Universal Shape of Strong Remote Adversarial Patches for Object Detection with
Convolutional Neural Networks

Supplementary Material

1. The Composition of the Supplementary Ma-
terials

We explain the materials included in the supplementary ma-

terials. The supplementary materials are composed of the

following:

* Supplementary information that could not be covered in
the main paper (this document)

* Following remote adversarial patches for “person” class:

— Remote adversarial patches for evaluation (24 images,
saved in the “Section4 _evaluation” folder). For each of
the four CNNs, namely YOLOv2 [7], SSD [5], Reti-
naNet [4], and FCOS [11], we prepare remote adver-
sarial patches in six different shapes.

— Images with remote adversarial patches in autonomous
driving simulator (72 images, saved in the “Sec-
tion5_simulator” folder). In the prepared images, four
types of remote adversarial patches are applied to both
YOLOV2 and SSD respectively.

From Sec. 2 onwards, we will provide supplementary infor-
mation to complement the main paper.

2. Detailed Information for Analysis of Spread-
ing Adversarial Patch’s Effect

In the main paper, we discussed how the effect of an adver-
sarial patch spreads from a single pixel. In this section, we
will provide supplementary information to further elaborate
on the aforementioned discussion.

2.1. Full Proof of Theroems

In the main paper, we define this matrix as D(n) after pro-
cessing a 33 filter size convolutional layer with a stride of
one n times. D(n) varies according to Eq. (1).

3

1 1
1] -5 1 =)

— =

1
1| —
1

— N W N
N = O N
W o © D

N O N
— N W N =

Theorems 1 and 2 are stated regarding D(n).

Theorem 1. The size of matrix D(n) is (2n+1) x (2n+1).
(=) £ (D)

The elements of D(n) are D(n)ptqnty = / on
|24]
where f(a) = Z

i=a

n!
(n—2i+a)lil(i —a)l’

Theorem 2. D(n)y 44,5y Satisfies

aD(n)n+z,n+y aD(n)n+m,n+y
Ox ’ Oy

3
~—— 2
> 5, (2.9), @
where z/n — 0 and y/n — 0. Therefore, the contour of
D(n)y+5,n+y is approximately a circle.

We will proceed to prove Theorems 1 and 2.

2.1.1. Proof of Theorem 1

Theorem 1 is proven from Lemmas | and 2.

Lemma 1.
9"D(n)ey = (9"D(n)z0) (9"D(n)oy), ()
where —n < x <nand —n <y < n.
Lemma 2.
D(n)nyz0 = D(n)ontae =9 " f(|2]), 4
where —n < x < n.
We will proceed to prove Lemmas 1 and 2.

Proof of Lemma 1. We prove Lemma | by mathematical in-

duction on n.

1. Whenn = 0, D(0)g,0 = 1. Thus, Eq. (3) is true.

2. We assume that Eq. (3) is true when n = k. When n =
k+1,

Dk +1)4
9k+1 1 1

=9 Z ZD(k)eri,erj (5)

i=—1j=—1

1 1
= Z Z 9D (k) a-ti g+ (6)

i=—1j=—1

= > > (9*DHK)erio) (9 D(K)oyrs) (D

i=—1j=—1

= (9" D(k + 1)00) ("' Dk +1)0y) . (®)

Therefore, Eq. (3) is true whenn = k + 1.
Thus, we have proven Lemma 1.

Proof of Lemma 2. We now prove Eq. (4) where 0 < z
n. Eq. (4) is certainly true for the other x, namely —n
x < 0, for symmetry.

INIA O

In each 33 filter size convolutional layer with the stride
of one, the effect value of each pixel is the average of nine
pixels, namely the selected pixel and surrounding eight pix-
els. The effect on each pixel spreads to these nine pixels
after a 3x3 filter size convolutional layer with the stride
of one. Thus, we consider diffusion as the transition be-
tween pixels. Diffusion then corresponds to set P defined
as P={(i,j)| —1<i<1,-1<j <1}, which includes
nine paths. Thus, we obtain D (1), 44,5+, from the number
of paths from (n,n) to (n + x,n + y) using n paths in P.
In more detail,

D(n)ntzmnty = 9%# (Zpk = (z,y), P € P))
k=1
We now calculate D(n),,4, 0. To calculate D(n),+4 0,
we now count the number of paths from (n,n) to (n + x,0)
using n paths in P. (n + x, 0) represents the left edge of the
diffusion range. When we move from (n,n) to (n + z,0),
Py, is always (i, —1) where ¢ € {—1,0,1}. Therefore, we
count the number of paths so that the sum of Py’s first ele-
ments is x. The above movement consists of (n — 2i + x)
times (0, —1) move, ¢ times (1, —1) move, and (i —) times
n+x

(—=1,—1) move, where z < ¢ < In each 1,

n!
(n—2i + x)lil(i — x)!
of these values over i is f(z). Therefore, D(n)n1q0 =
9~ f(x). Thus, we have proven Lemma 2. O

. The sum

the number of paths is

2.1.2. Proof of Theorem 2
Theorem 2 is proven from Lemmas 3 and 4.

Lemma 3. f(z) is approximated as

—n

o~ (11 (4 (5] w0
i
where]
Aoy = L2 L (1
Aafe) = A VEZBe? (12)
Ag(a) = 1739 _GW. (13)

Lemma 4. The gradient of D(n)y,4¢ n4y With respect to
and y satisfies

VD(n)n+a:7ﬂ+y
1 As(x/n) As(y/n)
~ - 2D(n)n+z,n+y <1Og As(x/n)’ tog Az (y/n))
(14)
3a
~ _%[z,y], ()

where z/n — 0 and y/n — 0.

We will proceed to prove Lemmas 3 and 4.

Proof of Lemma 3. First, we approximate f(x). From Stir-
ling’s approximation, logn! ~ nlogn — n. Therefore,

n!
(n—2i 4+ x)ll(i — z)!
~nlogn —ilogi — (i — z)log(i — x)
—(n—2i+x)log(n — 2i + x) (16)

log

Now, we define g(7) as

g(i) =nlogn —ilogi — (i — x) log(i — x)
— (n—2i+x)log(n — 2i + x). (17)

We differentiate (i) with respect to ¢ and obtain

dg (n —2i+x2)?
& () o

dg . . .)
Thus, d—g is monotonically decreasing where z < ¢ <
)
{n +z

d
5 . In particular, d—g decreases from +oo to —oo.
1

Therefore, the function g(4) takes the maximal value when

Z_:4+3(x/n)—\/4—3(x/n)2n' (19)

6

Now, we approximate function f(xz). We define «
as @ = z/n (0 < a < 1) and the function A;(«),

V4 —302 -1
As(a), and As(a) as A, (a) = + As(a) =
44 3a — V4 — 302 4 —3a — V4 —3a2

