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6. Robust Uncertainty Scaling for UAAL

Robustness is a key design goal in our Uncertainty-Aware
Active Learning (UAAL) method. In the main paper,
we demonstrated robustness across various active learning
(AL) methods and datasets. In this supplementary paper,
we further investigate the robustness of hyperparameter se-
lection for our uncertainty scaling (Eq. 6). We dive into the
impact of using different exponents E in the scaling and ex-
amine the robustness of our scaling against its hyperparam-
eter η. We also present the detailed scheduling functions
employed in our method. If not stated otherwise we follow
the same training setup as described in Sec. 4.1.

6.1. Exponent Effect on Scaling Factors

Our scaling S relies on a power factor P to give more
weight to higher uncertainty values (refer to Sec. 3.2 for
details). Fig. 6 illustrates the result of different exponent
values P on the scaling, highlighting the increased empha-
sis on higher uncertainties for increasing exponent values.
As can be seen in those images, larger exponent scaling re-
duces the focus to few regions with the highest uncertainty
(right), while lower exponent values keep a good general
focus on diverse areas (left). To extend beyond qualitative
observations, we engage in further quantitative analyses to
evaluate the benefits of emphasizing higher uncertainty val-
ues through exponents and to determine the optimal degree
of emphasis. In this context, we perform a series of ex-
periments that combine Entropy-based AL with our UAAL
scaling on the CityScapes [10] dataset. These experiments
are conducted using four distinct power values. The find-
ings, which are collated in Tab. 5, reveal that an exponent
of 2 (i.e. square operation) strikes an ideal balance by ac-
centuating high uncertainty values without excessive ampli-
fication.

Figure 6. Uncertainty scaling maps for low, medium and high ex-
ponent values (left to right), showing increased emphasis on fewer
regions with increasing power. Images resized to 1:1 aspect ratio.

Budget B
Exponent E for S

1 2 3 5

10 % 67.53±0.51 67.95±1.81 66.45±1.48 65.70±0.97
20 % 71.86±0.20 72.03±0.55 71.31±0.85 70.41±0.38

Table 5. Prediction quality (mIoU) of a ResNet-50 [21]
DeepLabv3+ [7] with Entropy + UAAL using different exponent
values E for the scaling on two budgets of the CityScapes [10]
dataset. An exponent of 2 performs best.

6.2. Noise Level Robustness

Robustness against hyperparameters is crucial for active
learning methods to find informative data even in previously
unknown conditions. This section discusses both the the-
oretical motivation for scaling using noise magnitude and
evaluates the impact of different noise magnitudes with the
scaling.

6.2.1. Theoretical Foundation

Starting from Eq. 1, and using again the normalized noise
∆θk = η∥θ∥n̄ the variance after the perturbation can be
defined as:

σ2 = Var(f(θ +∆θ, x)) (9)

The perturbation is expected to only cause a minor change
in output if chosen sufficiently small. Hence, the output
change can be expressed as a first order Taylor expansion
around the original parameters:

f(θ +∆θ, x) ≈ f(θ, x) +∇θf(θ, x) ·∆θ (10)

Var(f(θ+∆θ, x)) ≈ Var(f(θ, x)+∇θf(θ, x) ·∆θ) (11)

Now, the variance of the output is the variance of this per-
turbation:

Var(f(θ +∆θ, x)) ≈ Var(∇θf(θ, x) ·∆θ) (12)

Replacing ∆θ with its components and extracting η, we get

Var(f(θ+∆θ, x)) = σ2 ≈ η2Var(∇θf(θ, x) ·∥θ∥n̄) (13)

6.2.2. Empirical Evaluation

To test our approach’s robustness against its hyperparameter
kernel noise magnitude η (see Eq. 6), we run a study on
its impact on a DeepLabv3+ [7] with RN50 [21] backbone
across various noise levels on both the ADE20K [53] and
CityScapes [10] dataset. The results for both 10 % and 20 %
data are summarized in Tab. 6. As can be seen there, neither



noise magnitude dominates. Despite changing η more than
an order of magnitude (up to ×50 difference), the method
does not result in failure of the training and still improves
over the baseline, showcasing the robustness of our method
towards the hyperparameter η.

Budget B
CityScapes

η = 0.001 η = 0.005 η = 0.01 η = 0.05

10% 66.97±0.21 67.57±1.27 68.30±0.39 67.51±0.68
20% 71.52±0.58 71.51±0.45 71.54±0.81 72.19±0.26

ADE20K

η = 0.001 η = 0.005 η = 0.01 η = 0.05

10% 25.20±0.52 24.90±0.05 24.94±0.16 25.25±0.28
20% 30.79±0.25 30.66±0.73 30.70±0.23 30.41±0.28

Table 6. Entropy + UAAL prediction quality (mIoU) using
different noise magnitudes η for 10 % and 20 % budget on
CityScapes [10] and ADE20K [53]. No η dominates, choice can
matter in 10 % data regime.

