vention where by |sjk| we denote the true number of objects
of particular class in the image corresponding to sjk. For
the purpose of calculations, we estimate the true number of
objects as the penultimate order statistic of the number of
objects detected by human labelers (at least 2 human label-
ers must mark at least this number of objects). Then, we
can assess the quality of work of a single labeler (let’s call
him a) using Algorithm 1.
Algorithm 1 is defined in such a way, that we assess the
quality of the work of specific labeler a, by treating the la-
bels provided by all the other labelers as ”Ground Truth”.
Therefore, we can very easily check whether a particular



Table 1. Scores for individual human labelers. The best performers are in bold.

Labeler ID Pedestrian Pedestrian Car Car Cyclist Cyclist Other Vehicle Other Vehicle
before after before after before after before after
review review review review review review review review

1 0.305 0.268 0.264 0.212 0.322 0.235 0.396 0.322
2 0.326 0.290 0.228 0.236 0.434 0.315 0.426 0.332
3 0.288 0.268 0.229 0.221 0.372 0.264 0.390 0.310
4 0.329 0.299 0.263 0.234 0.326 0.233 0.394 0.305
5 0.334 0.285 0.286 0.242 0.324 0.241 0.396 0.317
6 0.254 0.243 0.177 0.186 0.347 0.239 0.406 0.333
7 0.292 0.255 0.258 0.227 0.357 0.251 0.424 0.325
8 0.314 0.267 0.259 0.230 0.413 0.304 0.435 0.354
9 0.398 0.295 0.385 0.227 0.321 0.239 0.423 0.302

10 0.351 0.319 0.294 0.268 0.331 0.244 0.407 0.334
Mean 0.319 0.279 0.264 0.228 0.355 0.257 0.410 0.323

neural network provides predictions better or worse than the
labeler a. We can simply run the algorithm using the neural
network predictions as input and compare them against the
(n− 1) labelers other then a.
Please note, that the score is defined for a single labeler or a
comparison between a single labeler and a neural network.
Given that in the experimental part of the paper (Section 5)
we present the results for 10 labelers and 15 versions of neu-
ral networks, we defined the mean version (lower is better)
and normalized version (higher is better). The mean score
for the human labelers is simply the mean of scores of all la-
belers. The mean score for a particular network is the mean
of comparison scores against all the labelers. The normal-
ized version of the score is defined for the neural networks
as the fraction of human labelers who perform worse than
the network.

4.3. Neural Networks
4.3.1. Choice of the Confidence Threshold
There is a qualitative difference between the labels gener-
ated by humans and the output of a neural network. When a
human labeler is tasked with generating rectangular bound-
ing box labels for objects of a particular class, (s)he simply
generates a list of of labels. On the other hand, a neural net-
work outputs a list of bounding boxes, together with confi-
dences that an object of particular class is within the bound-
ing box. Therefore, a somewhat arbitrary decision has to be
made regarding the minimal confidence that is necessary to
output a prediction. We present the confidence thresholds
for each of the networks in table 2, they were chosen to op-
timize our metric. We used the same confidence threshold
for all classess.

4.3.2. Inference Setup and Class Mapping
We employed 15 neural networks to detect objects in the im-
ages from KITTI, Waymo, and NuImages datasets. The tar-
get classes included Pedestrians, Cars, Cyclists, and Other

Table 2. Confidence thresholds and training datasets for each net-
work.

Network Threshold Training Dataset
YOLOv8x 0.7 COCO
YOLOv9e 0.7 COCO

YOLOv10x 0.7 COCO
YOLOv11x 0.7 COCO

Co-DETR Swin-L 0.7 Objects365 + COCO
Co-DETR ViT-L 0.7 Objects365 + COCO

Detectron2 0.95 COCO
DDQ Detr 4 0.6 COCO
DDQ Detr 5 0.6 COCO

YOLOv8x TL 0.7 COCO (modified)
YOLOv9e TL 0.7 COCO (modified)

YOLOv10x TL 0.7 COCO (modified)
YOLOv11x TL 0.7 COCO (modified)

EPro-PNP (nuScenes) 0.5 nuScenes
DD3D (KITTI) 0.7 KITTI

Vehicles. For the models trained on COCO dataset or pre-
trained on Objects365 and trained on COCO we mapped
the person label to the Pedestrian class and retained the
car label directly. Classes such as motorcycle, bus,
train, and truck were grouped under Other Vehicles.
The Cyclist class was synthetically created by merging the
person and bicycle labels using a 0.2 Intersection over
Union (IoU) threshold.
YOLO Networks We employed YOLOv8x, YOLOv9e,
YOLOv10x, and YOLOv11x, the largest models from each
generation [1, 10, 11, 27]. These models were pretrained on
the COCO dataset. Minimal preprocessing was applied to
the input images to ensure compatibility with YOLO family
networks.
Co-DETR Our Co-Detr models [30] were pretrained on
Objects365 and trained further on COCO. We have selected
Co-Detr with ViT-L backbone (65.9 box AP) [30] and a ver-



sion with Swin-L backbone (64.1 box AP) [4].
DDQ We used two versions of Dense Distinct Queries mod-
els [29]: 5 scale with ResNet-50 backbone (12 epochs train-
ing on COCO, 52.1 box AP), and 4 scale with Swin-L back-
bone (30 epochs training on COCO, 58.7 box AP) [4].
EPro-PNP-PnP-Det v2 We have used a model [3] that is
based on ResNet-101 as a backbone. It was trained for 12
epochs on nuScenes dataset [2] and was able to achieve box
AP of 42.3 in official nuScenes benchmark.
Detectron 2 We have used the Detectron 2 network [28]
providing a generic detection and segmentation algorithm.
We picked the Mask R-CNN checkpoint, which has the
largest box AP (48.9) on COCO. It was trained using a
longer training schedule and large-scale jitter [8].
DD3D For another reference, we have used the DD3D net-
work [19] with the V2-99 backbone. We used weights pre-
trained on half of the KITTI training dataset (exactly on
3712 samples) published by the authors. For nuImages and
Waymo inference, the input resolution has been adjusted to
more closely match the shape of the original data.

4.4. Transfer learning
To synchronize the model’s output space with human-
defined classes and reduce discrepancies between machine
and human labeling, we implemented transfer learning [18]
using YOLO-family networks (v8x, v9e, v10x, and v11x).
Unlike typical transfer learning, where the model is fine-
tuned on new data, our experiment focused on re-adjusting
the model’s output space utilizing the same dataset that was
used for pretraining.
Using the FiftyOne framework [15] and COCO Train2017
dataset (on which YOLO models were trained), we se-
lected a subset of 71k images that contained only instances
of objects corresponding to the categories relevant to our
study: person, truck, bicycle, motorcycle, and
car. This selection focused specifically on images associ-
ated with our final target classes (Pedestrian, Vehicle, Other
Vehicle, and Cyclist) to ensure relevance.
To align the model’s output with the human-defined classes
in our experimental dataset, we mapped the COCO cate-
gories to our target categories as described in 4.3.2. This
mapping ensured that the output classes of the YOLO mod-
els corresponded directly to the class definitions provided
to human labelers. This step was crucial for reducing the
semantic gap in class definitions and to enable compari-
son between human labelers directly with machine learning
models without further output post-processing.
We fine-tuned each YOLO model variant over 50 epochs,
using default training hyperparameters and without freez-
ing any layers. This approach allowed the model to ad-
just fully to our target classes. For validation, we used
the COCO Valid2017 dataset. We sampled images and
mapped classess according to the strategy described earlier.