,and Az(a) =

6
These functions A;(«), As(a), and As(«) are (n — 2i +
x)/n, i/n, and (i — x)/n under Eq. (19), respectively. The
approximate function of f(z) is then

f(z) =exp (g(7)) (20)

~ 1)

3
(nA; (o)™
=1

<

—n

(@) e

j=1

because A; () + Az (a) + As () = 1. Thus, we have
proven Lemma 3. O

Proof of Lemma 4. First, we partially differentiate

D(n)p+pnt+y With respect to z where 0 < z < n,

without loss of generality because of symmetry. Then,
OD(M)ntwmty _ f(yl) df ()

or T Ton dx 23)

—n

(4 ()" o

= % exp | —n i:Aj (%) log A; (7)
j=1
(25)
= f(x)% -n ES:AJ- (%) log A; (%) (26)
j=1
d 3 T
= —nf(z) dr ZAJ (ﬁ)
j=1
3 ()t () e
j=1
= —nf(z) i (log A; (%) %Aj (i)) (28)
j=1

3
S x
Eq. (28) is satisfied because -ZlAj (ﬁ) =1
j=
To calculate Eq. (28), we define the function h(«)

as h(a) = a4 — 3a)"'/2. By using this func-
tion A(a), dd A (7) = %h(ﬁ)’ ddxA (£> =
%h (%)—5— ! ,and —Ag () (;)—% More-

over, Ay (m/n) Ag (x/n) A (:c/n) and As (z/n) >

As (x/n). Therefore,

Therefore,
OD(N)ntznty 1 As (z/n)
T ndanty . Z g 2232/ 0 2
ox 2 08 As (z/n) (Wntanty (32)

Similarly, by applying the above approximation to ¥,

VD(n)n+z,n+y

! . o As(x/n) o As(y/n)
s 2D()n+m,n+y (1 gAS(x/n))l gAB(y/n))

(33)

We now calculate the approximate gradient near (z,y) =

As(z/n)

3
(0,0). The function log =2/~ =~ —x, because
Ag n

A200) a7 ey s

2 . 20T/ N

og A5(0) 0 and hn% — (10 Ag(;z:/n)> — = More-
over, D(n)ptgnty ~ 1 near (z,y) = (0,0) because
f(0) ~ 3" from Lemma 3. Therefore, VD(n)y4z nty =~
—3/(2n) (z,y) near (x,y) = (0,0). Thus, we have proven
Lemma 4. O

2.2. A Method for Calculating Optimal Shape of
Remote Adversarial Patches in Actual CNNs

In this subsection, we will provide a detailed explanation
of the method for calculating the optimal remote adversar-
ial patches. In particular, we will provide a detailed ex-
planation of the calculation method for each of the four
CNNs, namely YOLOV2 [7], SSD [5], RetinaNet [4], and
FCOS [11]. We specifically explain the parameters for cal-
culating the optimal remote adversarial patches, namely the
placement region of the remote adversarial patches and the
target region for the attack R. The targeted region R is po-
sitioned such that its center aligns with the center of each
output layer.

2.2.1. YOLOv2 [7]

Firstly, we will discuss YOLOvV2 [7]. Similar as the pre-
vious research [0], we select pixels of remote adversar-
ial patches from 0 < z < 415 and (0 < y < 104 or
311 < y < 415). Moreover, we will examine the place-
ment method that maximizes the effectiveness of the adver-
sarial patch for a region R of size 96x96 centered in the
image (specifically, a region of size 3x3 in the final layer).
In particular, the figure presented in the main paper depicts
a selection of 5,000 pixels.

To calculate the influence value of the adversarial
patches, we will now describe the CNN model that we have
used in this paper. In the calculations conducted in this
study, we did not include processing related to layers that
do not affect the diffusion range of the adversarial patch ef-
fect, such as a 1x1 convolutional layer with a stride of 1.
Therefore, we will not include these steps in the following
calculation procedure. If the image size changes during the

calculation, it will be explicitly stated. Furthermore, unless
otherwise specified, the output of the previous step will be
used as the input for the operation. The calculations were
performed as follows:
1. A 3x3 convolutional layer with a stride of 1 and padding
of 1
2. A 2x2 max pooling layer with a stride of 2 (416x416
— 208 %208)
3. A 3x3 convolutional layer with a stride of 1 and padding
of 1
4. A 2x2 max pooling layer with a stride of 2 (208x208
— 104x104)
5. Two 3x3 convolutional layers with a stride of 1 and
padding of 1
6. A 2x2 max pooling layer with a stride of 2 (104x104
— 52x52)
7. Two 3x3 convolutional layers with a stride of 1 and
padding of 1
8. A 2x2 max pooling layer with a stride of 2 (52x52 —
26x26)
9. Three 3x3 convolutional layers with a stride of 1 and
padding of 1
10. A 2x2 max pooling layer with a stride of 2 (26 x26 —
13x13)
11. Five 3x3 convolutional layers with a stride of 1 and
padding of 1
12. The output of Step 9 will be subjected to a 2x2 max
pooling layer with a stride of 2. (2626 — 13x13)
13. The outputs of Step 11 and Step 12 will be combined by
adding them together with the following weighting:

(Result) = — x (The output of Step 11)

A RS TN

+ — (The output of Step 12). (34)
The reason for Eq. (34) is that the output of Step 11 has
a channel number of 1024, while the output of Step 12
has a channel number of 256.
14. A 3x3 convolutional layer with a stride of 1 and padding
of 1
We examine the placement method that maximizes the ef-
fectiveness of the adversarial patch for a region R of size
9696 centered in the image (specifically, a region of size
3x3 in the final layer). Similar as the previous research [6],
we select pixels of remote adversarial patches from 0 <
r < 415 and (0 < y < 104 or 311 < y < 415). This
condition takes into account the requirement for remote ad-
versarial patches.

2.2.2. SSD [5]

To calculate the influence value of the adversarial patches,
we will now describe the CNN model that we have used in
this paper. The notation and methodology for the calcula-

tion are similar to that of YOLOvV2. The calculations were
performed as follows:

1. Two 3x3 convolutional layers with a stride of 1 and
padding of 1

2. A 2x2 max pooling layer with a stride of 2 (300x300
— 150%150)

3. Two 3x3 convolutional layers with a stride of 1 and
padding of 1

4. A 2x2 max pooling layer with a stride of 2 (150x 150
— 75%75)

5. Three 3x3 convolutional layers with a stride of 1 and
padding of 1

6. A 2x2 max pooling layer with a stride of 2 (75x75 —
38x38). When performing the aforementioned opera-
tions naively, there is a shortage of pixels for the right-
most and bottommost pixels of the image. Therefore, in
SSD, these pixels are padded with zeros and pooling op-
erations are performed. In this study, taking into account
the aforementioned operations, only the portions within
the original image are used for calculating the influence
values, and the average of these pixels is used as the out-
put for the corresponding pixel.