6.3. Scheduler Functions

This section provides an in-depth look at the uncertainty
scheduling functions α employed in our experiments. In
particular, we use three categories of scheduling strategies,
each with an intuitive rationale for potentially enhancing
model performance: increasing, decreasing and combined.
The increasing strategies start with a lower influence of un-
certainty early in training, gradually raising it as the model
learns the target task.
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Conversely, decreasing strategies begin with a higher em-
phasis on uncertainty, which diminishes over time to focus
on the target task, avoiding the neglect of less uncertain re-
gions.

Lin. decr.: αld(epoch) = 1−
epoch

epochmax

(A3)
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This final strategy combines the increasing and decreasing
strategies, initially elevating and then reducing the influence
of uncertainty, aiming for a balanced focus throughout train-

ing.
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7. Detailed ADE20K Results

In Sec. 4.2 we presented in-depth results for our AL exper-
iments for CityScapes data. This section provides the sec-
ond half of the presented results for the ADE20K dataset.
If not stated otherwise we follow the same training setup as
described in Sec. 4.1. The results for the ADE20K dataset
on the 10 % and 20 % budget B are summarized in Tab. 7.
The overall pattern for ADE20K mirrors our findings from
CityScapes, showing superior performance with our UAAL
method in most scenarios. Given that ADE20K is a more
challenging benchmark, it is harder for AL methods to ex-
ceed the random selection baseline. Despite these chal-
lenges, UAAL showcases its robustness and scalability by
effectively managing the complexity and achieving perfor-
mance gains. For example, the Xc65 model combined with
MC-Dropout observed a 2.22 p.p. increase over the base-
line. Moreover, when UAAL was paired with the Entropy
method on the Xc65 model, it surpassed the random base-
line - a feat that the standard Entropy AL method did not
accomplish. These results highlight the effectiveness of
UAAL in enhancing model performance, even in more de-
manding datasets.

8. Additional Images for Qualitative Analysis

In this supplementary section, we provide additional exam-
ples to extend the qualitative analysis presented in Sec. 4.4
of the main content. These additional examples (Fig. 7) fur-
ther illustrate the improvements brought by our UAAL ap-
proach in terms of uncertainty map clarity and provide a
more crowded scene. Like in the main content, the compar-
isons between standard training and our UAAL approach
consistently show enhanced clarity in the uncertainty maps
for the majority of cases, particularly around edges and
small details. Looking into the specific AL approaches, we
observe superior results when using our UAAL method with
Entropy [24] and MC-Dropout [16] and only fall slightly
behind when applied to Noise Stability [28] in combination
the large Xc65 as can be seen on the very right of the figure.



Data Selection
Method

Training
Method

ADE20K (B = 10%) ADE20K (B = 20%)

MobileNetV3 ResNet-50 Xception-65 MobileNetV3 ResNet-50 Xception-65

Random standard 16.87±0.20 25.55±0.19 26.02±0.17 21.03±0.19 30.35±0.59 31.09±0.22

Entropy [24]
standard 17.66±0.29 24.62±0.42 25.92±0.19 21.93±0.27 30.26±0.13 31.31±0.47

UAAL (ours) 17.75±0.45 24.94±0.16 27.04±0.51 22.02±0.34 30.70±0.23 32.13±0.28

MC-Dropout [16]
standard 15.81±0.32 20.23±0.80 24.04±0.43 20.37±0.35 24.27±1.02 30.50±0.49

UAAL (ours) 15.47±0.24 22.44±1.23 23.98±0.16 20.74±0.65 26.44±1.53 30.32±0.66

Noise Stability [28]
standard 15.51±0.38 21.00±0.71 23.82±0.57 20.21±0.05 27.98±0.13 29.67±0.36

UAAL (ours) 15.62±0.15 21.74±0.47 23.45±0.44 20.20±0.24 27.96±0.37 29.58±0.36

Table 7. Evaluation of image-level uncertainty active learning methods at 10 % and 20 % data budget B for MobileNetV3, ResNet-50, and
Xception-65 model variants on the ADE20K dataset with and without our UAAL training.

Uncertainty MobileNetV3 ResNet-50 Xception-65
maps Entropy Dropout Noise Entropy Dropout Noise Entropy Dropout Noise

vanilla
training

UAAL
training
(ours)

vanilla
training

UAAL
training
(ours)

Figure 7. Qualitative comparison of uncertainty maps produced by MobileNetV3, ResNet-50 and Xception-65 DeepLabv3+ variants on
two example CityScapes images using standard training (top row) and our UAAL enhanced training (bottom row), showing that the clarity
of the uncertainty map improves with our method across all uncertainty methods. Some improvements are pointed out with red arrows.
Only in one case our method fails to improve the quality. Images are reshaped to 1:1 aspect ratio for space efficiency.