The fine-tuned models achieved the following mAP@0.5:
YOLOv8x 0.767, YOLOv9e 0.749, YOLOv10x 0.762,
YOLOv11x 0.769. These mAP scores indicate that the fine-
tuning process successfully aligned the models with our ad-
justed class mappings, achieving high performance on the
selected COCO validation subset.

5. Experiments
5.1. Design of Experiments
We performed three kinds of experiments comparing the
performance of neural networks and human labelers:
1. Experiments with vanilla object detection networks, us-

ing literature weights.
2. Experiments with vanilla object detection networks, us-

ing transfer learning to decrease the number of predicted
classess to better suit our task (finetuning process is de-
scribed in Section 4.4).

3. Experiments using object detection neural networks
trained specifically in the automotive domain - we used
the networks from KITTI and NuScenes leaderboards
(Waymo forbids publication of neural networks trained
on their dataset).

For the experiments using networks trained on KITTI and
nuScenes, we used the top performing, open source, vision-
only networks from the respective leaderboards.

5.2. Results for Combined Dataset
In the Table 1 we present the scores for each of the labelers,
as well as the mean scores of all the labelers. As the reader
can see, the review process increases the quality of labels,
however the final labels still differ widely among the label-
ers even after the review. Another important fact to note is
that while there is variation in the quality of output of differ-
ent labelers, it would be hard to point to the best performing
labeler, with different people performing best for different
object classess.
In Tables 3 and 4 we present the scores of the neural net-
works and compare them to human labelers. The neu-
ral networks outperform humans for the car and pedestrian
classes, while underperforming for cyclists and other vehi-
cles. Co-DETR ViT-L network is best at approximating the
consensus of human labelers, which is consistent with the
same network achieving best results using classical KPIs
(Tables 5, 6).
When comparing YOLO family networks before and after
transfer learning we can notice significant improvement for
the cyclist class, moderate improvement for cars and pedes-
trians, and slight deterioration for the other vehicle class.
Somewhat surprisingly, the networks trained on automotive
datasets (epro trained on Nuscenes and DD3D trained on
KITTI) performed the worst among neural networks and
worse than human labelers. It strongly suggests that for la-



Table 3. Labels before review. Using (norm) instead of (normalized) to fit the table on the page. The best performers are in bold. If no
network is better than 50% of labelers, then we mark human labelers as the best in normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.264 N/A 0.319 N/A 0.355 N/A 0.410 N/A
YOLOv8x 0.211 0.9 0.274 0.9 0.694 0.0 0.510 0.0
YOLOv9e 0.208 0.9 0.271 0.9 0.710 0.0 0.532 0.0

YOLOv10x 0.228 0.9 0.292 0.8 0.698 0.0 0.571 0.0
YOLOv11x 0.234 0.8 0.307 0.6 0.720 0.0 0.587 0.0
Detectron2 0.231 0.9 0.301 0.7 0.664 0.0 0.543 0.0

Co-DETR Swin-L 0.176 1.0 0.261 0.9 0.625 0.0 0.517 0.0
Co-DETR ViT-L 0.169 1.0 0.253 1.0 0.652 0.0 0.516 0.0

DDQ Detr 4 0.213 0.9 0.282 0.9 0.620 0.0 0.564 0.0
DDQ Detr 5 0.195 0.9 0.304 0.6 0.763 0.0 0.636 0.0

YOLOv8x TL 0.196 0.9 0.270 0.9 0.519 0.0 0.513 0.0
YOLOv9e TL 0.197 0.9 0.264 0.9 0.571 0.0 0.541 0.0

YOLOv10x TL 0.225 0.9 0.272 0.9 0.534 0.0 0.529 0.0
YOLOv11x TL 0.217 0.9 0.272 0.9 0.542 0.0 0.536 0.0

EPro-PNP (NuScenes) 0.532 0.0 0.705 0.0 0.950 0.0 0.659 0.0
DD3D (KITTI) 0.291 0.2 0.520 0.0 0.724 0.0 0.812 0.0

Table 4. Labels after review. Using (norm) instead of (normalized) to fit the table on the page. The best performers are in bold. If no
network is better than 50% of labelers, then we mark human labelers as the best in normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.228 N/A 0.279 N/A 0.257 N/A 0.323 N/A
YOLOv8x 0.208 0.9 0.264 0.8 0.644 0.0 0.477 0.0
YOLOv9e 0.206 0.9 0.261 0.8 0.662 0.0 0.499 0.0

YOLOv10x 0.228 0.5 0.282 0.5 0.655 0.0 0.545 0.0
YOLOv11x 0.234 0.4 0.299 0.1 0.679 0.0 0.560 0.0
Detectron2 0.227 0.6 0.293 0.3 0.610 0.0 0.512 0.0

Co-DETR Swin-L 0.171 1.0 0.251 0.9 0.564 0.0 0.481 0.0
Co-DETR ViT-L 0.163 1.0 0.241 1.0 0.604 0.0 0.477 0.0

DDQ Detr 4 0.210 0.9 0.270 0.7 0.568 0.0 0.527 0.0
DDQ Detr 5 0.192 0.9 0.295 0.2 0.727 0.0 0.606 0.0

YOLOv8x TL 0.193 0.9 0.260 0.8 0.443 0.0 0.484 0.0
YOLOv9e TL 0.194 0.9 0.253 0.8 0.501 0.0 0.510 0.0

YOLOv10x TL 0.224 0.6 0.262 0.8 0.464 0.0 0.501 0.0
YOLOv11x TL 0.216 0.8 0.264 0.8 0.468 0.0 0.506 0.0

EPro-PNP (NuScenes) 0.525 0.0 0.711 0.0 0.941 0.0 0.634 0.0
DD3D (KITTI) 0.283 0.0 0.511 0.0 0.684 0.0 0.801 0.0

beling tasks on new datasets general purpose object detec-
tion networks are a better choice than models trained solely
on much smaller, task specific datasets. In the supplemen-
tary material we publish the results of different networks on
each of the subdatasets we used (KITTI, Waymo and nuIm-
ages).

6. Comparison to Official Labels
To provide a comprehensive comparison of the perfor-
mance of human labelers (after review) versus neural net-
works in automotive object detection, we calculated sev-

eral standard key performance indicators (KPIs), including
mAP, micro-F1, macro-F1, and the counts of true positives
(TP), false positives (FP), and false negatives (FN). mAp is
calculated as in COCO, i.e., @[ IoU=0.50:0.95, area=all,
maxDets=100 ]. Other metrics used 0.2 IoU threshold.
These metrics were computed with respect to the original la-
bels provided by the respective dataset creators. It is impor-
tant to note that the original 2D object detection labels were
generated on a best-effort basis, using available lidar and
object tracking data in addition to the images themselves.
Therefore, we treat these labels as the ground truth (GT) for
our experiments.