7. Three 3x3 convolutional layers with a stride of 1 and
padding of 1

8. A 2x2 max pooling layer with a stride of 2 for the output
of Step 8 (38x38 — 19x19)

9. Three 3x3 convolutional layers with a stride of 1 and
padding of 1

10. A 3x3 max pooling layer with a stride of 1 and padding
of 1

11. A 3x3 convolutional layer with a stride of 1, padding of
6, and dilation of 6

12. A 3x3 convolutional layer with a stride of 2 and padding
of 1 (19x19 — 10x10)

13. A 3x3 convolutional layer with a stride of 2 and padding
of 1 (10x10 — 5x5)

14. A 3x3 convolutional layer with a stride of 1 (5x5 —
3x3)

15. A 3x3 convolutional layer with a stride of 1 (3x3 —
I1x1)

16. A 3x3 convolutional layer with a stride of 1 and padding
of 1 will be applied to six output layers, namely the out-
puts of Step 7, Step 11, Step 12, Step 13, Step 14, and
Step 15. Each calculation result corresponds to an out-
put of size 38x38, 19x19, 10x 10, 5x5,3%x3, and 1x1,
respectively. It is important to note that these opera-
tions consider both classification and regression simul-
taneously, as they have the same operations.

For each of the six output layers in SSD, we calculated the
optimal shape of the adversarial patch region in the follow-
ing attack regions:

* Layer with a size of 38x38: Central 88 region

» Layer with a size of 19x19: Central 5x5 region

» Layer with a size of 10x10: Central 2x2 region

* Remaining layers: Central 1x 1 region

Additionally, since SSD scales the input image size from
416x416 to 300x 300, the region of existence for the adver-
sarial patch is also scaled accordingly. Especially, we select
pixels of remote adversarial patches from 0 < x < 299 and
(0 <y <Tdor225 <y <299).

2.2.3. RetinaNet [4], and FCOS [11]

To calculate the influence value of the adversarial patch, we
will now describe the CNN model that we have formulated
in this paper. The notation and methodology for the calcu-
lation are similar to that of YOLOV2. The calculations were
performed as follows:
1. A 7x7 convolutional layer with a stride of 2 and padding
of 3 (416x416 — 208x208)
2. A 3x3 max pooling layer with a stride of 2 and padding
of 1 (208x208 — 104x104)
3. Repeat the bottleneck blocks three times Each bottleneck
block performs the following calculations:
(a) Save the previous output.
(b) A 3x3 convolutional layer with a stride of 1 and
padding of 1
(c) Compute the average of the outputs from steps (a)
and (b), and output the result
4. Execute the bottleneck block composed of the following
operations:
(a) Save the previous output.
(b) A 1x1 convolutional layer with a stride of
2 (104x104 — 52x52)
(c) A 3x3 convolutional layer with a stride of 2 and
padding of 1 for the output of Step (a) (104x104
— 52x52)
(d) Compute the average of the outputs from steps (b)
and (c), and output the result
5. Repeat the bottleneck blocks defined in Step 3 three
times
6. Execute the bottleneck block defined in Step 4 (52x52
— 26x26)
7. Repeat the bottleneck blocks defined in Step 3 five times
8. Execute the bottleneck block defined in Step 4 (2626
— 13x13)
9. Repeat the bottleneck blocks defined in Step 3 two times

10. A 3x3 convolutional layer with a stride of 2 and padding
of 1 (13x13 — 7x7)

11. A 3x3 convolutional layer with a stride of 2 and padding
of 1 (Tx7 — 4x4)

12. Scale the 13x 13 image obtained in Step 9 to a size of
26x26, and then average it with the image obtained in
Step 7. Scaling is performed by dividing each pixel of
the 13x13 image into four equal parts to form a 2x2
image. All four regions have the same influence value,
and the influence value of the corresponding pixel is used
as is.

13. Scale the 26 x26 image obtained in Step 12 to a size of
52x52, and then average it with the image obtained in
Step 5. We perform the scaling in the same manner as in
step 12.

14. A 3x3 convolutional layer with a stride of 1 and padding
of 1 will be applied to three output layers, namely the
outputs of Step 13, Step 12, and Step 9. Each calculation
result corresponds to an output of size 52x52, 26x26,
and 13x13, respectively.

15. Five 3x3 convolutional layers with a stride of 1 and
padding of 1 will be applied to five output layers, namely
the outputs of Step 14 (52x52), Step 14 (26x26),
Step 14 (13x13), Step 10 (7x7), and Step 11 (4x4).
It is important to note that these operations consider
both classification and regression simultaneously, as
they have the same operations.

For each of the five output layers, we calculated the opti-
mal shape of the adversarial patches in the following attack
regions:

* Layer with a size of 52x52: Central 12x 12 region

» Layer with a size of 26x26: Central 6x6 region

» Layer with a size of 13x13: Central 33 region

» Layer with a size of 7x7: Central 1x1 region

* Layer with a size of 4x4: Central 2x2 region

We select pixels of remote adversarial patches from 0 <
x<415and (0 <y <104 or 311 <y < 415).

3. Detailed Information for Evaluation of
Strong Remote Adversarial Patches

In this section, we provide detailed experimental methods
and experimental data for Sec. 4 in the main paper. For
SSD [5], RetinaNet [4], and FCOS [11], we conducted the
experiment by mapping the class names to their correspond-
ing class names in the PyTorch library [1]. Specifically, we
replaced “aeroplane” with “airplane”, “diningtable” with
“dining table”, “motorbike” with “motorcycle”, “potted-
plant” with “potted plant”, “sofa” with “couch”, and “tv-
monitor” with “tv”, and performed the experiment accord-

ingly.

3.1. Detailed Experimantal Results for Bounding
Boxes

In this subsection, we show experimental results regarding
the size of bounding boxes. The experimental results are
as shown in from Tabs. | to 4. The empty cells indicate
the absence of bounding boxes that include a confidence
score of 50% or higher. These classes are excluded from
calculation of the average.