We present the general KPI metrics for the data sampled
from the Waymo and nuImages in Tables 5 and 6. We
mapped original nuImages classes to ours (Car, Cyclist,
Pedestrian, Other Vehicle). For Waymo, since it has only
three 2D detection classes (Vehicle, Cyclist, Pedestrian) we
applied appropriate mapping of our classes.
A key consideration when interpreting these results is the
selection of detection thresholds for the neural networks.
Since our goal was to evaluate the use of neural networks for
auto-labeling unseen data, we did not tune the confidence
thresholds for individual classes or networks. Instead, we
used the default thresholds found in the code samples in
official repositories of the respective networks: 0.25 for all
YOLO models, 0.3 for Co-Detr, DDQ, and EPro-PNP, 0.4
for DD3D, and 0.5 for Detectron2, applied uniformly across
all classes.
Several key insights emerge from these results. First, the
top-performing neural networks (for the chosen threshold
values) generally outperform human labelers, as evidenced
by higher F1 scores. The performance gap is particularly
noticeable in the number of false negatives, with neural net-
works leaving fewer GT objects unlabeled compared to hu-
man labelers. However, human labelers exhibit a signifi-
cantly lower number of false positives, by an order of mag-
nitude. Second, the human labelers show considerable vari-
ability in performance, as reflected by the variance in their
individual F1 scores. This variability could stem from var-
ious factors, including differences in experience, tiredness
or interpretation of the labeling guidelines.
We also observe that while higher inference thresholds re-
semble human consensus more closely, the default confi-
dence thresholds lead to better performance of the networks
using the classical KPIs. In the supplementary material we
publish extended standard KPIs results.
Examples of labels from a neural network, human labeler
and official labels are presented in the Figure 3. For the
selected image, CO-DETR VIT-L neural network gets 22
false negatives and 5 false positives, whereas the selected
human labeler gets 34 false negatives and 2 false positives
(average values of false negatives and false positives among
all the human labelers are 39.9 and 1.2). Interestingly,
Waymo’s official labeling missed one pedestrian who was
captured by both the neural network and the selected hu-
man labeler (80% of the human labelers found him).

6.1. Recall and Precision Comparison
Figure 2 compares precision and recall between neural net-
works and human labelers. Neural networks show a slight
advantage in recall. For the nuImages dataset (a, top left),
neural networks achieve a median recall close to 0.72, while
human labelers are slightly lower, around 0.68. On the
Waymo dataset (b, top right), neural networks reach a me-
dian recall of about 0.6 compared to 0.44 for human label-

(a) Recall for nuImages (b) Recall for Waymo

(c) Precision for nuImages (d) Precision for Waymo

Figure 2. Comparison of recall (top row) and precision (bot-
tom row) between the neural networks and human labelers for the
NuImages (left) and Waymo (right) datasets. Median is marked in
red, boxes represent the interquartile range (IQR), while whiskers
extend to 1.5 times the IQR from the quartiles; points beyond the
whiskers are marked as outliers.

ers. Neural networks display more variability and outliers
in recall for both datasets.
For precision (bottom row), human labelers maintain higher
medians. In nuImages (c, bottom left), human labelers have
a median precision around 0.91, while neural networks are
closer to 0.81. For Waymo (d, bottom right), human label-
ers reach a median precision of approximately 0.98, while
neural networks achieve a high median around 0.89.
In summary, neural networks hold a slight recall advantage,
while human labelers achieve superior precision. Nonethe-
less, neural networks demonstrate a high median precision,
showing robust performance across datasets.

7. Conclusions
Our experiments have shown that for clearly defined
classes, which were present in the training datasets (car
and pedestrian classes), the image processing neural net-
works outperform majority or all of the tested human label-
ers. For other classess (cyclist and other vehicle), neural
networks performed significantly worse than human label-
ers. We believe, that this underperformance is due to the
fact that cyclist and other vehicle classess were improperly
defined from the perspective of the networks - for majority
of networks cyclists were synthetically constructed, by con-
catenating pedestrians and bicycles with suffiecient overlap
(described in section 4.3.2) and other vehicle is a catch-all
class for enything that moves on the road and is neither a
car, nor a cyclist. We believe that this issue can be fixed
by training neural networks on datasets whose set of classes
matches the final prediction problem.
As described in the section 3.2, manual labeling process
typically involves 2 stages - initial labeling and review. We



(a) CO-DETR VIT-L’s detections (b) LABELER 9’s labels (c) Waymo’s original labels

Figure 3. Examples of object detections provided by a selected neural network (a), a selected human labeler (b) and the Waymo’s labelers
(c). Vehicle objects are marked in green, Pedestrian objects are marked in red while Cyclist objects are marked in blue.

Table 5. Standard KPI indicators computed for the Waymo sam-
ples. The results are ordered according to mAP and micro-F1. The
best result marked in bold.

MAP MICROF1 MACROF1 TP FP FN
NAME

CO-DETR VIT-L 40.10 0.72 0.70 2958 512 1779
CO-DETR SWIN-L 39.40 0.72 0.69 2967 514 1770
YOLOV8X 35.30 0.72 0.66 2814 284 1923
YOLOV9E 35.00 0.70 0.65 2701 231 2036
YOLOV11X 34.50 0.75 0.66 3068 387 1669
YOLOV11X TL 34.30 0.74 0.67 2972 302 1765
YOLOV10X TL 34.10 0.72 0.65 2858 333 1879
YOLOV10X 34.10 0.71 0.65 2784 278 1953
YOLOV8X TL 33.80 0.70 0.64 2645 209 2092
YOLOV9E TL 33.50 0.70 0.65 2661 193 2076
DETECTRON2 31.90 0.72 0.64 2826 336 1911
DDQ DETR 4 31.50 0.68 0.60 2581 302 2156
DDQ DETR 5 29.70 0.64 0.55 2358 310 2379
DD3D 11.70 0.41 0.38 1266 161 3471
EPRO-PNP 6.10 0.48 0.38 1719 654 3018

LABELER 4 N/A 0.64 0.65 2278 74 2459
LABELER 10 N/A 0.64 0.64 2236 69 2501
LABELER 5 N/A 0.62 0.62 2146 49 2591
LABELER 3 N/A 0.61 0.60 2122 126 2615
LABELER 9 N/A 0.61 0.61 2079 48 2658
LABELER 2 N/A 0.61 0.58 2097 92 2640
LABELER 7 N/A 0.59 0.58 2012 29 2725
LABELER 1 N/A 0.59 0.59 1979 40 2758
LABELER 6 N/A 0.54 0.55 1764 19 2973
LABELER 8 N/A 0.53 0.53 1713 22 3024

have shown that the review process has clear advantages -
the scores of labelers, as well as the scores of neural net-
works show that all predictions are closer to each other af-
ter review (Tables 3 and 4). Given that the neural networks
tend to outperform humans on the well defined classess, we
believe that the initial labeling should always be done using
automated labeling (i.e. neural networks). The consequent
review process should be performed by humans, to leverage
higher precision of human labelers.
We found the official labels from Waymo and Nuscenes to
be significantly better than the labels generated by our hu-

Table 6. Standard KPI indicators computed for the nuImages sam-
ples. The results are ordered according to mAP and micro-F1. The
best result marked in bold.