3.2. Detailed Experimantal Results for Confidence
Score

In this subsection, we show experimental results regarding
the confidence score. The experimental results are as shown

Table 1. The proportion of bounding box size relative to the entire
image in YOLOV2

Table 3. The proportion of bounding box size relative to the entire
image in RetinaNet

Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent
Area - 9,800 9,800 5,000 5,000 2,592 2,592 Area - 9,800 9,800 5,000 5,000 2,592 2,592
aeroplane | 24.21% | 21.79% | 8.10% | 15.99% | 9.03% | 14.42% | 10.19% aeroplane | 23.15% | 1.36% 1.14% 1.23% 9.44% | 18.78% | 17.38%
bicycle 21.95% | 7.21% 594% | 18.88% | 22.24% | 21.72% | 22.79% bicycle 21.46% - - 5.84% - 20.02% | 17.76%
bird 18.01% | 3.66% 3.85% 10.6% 5.45% 8.84% | 14.96% bird 15.04% | 1.49% 1.49% 1.47% 1.49% | 14.09% | 14.02%
boat 1546% | 7.62% | 26.80% | 5.76% 589% | 17.68% | 5.75% boat 14.04% - - 29.87% | 57.12% | 20.90% | 38.24%
bottle 9.48% | 9.34% 8.57% 8.98% 8.52% 8.48% 9.13% bottle 6.79% | 2.09% - 19.73% | 5.06% 9.63% 5.29%
bus 24.30% - - - - 29.12% | 41.58% bus 21.28% - 4.49% - 739% | 17.14% | 13.86%
car 17.38% | 4.29% 4.45% 8.65% 6.57% 9.22% 7.53% car 15.79% - 1.69% 3.64% 3.35% 5.06% | 11.04%
cat 26.93% | 41.22% | 13.48% | 22.45% | 13.28% | 11.71% | 14.34% cat 21.89% - 3.61% 12.48% | 4.83% 10.07% | 10.67%
chair 11.17% | 6.33% 6.55% 9.22% 7.46% 9.28% 7.80% chair 9.78% - - 5.04% 5.28% 7.20% 6.40%
cow 14.49% | 3.21% 2.35% 3.98% 2.77% 7.70% 7.38% cow 14.76% - - - - 8.07% 2.54%
diningtable | 34.02% | 19.51% | 21.98% | 26.92% | 20.87% | 30.68% | 27.60% diningtable | 34.66% - - 46.76% - 41.84% | 49.86%
dog 2593% | 11.86% | 12.31% | 10.66% | 18.50% | 22.67% | 27.68% dog 26.94% - - 9.39% 9.81% | 20.52% | 16.26%

horse 27.95% - 4.13% - 2527% | 25.97% | 29.74%
motorbike | 22.59% | 26.27% | 9.74% | 19.37% | 16.25% | 19.17% | 22.48%
person 17.62% | 18.79% | 11.55% | 7.14% 14.07% | 15.19% | 19.60%
pottedplant | 21.15% | 5.45% 3.74% | 10.51% | 9.30% | 12.25% | 20.14%
sheep 13.78% | 2.64% 2.65% 3.62% 5.10% 10.90% | 4.90%
sofa 31.41% | 42.89% - 26.68% | 28.38% | 28.60% | 27.55%
train 22.91% - - 20.53% | 5.50% | 12.69% | 14.51%
tvmonitor | 11.43% | 7.63% 4.35% 10.12% | 7.34% 8.81% 8.92%

horse 25.82% - - - - 6.05% -
motorbike | 20.88% | 2.08% 2.07% | 13.06% | 2.92% | 17.75% | 21.50%

person 16.20% | 4.91% 8.19% 2.52% 3.03% | 16.63% | 16.45%
pottedplant | 13.55% - - 18.00% | 19.68% | 24.41% | 15.25%

sheep 14.00% - - - - 7.53% 1.00%

sofa 31.11% - - - - 21.62% -
train 21.42% | 13.37% 1.66% - - 25.69% | 29.53%
tvmonitor | 8.78% - - 12.74% 1.86% 9.95% 7.77%

average | 20.61% | 14.10% | 8.86% | 13.34% | 12.20% | 16.26% | 17.23%

Table 2. The proportion of bounding box size relative to the entire
image in SSD

average 18.87% | 4.22% 3.04% 12.98% | 10.10% | 16.15% | 16.38%

Table 4. The proportion of bounding box size relative to the entire
image in FCOS

Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent Shape ‘ Clean ‘ Square | Crescent ‘ Square ‘ Crescent | Square ‘ Crescent
Area - 9,800 9,800 5,000 5,000 2,592 2,592 Area - 9,800 9,800 5,000 5,000 2,592 2,592
aeroplane | 27.69% | 1.40% 1.40% 1.40% 1.40% 1.40% 1.40% aeroplane | 22.22% - - 23.16% | 15.33% | 25.50% | 22.66%
bicycle 22.44% - 6.32% 17.24% | 15.39% | 19.52% | 19.55% bicycle 21.15% | 18.99% 8.57% 18.53% | 15.01% | 20.25% | 18.60%
bird 18.62% | 3.33% 3.35% 6.61% 3.20% 8.47% 13.76% bird 16.25% - - 3.66% 4.92% 9.70% 11.27%
boat 17.22% - - - - - - boat 13.66% - - 1.04% 1.03% 9.40% 8.32%
bottle 8.58% 3.08% - 3.20% 5.52% 4.88% 4.18% bottle 5.49% | 10.60% 1.83% 5.12% 2.59% 5.36% 5.55%
bus 21.52% - - - - 49.77% | 24.76% bus 20.34% | 4.94% 6.07% 3.89% 3.90% | 14.35% | 11.56%
car 17.78% | 1.75% 2.06% 6.88% 4.28% 8.56% 14.10% car 15.56% | 2.71% 2.80% 8.87% 4.20% 10.83% 9.98%
cat 27.39% | 13.80% | 14.52% | 12.30% - 9.38% 17.60% cat 25.89% | 6.88% 5.39% 11.73% | 6.96% 13.63% | 10.22%
chair 8.85% | 11.57% 1.35% 8.37% 6.65% 7.31% 7.07% chair 10.35% | 5.44% 6.27% 7.09% 6.23% 7.34% 6.37%
cow 16.01% | 2.81% - 3.25% 3.24% 1091% | 12.05% cow 14.89% - - 3.67% 3.69% 8.05% 7.23%
diningtable | 34.63% - - - - 6.16% | 22.90% diningtable | 31.83% - - - - 34.40% | 28.49%
dog 26.80% - - 10.45% - 12.27% | 17.57% dog 29.12% | 7.88% 3.69% 8.58% 10.59% | 20.68% | 16.82%
horse 27.52% - - - 296% | 21.74% | 20.82% horse 25.80% - 1.97% 8.65% 4.34% 18.64% | 11.63%
motorbike | 22.40% - - - 23.63% | 24.41% | 25.10% motorbike | 21.36% - 827% | 22.88% | 21.57% | 20.56% | 18.69%

person 18.23% | 3.81% 3.37% 14.95% | 17.16% | 17.45% | 18.79%
pottedplant | 17.12% | 2.29% 3.58% 7.53% 3.54% 8.17% 6.60%
sheep 13.81% | 1.37% 1.37% 1.37% 1.37% 1.42% 5.79%

sofa 30.70% - - 11.86% | 11.28% | 28.59% | 21.88%
train 23.71% - - - 33.37% | 27.68% | 28.80%
tvmonitor | 10.16% - - 11.53% | 9.48% 10.96% | 10.89%

person 16.73% | 9.12% | 10.15% | 17.98% | 8.59% | 19.89% | 16.74%
pottedplant | 14.51% | 6.82% 447% | 1247% | 1.72% 9.12% 8.44%
sheep 11.94% - - - - 0.64% 1.82%
sofa 28.63% | 11.711% - - 2597% | 21.55% | 17.74%
train 22.43% - 8.09% | 11.39% | 8.14% 17.92% | 11.23%
tvmonitor | 9.02% - - 8.71% 8.26% 9.51% 8.16%

average | 20.56% | 4.52% 4.15% 8.35% 9.50% | 14.69% | 15.45%

in from Tabs. 5 to 8.