MAP MICROF1 MACROF1 TP FP FN
NAME

CO-DETR VIT-L 54.50 0.81 0.81 2238 594 439
CO-DETR SWIN-L 53.00 0.80 0.80 2194 609 483
DDQ DETR 4 44.80 0.76 0.75 1958 503 719
YOLOV10X TL 42.80 0.78 0.74 1898 321 779
YOLOV8X TL 42.70 0.77 0.75 1831 242 846
YOLOV9E TL 42.30 0.76 0.75 1798 228 879
DETECTRON2 42.00 0.78 0.75 1904 330 773
YOLOV11X TL 41.90 0.78 0.77 1921 298 756
YOLOV9E 41.90 0.78 0.77 1921 298 756
YOLOV11X 41.70 0.75 0.73 1786 282 891
DDQ DETR 5 41.40 0.72 0.68 1743 424 934
YOLOV8X 41.20 0.77 0.74 1848 280 829
YOLOV10X 41.20 0.75 0.71 1743 245 934
EPRO-PNP 21.10 0.64 0.57 1527 557 1150
DD3D 12.90 0.38 0.37 660 150 2017

LABELER 10 N/A 0.83 0.84 2058 225 619
LABELER 7 N/A 0.81 0.82 1933 167 744
LABELER 4 N/A 0.80 0.81 1893 179 784
LABELER 5 N/A 0.78 0.79 1822 179 855
LABELER 8 N/A 0.78 0.78 1841 217 836
LABELER 1 N/A 0.78 0.79 1812 177 865
LABELER 9 N/A 0.77 0.80 1760 157 917
LABELER 6 N/A 0.76 0.79 1720 128 957
LABELER 3 N/A 0.70 0.73 1534 167 1143
LABELER 2 N/A 0.69 0.71 1480 156 1197

man labelers. We believe that this is caused by the fact,
that while our labelers had access only to a set of random
camera images (not in a sequence), the official labels for
those datasets were prepared using sequences of consecu-
tive frames, as well as data from additional sensors (like
lidars). We believe that it makes a strong argument to uti-
lize as much data as possible during labeling. In particular,
it suggests that in automotive setting, labeling sequences
of frames should be strongly preferred over labeling single
frames, even if the final system is supposed to operate on
static images.
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8. Labelling process
Labeling was performed in a professional lab experienced
with similar labeling tasks for major automotive producers,
using Label Studio (https://labelstud.io/) software. Label-
ers were experienced at their task, so it is highly unlikely
that they might have misunderstood the labeling specifica-
tions. In the final paper we intend to reveal the name of the
labeling company. Label studio software enables zooming
in on the images as well as brightness manipulation by the
labeler. The labelers did not have any explicit time limit for
the task and were paid by the hour. On average, a single la-
beler spent around 4 minutes on a single image (with huge
variation among labelers). Human labeling could certainly
be improved (e.g. by utilizing significant cash bonuses for
high quality labels), but the goal of the paper was to exam-
ine the quality of typical labeling by an experienced group
of labelers.

9. Deviation from Consensus on Subdatasets
To construct our dataset we used images from KITTI [7],
Waymo [23] and nuImages [2], taking 210 examples from
each of them. Each of those subdatasets has different char-
acteristics. Therefore, in addition to combined deviation
from consensus KPIs presentented in Section 5, here (Ta-
bles 7-12) we present the KPIs calculated separately for
each subdataset. The general conclusions (top neural net-
works are better than humans for cars and pedestrians) from
the paper hold for all the subdatasets.

10. Extended Classical KPIs
We present supplementary metrics with respect to the KPIs
calculated in tables 5 and 6. In tables 13, 14 we
show additional mAP metrics for the models for different
IoU thresholds and bounding boxes sizes (understood as in
COCO evaluation). We don’t include mAP metrics of each
of the human labelers. This is because we cannot use dif-
ferent confidence levels for humans.
Tables 15-23 show classical KPI (F1, TP, FP, FN, Preci-
sion and Recall) computed for the Waymo and nuImages
datasets with detailed breakdown per label class. In case of
Waymo data for all classes except Cyclist the networks ex-
hibit significantly better performance than the labelers. In
case of nuImages data the best performance of Labeler 10
is due to the significantly better performance for the Other
Vehicle class, in the case of this class we see that in general
labelers are outperforming networks.

Figures 4 and 5 show labels of all labelers and predictions
of all considered neural networks on selected images from
the Waymo and nuImages datasets respectively.
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Aleksander Kostuch ,
Jakub Derbisz ,
Mateusz Komorkiewicz , Patryk Siwek ,
Mateusz Jan Wójcik ,
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Table 7. Deviation from consensus scores for KITTI dataset. Labels before review. Using (norm) instead of (normalized) to fit the table
on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best in
normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.245 N/A 0.245 N/A 0.262 N/A 0.486 N/A
YOLOv8x 0.175 1.000 0.209 0.900 0.604 0.000 0.712 0.000
YOLOv9e 0.177 1.000 0.198 0.900 0.655 0.000 0.742 0.000

YOLOv10x 0.184 1.000 0.207 0.900 0.615 0.000 0.771 0.000
YOLOv11x 0.177 1.000 0.214 0.800 0.669 0.000 0.723 0.000
Detectron2 0.221 0.700 0.223 0.700 0.564 0.000 0.817 0.000

Co-DETR Swin-L 0.168 1.000 0.170 1.000 0.494 0.000 0.700 0.000
Co-DETR ViT-L 0.172 1.000 0.166 1.000 0.528 0.000 0.703 0.000

DDQ Detr 4 0.201 0.900 0.201 0.900 0.510 0.000 0.692 0.000
DDQ Detr 5 0.218 0.800 0.212 0.800 0.630 0.000 0.779 0.000

YOLOv8x TL 0.172 1.000 0.177 1.000 0.374 0.000 0.704 0.000
YOLOv9e TL 0.172 1.000 0.170 1.000 0.470 0.000 0.748 0.000

YOLOv10x TL 0.194 0.900 0.190 1.000 0.409 0.000 0.724 0.000
YOLOv11x TL 0.177 1.000 0.182 1.000 0.397 0.000 0.731 0.000

EPro-PNP (NuScenes) 0.759 0.000 0.964 0.000 0.995 0.000 0.962 0.000
DD3D (KITTI) 0.216 0.800 0.346 0.000 0.536 0.000 0.895 0.000

Table 8. Deviation from consensus scores for KITTI dataset. Labels after review. Using (norm) instead of (normalized) to fit the table
on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best in
normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.216 N/A 0.225 N/A 0.222 N/A 0.339 N/A
YOLOv8x 0.167 1.000 0.205 0.600 0.596 0.000 0.701 0.000
YOLOv9e 0.171 1.000 0.195 0.900 0.648 0.000 0.732 0.000

YOLOv10x 0.177 1.000 0.203 0.700 0.607 0.000 0.758 0.000
YOLOv11x 0.171 1.000 0.211 0.600 0.662 0.000 0.704 0.000
Detectron2 0.216 0.500 0.217 0.500 0.555 0.000 0.807 0.000

Co-DETR Swin-L 0.162 1.000 0.165 1.000 0.484 0.000 0.682 0.000
Co-DETR ViT-L 0.165 1.000 0.162 1.000 0.518 0.000 0.673 0.000

DDQ Detr 4 0.195 0.900 0.194 0.900 0.500 0.000 0.675 0.000
DDQ Detr 5 0.217 0.500 0.208 0.600 0.622 0.000 0.766 0.000

YOLOv8x TL 0.166 1.000 0.174 1.000 0.360 0.000 0.696 0.000
YOLOv9e TL 0.166 1.000 0.166 1.000 0.458 0.000 0.734 0.000

YOLOv10x TL 0.189 0.900 0.185 0.900 0.396 0.000 0.712 0.000
YOLOv11x TL 0.171 1.000 0.178 0.900 0.384 0.000 0.720 0.000

EPro-PNP (NuScenes) 0.758 0.000 0.964 0.000 0.995 0.000 0.967 0.000
DD3D (KITTI) 0.209 0.600 0.344 0.000 0.526 0.000 0.888 0.000



Table 9. Deviation from consensus scores for Waymo dataset. Labels before review. Using (norm) instead of (normalized) to fit the table
on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best in
normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.280 N/A 0.341 N/A 0.505 N/A 0.430 N/A
YOLOv8x 0.211 0.900 0.269 0.900 0.740 0.000 0.511 0.000
YOLOv9e 0.208 0.900 0.262 0.900 0.741 0.000 0.544 0.000

YOLOv10x 0.237 0.900 0.295 0.900 0.738 0.000 0.604 0.000
YOLOv11x 0.247 0.800 0.295 0.900 0.727 0.000 0.573 0.000
Detectron2 0.231 0.900 0.289 0.900 0.757 0.000 0.524 0.000

Co-DETR Swin-L 0.165 1.000 0.270 0.900 0.743 0.000 0.574 0.000
Co-DETR ViT-L 0.159 1.000 0.270 0.900 0.786 0.000 0.552 0.000

DDQ Detr 4 0.195 0.900 0.288 0.900 0.754 0.000 0.616 0.000
DDQ Detr 5 0.164 1.000 0.281 0.900 0.919 0.000 0.643 0.000

YOLOv8x TL 0.185 0.900 0.252 1.000 0.657 0.000 0.496 0.000
YOLOv9e TL 0.190 0.900 0.257 1.000 0.666 0.000 0.532 0.000

YOLOv10x TL 0.231 0.900 0.285 0.900 0.651 0.000 0.509 0.000
YOLOv11x TL 0.225 0.900 0.277 0.900 0.666 0.000 0.536 0.000

EPro-PNP (NuScenes) 0.501 0.000 0.601 0.000 0.972 0.000 0.704 0.000
DD3D (KITTI) 0.310 0.100 0.487 0.000 0.860 0.000 0.790 0.000

Table 10. Deviation from consensus scores for Waymo dataset. Labels after review. Using (norm) instead of (normalized) to fit the table
on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best in
normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.234 N/A 0.284 N/A 0.343 N/A 0.354 N/A
YOLOv8x 0.214 0.700 0.266 0.600 0.617 0.000 0.475 0.000
YOLOv9e 0.210 0.700 0.256 0.700 0.617 0.000 0.512 0.000

YOLOv10x 0.246 0.500 0.294 0.400 0.633 0.000 0.582 0.000
YOLOv11x 0.257 0.300 0.297 0.400 0.617 0.000 0.545 0.000
Detectron2 0.229 0.600 0.289 0.500 0.642 0.000 0.498 0.000

Co-DETR Swin-L 0.161 1.000 0.273 0.600 0.614 0.000 0.538 0.000
Co-DETR ViT-L 0.152 1.000 0.265 0.600 0.711 0.000 0.516 0.000

DDQ Detr 4 0.191 0.900 0.286 0.600 0.664 0.000 0.590 0.000
DDQ Detr 5 0.158 1.000 0.278 0.600 0.883 0.000 0.621 0.000

YOLOv8x TL 0.186 0.900 0.243 0.900 0.498 0.000 0.468 0.000
YOLOv9e TL 0.189 0.900 0.249 0.900 0.501 0.000 0.501 0.000

YOLOv10x TL 0.236 0.500 0.285 0.600 0.503 0.000 0.488 0.000
YOLOv11x TL 0.230 0.600 0.281 0.600 0.503 0.000 0.511 0.000

EPro-PNP (NuScenes) 0.488 0.000 0.611 0.000 0.959 0.000 0.684 0.000
DD3D (KITTI) 0.301 0.000 0.471 0.000 0.804 0.000 0.784 0.000



Table 11. Deviation from consensus scores for nuImages dataset. Labels before review. Using (norm) instead of (normalized) to fit the
table on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best
in normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.259 N/A 0.368 N/A 0.310 N/A 0.371 N/A
YOLOv8x 0.252 0.500 0.338 0.800 0.832 0.000 0.441 0.000
YOLOv9e 0.243 0.600 0.345 0.800 0.788 0.000 0.452 0.000

YOLOv10x 0.262 0.300 0.368 0.400 0.833 0.000 0.483 0.000
YOLOv11x 0.275 0.300 0.402 0.300 0.833 0.000 0.550 0.000
Detectron2 0.243 0.600 0.382 0.400 0.741 0.000 0.463 0.000

Co-DETR Swin-L 0.204 0.900 0.337 0.800 0.735 0.000 0.418 0.000
Co-DETR ViT-L 0.182 0.900 0.317 0.800 0.716 0.000 0.429 0.000

DDQ Detr 4 0.258 0.400 0.350 0.800 0.650 0.000 0.486 0.000
DDQ Detr 5 0.224 0.800 0.408 0.100 0.809 0.000 0.583 0.000

YOLOv8x TL 0.240 0.600 0.372 0.400 0.626 0.000 0.459 0.000
YOLOv9e TL 0.238 0.600 0.355 0.700 0.650 0.000 0.476 0.000

YOLOv10x TL 0.248 0.600 0.337 0.800 0.630 0.000 0.475 0.000
YOLOv11x TL 0.247 0.600 0.349 0.800 0.675 0.000 0.469 0.000

EPro-PNP (NuScenes) 0.336 0.100 0.559 0.000 0.794 0.000 0.527 0.000
DD3D (KITTI) 0.340 0.100 0.706 0.000 0.945 0.000 0.799 0.000

Table 12. Deviation from consensus scores for nuImages dataset. Labels after review. Using (norm) instead of (normalized) to fit the table
on the page. The best performers are in bold. If no network is better than 50% of labelers, then we mark human labelers as the best in
normalized score.

Source of Car Car Pedestrian Pedestrian Cyclist Cyclist Other Vehicle Other Vehicle
Labels (mean) (norm) (mean) (norm) (mean) (norm) (mean) (norm)

Human Labelers 0.233 N/A 0.326 N/A 0.227 N/A 0.288 N/A
YOLOv8x 0.242 0.300 0.318 0.500 0.812 0.000 0.404 0.000
YOLOv9e 0.238 0.300 0.328 0.500 0.763 0.000 0.415 0.000

YOLOv10x 0.255 0.200 0.349 0.300 0.812 0.000 0.452 0.000
YOLOv11x 0.267 0.200 0.385 0.000 0.812 0.000 0.521 0.000
Detectron2 0.237 0.300 0.368 0.100 0.711 0.000 0.423 0.000

Co-DETR Swin-L 0.197 1.000 0.318 0.500 0.706 0.000 0.380 0.000
Co-DETR ViT-L 0.177 1.000 0.301 0.800 0.683 0.000 0.389 0.000

DDQ Detr 4 0.254 0.200 0.331 0.500 0.615 0.000 0.442 0.000
DDQ Detr 5 0.218 0.700 0.390 0.000 0.788 0.000 0.545 0.000