3.3. Strong Remote Adversarial Patches in Cases of
Detecting Large Objects with SSD

In Sec. 4.3 in the main paper, we showed that for CNNs with
small diffusion effects like SSD, rectangular remote adver-
sarial patches are strong. This rectangular remote adversar-
ial patch exhibits its effect when obstructing the detection of
small objects in layers close to the input layer with high res-
olution. However, in Sec. 3 in the main paper, it is suggested
that in layers distant from the input layer, the optimal shape
of remote adversarial patches is crescent-like. This remote
adversarial patch is expected to be effective in obstructing
the detection of large objects, but the verification of this hy-
pothesis in the experiments conducted up to Sec. 4.3 in the

average 18.86% | 8.51% 5.63% 10.44% | 8.84% 14.87% | 12.58%

main paper remains insufficient. Therefore, we show that
crescent-shaped remote adversarial patches are strong when
detecting large objects with SSD by experiments.

First, we extracted images where only one object de-
tected by SSD exists among the 20 classes and is located
between remote adversarial patches. Here, “only one object
detected by SSD” indicates that the number of bounding
boxes in images without adversarial patches is one. Fur-
thermore, “the object is located between remote adversarial
patches” indicates that the bounding box of the object exists
within the range of 105.0 < y < 311.0, which is considered
in real numbers.

Next, we extracted the class that satisfies the above con-
ditions with at least ten images. The corresponding class
and the number of images in each class are as follows:

Table 5. Confidence score in YOLOv2

Table 7. Confidence score in RetinaNet

Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent Shape Clean Square | Crescent | Square | Crescent | Square | Crescent
Area - 9,800 | 9,800 | 5000 | 5000 | 2592 | 2,592 Area - 9,800 | 9,800 | 5000 | 5000 | 2,592 | 2592
acroplane | 77.31% | 3.99% | 443% | 924% | 620% | 13.15% | 8.40% acroplane | 90.19% | 20.55% | 13.40% | 19.00% | 21.18% | 36.97% | 36.92%
bicycle | 69.71% | 2.79% | 195% | 44.07% | 9.81% | 62.77% | 41.89% bicycle | 79.73% | 10.50% | 4.53% | 23.17% | 10.27% | 50.70% | 37.54%
bird 75.03% | 3.82% | 3.64% | 9.93% | 6.67% | 21.05% | 25.89% bird 84.66% | 4.81% | 3.62% | 19.10% | 5.79% | 38.45% | 33.24%
boat 62.14% | 376% | 533% | 9.11% | 7.01% | 21.44% | 12.97% boat 74.96% | 4.35% | 3.99% | 1691% | 9.90% | 36.80% | 26.74%
bottle | 49.48% | 37.32% | 20.86% | 43.61% | 41.35% | 46.13% | 44.52% bottle | 60.03% | 1631% | 4.43% | 21.80% | 16.75% | 36.75% | 36.08%
bus 60.57% | 0.63% | 0.32% | 721% | 2.83% | 15.19% | 17.48% bus 78.90% | 3.28% | 13.12% | 12.50% | 20.21% | 41.47% | 32.41%
car 7191% | 4.95% | 1229% | 26.6% | 29.72% | 39.02% | 40.54% car 75.50% | 10.91% | 16.08% | 32.75% | 29.85% | 41.88% | 51.97%
cat 64.47% | 527% | 2.48% | 10.28% | 8.33% | 15.60% | 11.46% cat 79.23% | 3.46% | 4.18% | 8.85% | 9.53% | 22.39% | 24.70%
chair 4801% | 7.11% | 6.00% | 27.40% | 21.01% | 30.50% | 32.15% chair | 62.60% | 6.54% | 5.41% | 19.14% | 13.94% | 33.10% | 30.42%
cow 7748% | 1129% | 7.37% | 10.79% | 12.59% | 21.56% | 21.92% cow 89.28% | 1.82% | 1.38% | 3.83% | 6.93% | 44.82% | 22.93%
diningtable | 53.83% | 13.45% | 11.87% | 36.10% | 21.98% | 43.73% | 42.20% diningtable | 56.91% | 5.07% | 3.72% | 20.30% | 15.74% | 30.39% | 23.89%
dog 73.37% | 5.88% | 11.98% | 11.97% | 17.85% | 25.70% | 34.70% dog 78.81% | 2.46% | 6.44% | 14.37% | 18.36% | 35.98% | 29.50%
horse | 72.75% | 0.62% | 3.25% | 1.15% | 6.34% | 8.95% | 28.51% horse | 82.55% | 5.29% | 1.81% | 11.38% | 4.55% | 18.39% | 13.52%
motorbike | 66.61% | 18.10% | 8.58% | 33.98% | 20.45% | 48.98% | 31.19% motorbike | 78.85% | 12.03% | 12.42% | 29.35% | 16.07% | 33.19% | 45.34%
person | 69.36% | 29.97% | 15.54% | 68.36% | 37.92% | 59.85% | 54.04% person | 81.71% | 28.17% | 13.65% | 21.78% | 19.12% | 62.37% | 48.99%
pottedplant | 50.00% | 10.94% | 7.94% | 22.34% | 25.67% | 25.71% | 37.98% pottedplant | 62.47% | 6.30% | 7.95% | 10.34% | 19.59% | 24.70% | 27.74%
sheep | 71.39% | 2.94% | 6.11% | 9.95% | 1533% | 30.48% | 17.24% sheep | 75.99% | 3.75% | 1.80% | 3.51% | 4.10% | 29.04% | 11.24%
sofa 47.55% | 143% | 138% | 1449% | 9.10% | 22.56% | 16.27% sofa 60.21% | 1.39% | 030% | 591% | 3.55% | 1475% | 8.58%
train 73.02% | 0.63% | 0.08% | 3.92% | 430% | 13.52% | 14.92% train 86.01% | 6.28% | 6.52% | 3.18% | 2.86% | 19.76% | 19.52%
tvmonitor | 60.55% | 7.30% | 3.36% | 16.72% | 11.76% | 28.29% | 25.02% tvmonitor | 72.69% | 2.36% | 4.51% | 9.54% | 8.23% | 26.59% | 21.25%
average | 64.73% | 8.61% | 6.74% | 20.86% | 15.81% | 29.74% | 27.96% average | 75.56% | 1.18% | 6.46% | 15.34% | 12.83% | 33.92% | 29.13%
Table 6. Confidence score in SSD Table 8. Confidence score in FCOS
Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent Shape Clean | Square | Crescent | Square | Crescent | Square | Crescent
Area _ 9,800 9,800 5,000 5,000 2,592 2,592 Area - 9,800 9,800 5,000 5,000 2,592 2,592
aeroplane | 76.78% | 5.71% 5.24% 5.85% 5.64% 6.82% 6.31% aeroplane | 75.66% | 3.61% 8.09% | 14.71% | 15.71% | 37.64% | 40.67%
bicycle 63.64% | 3.37% 351% 7.04% 13.44% | 29.99% | 30.91% bicycle 66.34% | 32.56% | 27.83% | 42.31% | 41.35% | 52.89% | 50.52%
bird 68.83% | 5.94% 6.06% 9.53% 6.53% | 14.53% | 13.87% bird 72.32% | 6.97% 7.40% | 17.39% | 18.34% | 33.18% | 32.30%
boat 61.82% | 8.88% 8.99% 988% | 10.08% | 10.74% | 11.79% boat 68.31% | 11.38% | 820% | 2121% | 15.10% | 32.80% | 28.90%
bottle | 40.40% | 10.00% | 9.02% | 11.10% | 12.85% | 19.17% | 21.57% bottle | 63.25% | 30.78% | 27.60% | 41.94% | 36.92% | 51.04% | 49.27%
bus 75.72% | 1.81% 2.28% 1.96% 4.06% 6.99% | 17.76% bus 70.01% | 22.12% | 22.69% | 29.89% | 29.59% | 40.96% | 37.09%
car 68.84% | 17.55% | 20.68% | 33.80% | 27.93% | 42.16% | 53.16% car 69.99% | 31.76% | 28.75% | 51.78% | 44.55% | 58.57% | 59.28%
cat 69.32% | 1.41% 1.30% 3.38% 0.81% 4.33% 8.63% cat 63.66% | 11.78% | 19.41% | 20.79% | 20.02% | 26.60% | 28.28%
chair 53.66% | 11.34% | 8.73% | 13.24% | 15.43% | 26.69% | 31.61% chair 62.76% | 31.60% | 22.76% | 39.47% | 35.55% | 46.30% | 43.53%
cow 88.91% | 10.13% | 8.38% | 10.70% | 12.25% | 13.77% | 18.14% cow 71.50% | 9.48% | 5.89% | 1685% | 14.92% | 29.01% | 30.38%
diningtable | 59.07% | 0.41% 0.44% 1.22% 1.68% 13.26% | 14.17% diningtable | 56.69% | 12.83% | 8.40% | 21.49% | 17.88% | 34.21% | 30.73%
dog 72.86% | 0.40% 1.10% 2.04% 1.39% 461% | 12.16% dog 67.87% | 14.65% | 14.34% | 28.05% | 27.30% | 45.80% | 41.93%
horse 81.13% | 1.02% | 1.52% | 1.99% | 3.32% | 11.05% | 19.22% horse 69.55% | 10.35% | 7.72% | 15.11% | 19.41% | 36.57% | 31.20%
motorbike | 75.44% | 4.81% 4.83% 5.04% | 1531% | 1997% | 32.95% motorbike | 66.16% | 11.45% | 18.43% | 29.60% | 27.54% | 48.74% | 48.04%
person | 76.06% | 19.67% | 18.65% | 43.31% | 42.52% | 46.26% | 74.49% person | 74.08% | 46.28% | 46.74% | 57.80% | 49.93% | 70.79% | 70.25%
pottedplant | 49.78% | 10.24% | 9.46% | 13.62% | 11.28% | 16.71% | 18.86% pottedplant | 60.90% | 28.59% | 24.89% | 42.28% | 38.75% | 46.29% | 43.89%
sheep | 78.06% | 10.57% | 10.31% | 13.55% | 11.66% | 16.01% | 18.74% sheep | 69.79% | 1.14% | 0.66% | 3.30% | 3.62% | 10.69% | 20.39%
sofa 61.78% | 020% | 0.23% | 257% | 1.81% | 11.82% | 12.56% sofa 57.56% | 1.36% | 6.75% | 12.25% | 12.84% | 25.06% | 21.51%
train 7822% | 0.91% 0.57% 2.89% 6.36% 6.89% | 14.62% train 70.55% | 5.60% 857% | 19.13% | 14.42% | 35.11% | 26.36%
tvmonitor | 62.88% | 3.59% 3.78% 521% 770% | 15.69% | 15.81% tvmonitor | 66.75% | 7.36% 825% | 21.25% | 16.27% | 36.82% | 23.19%
average | 68.16% | 6.40% 6.25% 9.90% 10.60% | 16.87% | 22.37% average | 67.49% | 16.88% | 16.17% | 27.33% | 25.00% | 39.95% | 37.89%
Table 9. Additional experimental results in SSD
bird (24 images), boat (10 images), bottle (14 images), sh al S c S c
. . . . ape ean uare rescent uare rescent
car (17 images), cat (10 images), chair (15 images), dog (25 P q q
. . . Area - 9,800 9,800 5,000 5,000
images), horse (20 images), person (169 images), potted- -
plant (13 images), train (10 images), and tvmonitor (18 im- bird 92.09% | 2.61% 2.44% 2.25% 2.48%
ages) ’ ’ boat 78.31% | 12.04% | 10.86% | 12.53% | 11.68%
g < bottle 76.34% | 16.04% | 7.84% 10.20% | 8.31%
Finally, we calculated the average confidence score for car 86.53% | 9.86% | 10.02% | 26.62% | 12.09%
images with the top ten bounding box sizes in the extracted cat 80.15% | 5.58% 830% | 1032% | 0.77%
classes, where remote adversarial patches were applied. chair 84.24% | 1247% | 9.23% | 19.53% | 21.71%
The experimental results are shown in Tab. 9. dog 87.89% | 0.00% 0.00% | 0.00% | 0.14%
From Tab. 9, when the size of the remote adversarial horse 86.17% | 0.00% 0.00% 0.00% 0.23%
patches is 9,800 pixels, the average confidence score for perdsoln 32?23 172'5367?; gggg" ;E?ZZ’ ngg?
. ottedplant . o . o . o . o . o
rectangular patches is 6.81%, whereas the average confi- pottecp
dence score for crescent-shaped patches is 5.72%. Addi train 93.93% | 0.91% 0.00% 4.79% 8.41%
- . 0. - .
e the cvs o ped p p e tvmonitor | 89.34% | 2.25% | 330% | 9.45% | 17.63%
tionally, when the size ot the remote adversarial patches 1s average 86.21% | 6.81% 5.72% 13.16% | 11.60%

5,000 pixels, the average confidence score for rectangular
patches is 13.16%, whereas the average confidence score
for crescent-shaped patches is 11.60%. Therefore, in SSD,

strong remote adversarial patches for large objects are cres-
cent shaped.