YOLOv8x TL 0.234 0.300 0.354 0.200 0.587 0.000 0.423 0.000
YOLOv9e TL 0.232 0.300 0.340 0.300 0.613 0.000 0.441 0.000

YOLOv10x TL 0.244 0.300 0.319 0.500 0.591 0.000 0.439 0.000
YOLOv11x TL 0.243 0.300 0.332 0.400 0.640 0.000 0.432 0.000

EPro-PNP (NuScenes) 0.329 0.000 0.541 0.000 0.772 0.000 0.495 0.000
DD3D (KITTI) 0.337 0.000 0.700 0.000 0.938 0.000 0.782 0.000



Table 13. mAP results of Neural Networks for Waymo dataset

Name AP AP50 AP75 APS APM APL

CO-DETR VIT-L 40.10 65.80 42.30 15.30 47.20 78.50
CO-DETR SWIN-L 39.40 65.50 40.40 14.40 47.20 77.60
YOLOV8X 35.30 56.20 38.30 9.80 42.80 76.60
YOLOV9E 35.00 55.40 38.10 9.20 42.40 76.50
YOLOV11X 34.50 55.70 37.30 9.90 41.40 75.40
YOLOV11X TL 34.30 55.50 36.60 9.00 41.70 75.20
YOLOV10X TL 34.10 54.80 37.00 9.30 41.40 74.90
YOLOV10X 34.10 54.20 36.90 9.50 41.00 76.20
YOLOV8X TL 33.80 53.20 36.30 8.70 41.70 73.30
YOLOV9E TL 33.50 53.30 36.50 7.80 41.60 74.90
DETECTRON2 31.90 53.40 32.50 7.60 38.10 73.70
DDQ DETR 4 31.50 53.10 33.10 8.20 36.00 76.50
DDQ DETR 5 29.70 50.00 29.90 6.50 35.10 71.30
DD3D 11.70 24.90 9.00 0.70 15.30 32.60
EPRO-PNP 6.10 19.10 2.60 2.00 10.00 10.00

Table 14. mAP results of Neural Networks for nuImages dataset

Name AP AP50 AP75 APS APM APL

CO-DETR VIT-L 54.50 77.60 57.00 24.30 50.80 75.20
CO-DETR SWIN-L 53.00 75.00 55.90 24.30 49.10 73.70
DDQ DETR 4 44.80 68.60 45.40 16.80 41.30 68.00
YOLOV10X TL 42.80 63.80 46.30 18.20 39.30 65.60
YOLOV8X TL 42.70 62.10 45.70 18.10 39.30 65.30
YOLOV9E TL 42.30 61.80 45.10 18.50 38.80 65.10
DETECTRON2 42.00 64.50 43.30 17.30 37.20 65.80
YOLOV9E 41.90 62.60 45.60 18.10 38.40 64.70
YOLOV11X TL 41.90 62.60 45.60 18.10 38.40 64.70
YOLOV11X 41.70 61.30 44.30 16.00 37.70 66.40
DDQ DETR 5 41.40 61.90 43.40 16.60 37.00 67.50
YOLOV10X 41.20 60.30 44.10 14.80 38.40 64.40
YOLOV8X 41.20 60.00 44.80 17.00 36.60 66.90
EPRO-PNP 21.10 49.50 13.70 10.50 21.90 31.80
DD3D 12.90 23.60 12.50 1.10 12.10 29.10



Table 15. Classical KPI for the Waymo dataset, All classes.

MICROF1 MACROF1 TP FP FN PRECISION RECALL
NAME

YOLOV11X 0.749 0.664 3068 387 1669 0.888 0.648
YOLOV11X TL 0.742 0.666 2972 302 1765 0.908 0.627
CO-DETR SWIN-L 0.722 0.687 2967 514 1770 0.852 0.626
YOLOV10X TL 0.721 0.649 2858 333 1879 0.896 0.603
CO-DETR VIT-L 0.721 0.700 2958 512 1779 0.852 0.624
YOLOV8X 0.718 0.664 2814 284 1923 0.908 0.594
DETECTRON2 0.716 0.644 2826 336 1911 0.894 0.597
YOLOV10X 0.714 0.648 2784 278 1953 0.909 0.588
YOLOV9E 0.704 0.652 2701 231 2036 0.921 0.570
YOLOV9E TL 0.701 0.648 2661 193 2076 0.932 0.562
YOLOV8X TL 0.697 0.643 2645 209 2092 0.927 0.558
DDQ DETR 4 0.677 0.599 2581 302 2156 0.895 0.545
LABELER 4 0.643 0.652 2278 74 2459 0.969 0.481
DDQ DETR 5 0.637 0.554 2358 310 2379 0.884 0.498
LABELER 10 0.635 0.638 2236 69 2501 0.970 0.472
LABELER 5 0.619 0.623 2146 49 2591 0.978 0.453
LABELER 3 0.608 0.604 2122 126 2615 0.944 0.448
LABELER 9 0.606 0.614 2079 48 2658 0.977 0.439
LABELER 2 0.606 0.579 2097 92 2640 0.958 0.443
LABELER 7 0.594 0.579 2012 29 2725 0.986 0.425
LABELER 1 0.586 0.591 1979 40 2758 0.980 0.418
LABELER 6 0.541 0.548 1764 19 2973 0.989 0.372
LABELER 8 0.529 0.525 1713 22 3024 0.987 0.362
EPRO-PNP 0.484 0.384 1719 654 3018 0.724 0.363
DD3D 0.411 0.381 1266 161 3471 0.887 0.267



Table 16. Classical KPI for the Waymo dataset, the Pedestrian class.

F1 TP FP FN PRECISION RECALL
NAME

CO-DETR SWIN-L 0.727 815 168 444 0.829 0.647
CO-DETR VIT-L 0.721 800 159 459 0.834 0.635
YOLOV8X 0.707 753 117 506 0.866 0.598
YOLOV11X TL 0.704 745 112 514 0.869 0.592
YOLOV11X 0.702 753 134 506 0.849 0.598
YOLOV9E 0.702 736 103 523 0.877 0.585
YOLOV10X TL 0.694 732 119 527 0.860 0.581
YOLOV8X TL 0.683 698 87 561 0.889 0.554
YOLOV10X 0.680 695 90 564 0.885 0.552
YOLOV9E TL 0.679 690 83 569 0.893 0.548
DETECTRON2 0.679 715 132 544 0.844 0.568
DDQ DETR 4 0.644 652 113 607 0.852 0.518
LABELER 4 0.619 571 15 688 0.974 0.454
DDQ DETR 5 0.615 599 89 660 0.871 0.476
LABELER 10 0.607 555 16 704 0.972 0.441
LABELER 9 0.591 534 14 725 0.974 0.424
LABELER 3 0.586 535 31 724 0.945 0.425
LABELER 5 0.574 510 8 749 0.985 0.405
LABELER 2 0.566 503 16 756 0.969 0.400
LABELER 1 0.558 492 14 767 0.972 0.391
LABELER 7 0.541 470 7 789 0.985 0.373
LABELER 6 0.497 418 4 841 0.991 0.332
EPRO-PNP 0.497 544 385 715 0.586 0.432
LABELER 8 0.490 411 9 848 0.979 0.326
DD3D 0.362 289 47 970 0.860 0.230



Table 17. Classical KPI for the Waymo dataset, the Cyclist class.