3.4. Experiment on Generating Dynamic Remote
Adversarial Patches

In the main paper, we conducted a theoretical analysis based
on the information diffusion model of adversarial patch ef-
fects and performed a theoretical analysis on the shape of
strong adversarial patches. In particular, the discussions
up to the previous section aimed to precalculate the shape
of strong adversarial patches based on the information dif-
fusion model, and it has been shown that the calculation
method is valid. This section demonstrates the validity
of the shape calculated based on the information diffusion
model, but with a different approach from the previous sec-
tions. Specifically, we discuss whether, when generating
remote adversarial patches dynamically similar as Chen et
al.’s method [2], it is consistent with the theory discussed
up to the previous section.

In this paper, regarding the optimization function, we
minimize the value (pixel score) obtained by adding the sum
of the 2-norm of each pixel’s RGB value to the class value
and NPS term. Specifically, in this paper, unlike the exper-
iments up to the previous section, we start learning from a
state where all RGB values are 1, and minimize

(Confidence score) + 0.01 x (NPS) + 10> x (Pixel score)
(35

The reason we did not start with all RGB values set to 0 is to

prevent the adversarial patch’s RGB values from remaining

at 0 as learning progresses, due to the threshold mentioned

later. Furthermore, the multiplier for pixel values was set to

1075 to satisfy the following two points:

* To be approximately the same as the confidence score

(about 10%).

* To make the number of non-zero pixels O (104).

In addition to the above, to reduce the less influential parts

of adversarial patches, we set a threshold p and set the RGB

values of pixels below this threshold p to 0.

In this paper, we applied the above learning method to
the person class of the VOC dataset and conducted experi-
ments under p = 0.01 and 0.02 in YOLOv2. These values
represent minor changes of two and five levels, respectively,
out of the 256 discrete levels of RGB values. For p = 0.01
and 0.02, the number of pixel with non-zero RGB values
were 54,649 and 42,845, respectively. The remote adver-
sarial patches generated for p = 0.01 and 0.02 are as shown
in Figs. 1a and b, respectively. From Figs. la and 1b, it
can be seen that the remote adversarial patches are mainly
concentrated near the center, and their shape forms part of
a circle centered on the middle of the image. Therefore,
even if the shape of the remote adversarial patch is learned
dynamically, its shape is consistent with the results of the

| (a)p =0.01

(b) p = 0.02

Figure 1. Adversarial patches dynamically generated against
YOLOV2

theoretical analysis up to the previous section. Thus, the
theoretical analysis in Sec. 3 in the main paper is valid.

4. Detailed Information for Strong Remote Ad-
versarial Patches in Autonomous Driving
Simulator

In this section, we provide detailed information in au-
tonomous driving simulator [9]. First, in Sec. 4.1, we
present the method for generating strong remote adversar-
ial patches. Next, in Sec. 4.2, we present the changes in
confidence scores between ¢ = 3.0 and 3.8.

4.1. Shapes of Remote Adversarial Patches

In this section, we give an explanation of the prepared shape
of remote adversarial patches. As demonstrated in the main
paper, we utilize four remote adversarial patches shown in
Fig. 2. Firstly, we will discuss the feasible regions for plac-
ing remote adversarial patches in Sec. 4.1.1. In particular,
we focus on explaining the placement method of the remote
adversarial patches at ¢ = 3.6. For times other than ¢ = 3.6,
we perform the placement based on the remote adversarial
patches at ¢ = 3.6. Furthermore, we will explain the method
for generating remote adversarial patches in Sec. 4.1.2. Fi-
nally, we will provide a detailed explanation of the methods
for determining the shape and learning of these remote ad-
versarial patches in Secs. 4.1.3 to 4.1.6, respectively.

4.1.1. The Feasible Regions for Placing Remote Adver-
sarial Patches

In this subsection, we will describe the feasible regions for
placing remote adversarial patches, taking into account ex-
ternal factors such as the ground or the hood of a vehicle.
The remote adversarial patches shift upwards as compared
to that considered in theoretical analysis, because of the
ground or the hood of a vehicle. Therefore, in this study,
the designated regions 0 < x < 271 and (0 < y < 104
or 311 < y < 415), reverse-engineered from the images,
are considered as the placement areas for remote adversar-
ial patches. It should be noted that the size of the remote

adversarial patches is consistently 12,800 (= 2 x 80 x 80)
pixels.

4.1.2. The Method for Generating Remote Adversarial
Patches

In this subsection, we propose a method for generating re-
mote adversarial patches for the autonomous driving simu-
lator. For the autonomous driving simulator, the generation
of remote adversarial patches is almost similar for images
from the VOC dataset [3], but there are some differences
in the training method. Specifically, the calculation method
for confidence score differs, and for each image, the follow-
ing calculation is performed:

1. The scaling factor for resizing the remote adversarial
patches is randomly set to 300/416-450/416.

2. Following the approach by Thys et al. [10], the values

for contrast and brightness to be added to the remote ad-

versarial patches are determined as follows:

e Contrast: A random value between 0.8 and 1.2,

which remains constant for the entire image.

e Brightness: A random value between —0.2 and 0.2,

which remains constant for the entire image.

Set the iteration count j to O.

4. Following the approach by Thys et al. [10], we randomly
set noise for each pixel to take a value between —0.1 and
0.1, which is added to the remote adversarial patches.

5. Transform the remote adversarial patches as

hed

(Actual patch) = (Current patch) x Contrast
+ Brightness + Noise. (36)

6. Resize the remote adversarial patches according to the
scaling factor determined in step 1 and paste it onto the
image.

7. Calculate the loss function by summing the confidence
score and 0.01 times the NPS term, and update the re-
mote adversarial patches.