F1 TP FP FN PRECISION RECALL
NAME

LABELER 4 0.687 46 2 40 0.958 0.535
LABELER 5 0.662 43 1 43 0.977 0.500
LABELER 10 0.662 43 1 43 0.977 0.500
CO-DETR VIT-L 0.657 44 4 42 0.917 0.512
LABELER 9 0.641 41 1 45 0.976 0.477
LABELER 1 0.619 39 1 47 0.975 0.453
CO-DETR SWIN-L 0.612 41 7 45 0.854 0.477
LABELER 3 0.609 39 3 47 0.929 0.453
LABELER 6 0.590 36 0 50 1.000 0.419
LABELER 7 0.583 37 4 49 0.902 0.430
YOLOV8X 0.560 35 4 51 0.897 0.407
YOLOV9E TL 0.553 34 3 52 0.919 0.395
LABELER 2 0.550 33 1 53 0.971 0.384
YOLOV9E 0.544 34 5 52 0.872 0.395
LABELER 8 0.542 32 0 54 1.000 0.372
YOLOV8X TL 0.540 34 6 52 0.850 0.395
YOLOV10X 0.533 32 2 54 0.941 0.372
YOLOV11X TL 0.533 32 2 54 0.941 0.372
YOLOV11X 0.521 31 2 55 0.939 0.360
DETECTRON2 0.520 32 5 54 0.865 0.372
YOLOV10X TL 0.517 31 3 55 0.912 0.360
DDQ DETR 4 0.458 27 5 59 0.844 0.314
DDQ DETR 5 0.397 23 7 63 0.767 0.267
DD3D 0.350 21 13 65 0.618 0.244
EPRO-PNP 0.171 9 10 77 0.474 0.105



Table 18. Classical KPI for the Waymo dataset, the Vehicle class.

F1 TP FP FN PRECISION RECALL
NAME

YOLOV11X 0.771 2284 251 1108 0.901 0.673
YOLOV11X TL 0.760 2195 188 1197 0.921 0.647
YOLOV10X TL 0.735 2095 211 1297 0.908 0.618
DETECTRON2 0.733 2079 199 1313 0.913 0.613
YOLOV10X 0.730 2057 186 1335 0.917 0.606
YOLOV8X 0.726 2026 163 1366 0.926 0.597
CO-DETR SWIN-L 0.723 2111 339 1281 0.862 0.622
CO-DETR VIT-L 0.722 2114 349 1278 0.858 0.623
YOLOV9E TL 0.713 1937 107 1455 0.948 0.571
YOLOV9E 0.709 1931 123 1461 0.940 0.569
YOLOV8X TL 0.706 1913 116 1479 0.943 0.564
DDQ DETR 4 0.694 1902 184 1490 0.912 0.561
LABELER 4 0.650 1661 57 1731 0.967 0.490
DDQ DETR 5 0.650 1736 214 1656 0.890 0.512
LABELER 10 0.645 1638 52 1754 0.969 0.483
LABELER 5 0.634 1593 40 1799 0.976 0.470
LABELER 2 0.621 1561 75 1831 0.954 0.460
LABELER 3 0.615 1548 92 1844 0.944 0.456
LABELER 7 0.612 1505 18 1887 0.988 0.444
LABELER 9 0.610 1504 33 1888 0.979 0.443
LABELER 1 0.595 1448 25 1944 0.983 0.427
LABELER 6 0.555 1310 15 2082 0.989 0.386
LABELER 8 0.543 1270 13 2122 0.990 0.374
EPRO-PNP 0.484 1166 259 2226 0.818 0.344
DD3D 0.430 956 101 2436 0.904 0.282



Table 19. Classical KPI for the nuImages dataset, All classes.

MICROF1 MACROF1 TP FP FN PRECISION RECALL
NAME

LABELER 10 0.830 0.838 2058 225 619 0.901 0.769
CO-DETR VIT-L 0.812 0.814 2238 594 439 0.790 0.836
LABELER 7 0.809 0.823 1933 167 744 0.920 0.722
CO-DETR SWIN-L 0.801 0.797 2194 609 483 0.783 0.820
LABELER 4 0.797 0.813 1893 179 784 0.914 0.707
YOLOV11X TL 0.785 0.770 1921 298 756 0.866 0.718
YOLOV9E 0.785 0.770 1921 298 756 0.866 0.718
LABELER 5 0.779 0.791 1822 179 855 0.911 0.681
LABELER 8 0.778 0.781 1841 217 836 0.895 0.688
LABELER 1 0.777 0.790 1812 177 865 0.911 0.677
DETECTRON2 0.775 0.748 1904 330 773 0.852 0.711
YOLOV10X TL 0.775 0.741 1898 321 779 0.855 0.709
YOLOV8X TL 0.771 0.749 1831 242 846 0.883 0.684
YOLOV8X 0.769 0.739 1848 280 829 0.868 0.690
LABELER 9 0.766 0.796 1760 157 917 0.918 0.657
YOLOV9E TL 0.765 0.752 1798 228 879 0.887 0.672
DDQ DETR 4 0.762 0.751 1958 503 719 0.796 0.731
LABELER 6 0.760 0.787 1720 128 957 0.931 0.643
YOLOV11X 0.753 0.726 1786 282 891 0.864 0.667
YOLOV10X 0.747 0.714 1743 245 934 0.877 0.651
DDQ DETR 5 0.720 0.680 1743 424 934 0.804 0.651
LABELER 3 0.701 0.732 1534 167 1143 0.902 0.573
LABELER 2 0.686 0.712 1480 156 1197 0.905 0.553
EPRO-PNP 0.641 0.574 1527 557 1150 0.733 0.570
DD3D 0.379 0.367 660 150 2017 0.815 0.247



Table 20. Classical KPI for the nuImages dataset, the Pedestrian class.

F1 TP FP FN PRECISION RECALL
NAME

CO-DETR SWIN-L 0.832 923 168 204 0.846 0.819
CO-DETR VIT-L 0.830 928 182 199 0.836 0.823
LABELER 10 0.823 828 58 299 0.935 0.735
LABELER 4 0.789 766 48 361 0.941 0.680
YOLOV11X TL 0.775 754 64 373 0.922 0.669
YOLOV9E 0.775 754 64 373 0.922 0.669
LABELER 7 0.773 734 38 393 0.951 0.651
DETECTRON2 0.769 741 59 386 0.926 0.657
YOLOV10X TL 0.764 739 69 388 0.915 0.656
YOLOV8X 0.762 727 54 400 0.931 0.645
DDQ DETR 4 0.762 791 159 336 0.833 0.702
LABELER 5 0.752 704 41 423 0.945 0.625
LABELER 1 0.751 702 41 425 0.945 0.623
YOLOV9E TL 0.747 700 47 427 0.937 0.621
YOLOV8X TL 0.747 699 46 428 0.938 0.620
LABELER 8 0.746 699 47 428 0.937 0.620
LABELER 9 0.732 675 43 452 0.940 0.599
YOLOV11X 0.724 663 42 464 0.940 0.588
YOLOV10X 0.716 657 50 470 0.929 0.583
LABELER 6 0.708 636 33 491 0.951 0.564
DDQ DETR 5 0.700 663 105 464 0.863 0.588
LABELER 3 0.659 570 33 557 0.945 0.506
LABELER 2 0.644 552 35 575 0.940 0.490
EPRO-PNP 0.620 686 400 441 0.632 0.609
DD3D 0.292 199 39 928 0.836 0.177



Table 21. Classical KPI for the nuImages dataset, the Cyclist class.