8. Increment j by 1, and if j equals 10, terminate the pro-
cessing for this image. Otherwise, return to step 4.

In the above procedure, determining the optimal values for
parameters such as the scaling factor, contrast, brightness,
and noise in the aforementioned procedure is a future chal-
lenge. In particular, determining the scaling factor is a cru-
cial aspect that requires careful consideration, but we cur-
rently determine the scaling factor arbitrarily. Expanding
the range of scaling factors can increase the effective range
of the remote adversarial patches. However, it can also in-
troduce unnecessary training, creating a trade-off between
effectiveness and efficiency. Therefore, further investiga-
tion and analysis regarding the determination of the scaling
factor are of great importance for future research. The num-
ber of iterations is set to 200 epochs.

(a) Shapel

(b) Shape2 (c) Shape3 (d) Shape4

Figure 2. Prepared shapes of adversarial patches for the au-
tonomous driving simulator. These adversarial patches have been
simulated taking into account the influence of streetlight.

4.1.3. Fig. 2a

Fig. 2a depicts a scenario where two square remote adver-
sarial patches are placed on the ground. The remote adver-
sarial patches on the left and right sides are both 80x 80 in
size. During training, these remote adversarial patches are
positioned such that their vertical center lines pass through
the center of the image, similar to Sec. 4 in the main pa-
per. When pasting these remote adversarial patches onto the
simulator image, they are positioned just above the ground,
specifically with the lower edge at x = 272, and aligned
closer to the boundary on the side of the image where the
remote adversarial patches are placed.

4.1.4. Fig. 2b

Fig. 2b depicts a scenario where two crescent-shaped re-
mote adversarial patches are placed on the ground. During
training, these remote adversarial patches are selected in or-
der of proximity to the center, with a total of 12,800 pix-
els chosen. When pasting these remote adversarial patches
onto the simulator image, they are positioned just above
the ground, specifically with the lower edge at x = 272,
and aligned closer to the boundary on the side of the image
where the remote adversarial patches are placed.

4.1.5. Fig. 2¢

Fig. 2c represents a rectangular remote adversarial patches

that satisfy the following requirements:

* The shape of the remote adversarial patches is nearly rect-
angular.

* The remote adversarial patches are positioned on the
ground, meaning that z < 272.

* The remote adversarial patches do not go off-screen in
the next frame. In this study, the horizontal limits of the
region where the remote adversarial patches can exist are
setas 45 <y < 104 or 311 < gy < 370.

* The remote adversarial patches are selected in order of
proximity to the area where people pass. In this study,
the pixels of the remote adversarial patches are chosen in
order of proximity to the center at z = 226.0.

4.1.6. Fig. 2d

Fig. 2d represents a crescent-shaped remote adversarial
patches that satisfy the following requirements:

Confidence Score (%)

3 3.1 3.2 3.3 3.4 3.5 36 3.7 3.8
Time (s)

—8— Clean —8—S5hapel - -Shape2 Shape3 —#—Shaped —@—Threshold

Figure 3. Confidence score for the autonomous driving simulator
in YOLOv2

£ 60
> a
o
s’
v
@
o
c
@
=
g
(»]
3 31 3.2 33 3.4 3.5 3.6 3.7 3.8
Time (s)
—&8—Clean —®—Shapel Shape2 Shape3 —#—Shape4 —@—Threshold

Figure 4. Confidence score for the autonomous driving simulator
in SSD

e The shape of the remote adversarial patches is nearly
crescent-shaped.

e The remote adversarial patches are positioned on the
ground, meaning that z < 272.

e The remote adversarial patches do not go off-screen in
the next frame. In this study, the horizontal limits of the
region where the remote adversarial patches can exist are
setas 45 <y < 104 or 311 <y < 370.

* The remote adversarial patches are selected in order of
proximity to the area where people pass. In this study, the
pixels of the remote adversarial patches are chosen in or-
der of proximity to the center at (z,y) = (226.0, 208.0).

4.2. Additional Experimental Results

The changes in confidence scores are as shown in Figs. 3
and 4, and the generated remote adversarial patches have
attack capabilities.

References

[1] Models and pre-trained weights — torchvision main doc-
umentation. https://pytorch.org/vision/

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

(11]

master /models . html. [Online; accessed 19-Feb-
2024]. 5

Zhaoyu Chen, Bo Li, Shuang Wu, Jianghe Xu, Shouhong
Ding, and Wengiang Zhang. Shape matters: deformable
patch attack. In Computer Vision—-ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part IV, pages 529-548. Springer, 2022. 8
Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. In-
ternational journal of computer vision, 111:98-136, 2015.
9

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(2):318-327,2018. 1,3, 5

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In Computer
Vision—-ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part I 14, pages 21-37. Springer, 2016. 1, 3,4, 5

Kento Oonishi, Tsunato Nakai, and Daisuke Suzuki. Mul-
tiple remote adversarial patches: Generating patches based
on diffusion models for object detection using CNNs. In
NeurlPS ML Safety Workshop, 2022. 3, 4

Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster,
stronger. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6517-6525. IEEE, 2017.
1,3

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In Proceedings
of the 2016 acm sigsac conference on computer and commu-
nications security, pages 1528-1540, 2016.

Koichi Shimizu, Daisuke Suzuki, Ryo Muramatsu, Hisashi
Mori, Tomoyuki Nagatsuka, and Tsutomu Matsumoto. Eval-
uation framework for performance limitation of autonomous
systems under sensor attack. In Computer Safety, Reliability,
and Security: 40th International Conference, SAFECOMP
2021, York, UK, September 8-10, 2021, Proceedings 40,
pages 67-81. Springer, 2021. 8

Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fool-
ing automated surveillance cameras: Adversarial patches to
attack person detection. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 49-55. IEEE, 2019. 9

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627-9636, 2019. 1, 3,5

https://pytorch.org/vision/master/models.html
https://pytorch.org/vision/master/models.html

	The Composition of the Supplementary Materials
	Detailed Information for Analysis of Spreading Adversarial Patch's Effect
	Full Proof of Theroems
	Proof of th:diffusion
	Proof of th:apprdiffusion

	A Method for Calculating Optimal Shape of Remote Adversarial Patches in Actual CNNs
	YOLOv2 RF2017
	SSD LAE2016
	RetinaNet LGG2018, and FCOS TSC2019

	Detailed Information for Evaluation of Strong Remote Adversarial Patches
	Detailed Experimantal Results for Bounding Boxes
	Detailed Experimantal Results for Confidence Score
	Strong Remote Adversarial Patches in Cases of Detecting Large Objects with SSD
	Experiment on Generating Dynamic Remote Adversarial Patches

	Detailed Information for Strong Remote Adversarial Patches in Autonomous Driving Simulator
	Shapes of Remote Adversarial Patches
	The Feasible Regions for Placing Remote Adversarial Patches
	The Method for Generating Remote Adversarial Patches
	fig:mode1
	fig:mode2
	fig:mode3
	fig:mode4

	Additional Experimental Results