F1 TP FP FN PRECISION RECALL
NAME

LABELER 4 0.941 32 4 0 0.889 1.000
LABELER 9 0.941 32 4 0 0.889 1.000
CO-DETR VIT-L 0.939 31 3 1 0.912 0.969
LABELER 10 0.928 32 5 0 0.865 1.000
LABELER 7 0.928 32 5 0 0.865 1.000
LABELER 6 0.928 32 5 0 0.865 1.000
CO-DETR SWIN-L 0.923 30 3 2 0.909 0.938
LABELER 1 0.914 32 6 0 0.842 1.000
LABELER 3 0.909 30 4 2 0.882 0.938
LABELER 5 0.901 32 7 0 0.821 1.000
LABELER 8 0.873 31 8 1 0.795 0.969
LABELER 2 0.862 25 1 7 0.962 0.781
YOLOV9E TL 0.842 24 1 8 0.960 0.750
YOLOV11X TL 0.836 23 0 9 1.000 0.719
YOLOV9E 0.836 23 0 9 1.000 0.719
DDQ DETR 4 0.818 27 7 5 0.794 0.844
YOLOV8X TL 0.786 22 2 10 0.917 0.688
DETECTRON2 0.778 21 1 11 0.955 0.656
YOLOV11X 0.778 21 1 11 0.955 0.656
YOLOV8X 0.750 21 3 11 0.875 0.656
YOLOV10X TL 0.741 20 2 12 0.909 0.625
YOLOV10X 0.731 19 1 13 0.950 0.594
DDQ DETR 5 0.692 18 2 14 0.900 0.562
DD3D 0.414 12 14 20 0.462 0.375
EPRO-PNP 0.360 16 41 16 0.281 0.500



Table 22. Classical KPI for the nuImages dataset, the Car class.

F1 TP FP FN PRECISION RECALL
NAME

LABELER 7 0.853 965 103 229 0.904 0.808
LABELER 10 0.852 991 141 203 0.875 0.830
CO-DETR VIT-L 0.840 1052 259 142 0.802 0.881
CO-DETR SWIN-L 0.826 1023 261 171 0.797 0.857
YOLOV11X TL 0.824 968 187 226 0.838 0.811
YOLOV9E 0.824 968 187 226 0.838 0.811
LABELER 8 0.823 933 140 261 0.870 0.781
LABELER 4 0.823 914 113 280 0.890 0.765
YOLOV8X TL 0.822 932 141 262 0.869 0.781
LABELER 5 0.818 903 110 291 0.891 0.756
YOLOV11X 0.817 935 159 259 0.855 0.783
LABELER 1 0.817 903 113 291 0.889 0.756
YOLOV10X TL 0.816 962 201 232 0.827 0.806
DETECTRON2 0.816 963 204 231 0.825 0.807
YOLOV9E TL 0.815 916 137 278 0.870 0.767
LABELER 6 0.814 870 74 324 0.922 0.729
YOLOV10X 0.812 897 119 297 0.883 0.751
YOLOV8X 0.811 914 147 280 0.861 0.765
LABELER 9 0.805 870 98 324 0.899 0.729
DDQ DETR 4 0.794 951 249 243 0.792 0.796
DDQ DETR 5 0.776 909 241 285 0.790 0.761
LABELER 3 0.750 784 114 410 0.873 0.657
LABELER 2 0.736 754 101 440 0.882 0.631
EPRO-PNP 0.681 646 57 548 0.919 0.541
DD3D 0.476 384 34 810 0.919 0.322



Table 23. Classical KPI for the nuImages dataset, the Other Vehicle class.

F1 TP FP FN PRECISION RECALL
NAME

LABELER 10 0.750 207 21 117 0.908 0.639
LABELER 7 0.739 202 21 122 0.906 0.623
LABELER 9 0.705 183 12 141 0.938 0.565
LABELER 4 0.697 181 14 143 0.928 0.559
LABELER 6 0.697 182 16 142 0.919 0.562
LABELER 5 0.693 183 21 141 0.897 0.565
LABELER 8 0.679 178 22 146 0.890 0.549
LABELER 1 0.678 175 17 149 0.911 0.540
CO-DETR VIT-L 0.648 227 150 97 0.602 0.701
YOLOV10X TL 0.644 177 49 147 0.783 0.546
YOLOV11X TL 0.644 176 47 148 0.789 0.543
YOLOV9E 0.644 176 47 148 0.789 0.543
YOLOV8X TL 0.641 178 53 146 0.771 0.549
EPRO-PNP 0.637 179 59 145 0.752 0.552
YOLOV8X 0.635 186 76 138 0.710 0.574
DETECTRON2 0.629 179 66 145 0.731 0.552
DDQ DETR 4 0.629 189 88 135 0.682 0.583
LABELER 3 0.612 150 16 174 0.904 0.463
CO-DETR SWIN-L 0.606 218 177 106 0.552 0.673
LABELER 2 0.606 149 19 175 0.887 0.460
YOLOV9E TL 0.602 158 43 166 0.786 0.488
YOLOV10X 0.598 170 75 154 0.694 0.525
YOLOV11X 0.585 167 80 157 0.676 0.515
DDQ DETR 5 0.553 153 76 171 0.668 0.472
DD3D 0.288 65 63 259 0.508 0.201



(a) LABELER 1 (b) LABELER 2 (c) LABELER 3 (d) LABELER 4

(e) LABELER 5 (f) LABELER 6 (g) LABELER 7 (h) LABELER 8

(i) LABELER 9 (j) LABELER 10 (k) Waymo Labelers (l) CO-DETR VIT-L

(m) CO-DETR SWIN-L (n) YOLOV8X (o) YOLOV9E (p) YOLOV10X

(q) YOLOV11X (r) YOLOV8X TL (s) YOLOV9E TL (t) YOLOV10X TL

(u) YOLOV11X TL (v) DETECTRON2 (w) DDQ DETR 4 (x) DDQ DETR 5

(y) DD3D (z) EPRO-PNP

Figure 4. Examples of object detections on the Waymo dataset provided by human labelers and all selected neural networks. Vehicle
objects are marked in green, Pedestrian objects are marked in red while Cyclist objects are marked in blue.



(a) LABELER 1 (b) LABELER 2 (c) LABELER 3 (d) LABELER 4

(e) LABELER 5 (f) LABELER 6 (g) LABELER 7 (h) LABELER 8

(i) LABELER 9 (j) LABELER 10 (k) nuImages Labelers (l) CO-DETR VIT-L

(m) CO-DETR SWIN-L (n) YOLOV8X (o) YOLOV9E (p) YOLOV10X

(q) YOLOV11X (r) YOLOV8X TL (s) YOLOV9E TL (t) YOLOV10X TL

(u) YOLOV11X TL (v) DETECTRON2 (w) DDQ DETR 4 (x) DDQ DETR 5

(y) DD3D (z) EPRO-PNP

Figure 5. Examples of object detections on the nuImages dataset provided by human labelers and all selected neural networks. Vehicle
objects are marked in green, Pedestrian objects are marked in red while Cyclist objects are marked in blue.
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