
Cross-Modal Consistency Learning for Sign Language Recognition

Supplementary Material

A. Framework Implementation
In this section, we describe the details of the pose data ex-

traction, the encoder architecture in the pose branch and

data preprocessing.

A.1. Pose Keypoint Extraction.
We employ RTMPose-x [22] from MMPose to extract 133

whole-body keypoints, which provide detailed spatial in-

formation for subsequent pose analysis. The visualiza-

tion of whole-body keypoints are shown in Figure 7. We

select 75 keypoints and divide the keypoints into several

sub-pose (left hand, right hand, face, mouth, and body).

We select the indices for the left hand ({92-112}), right

hand ({113-133}), face ({24-41, 54}), mouth ({84-92}) and

body ({0,5,7,9,6,8,10}) to represent each group (denoted as

Gr, r ∈ {LH,RH,F,M,B}).

A.2. Encoder of Pose Branch.
We utilize a GCN+Transformer architecture [50] as the pose

branch encoder. Specifically, four ST-GCN modules [41]

are employed to extract group-specific features vr from

pose group Gr, where the left and right hands share the same

module for feature extraction. The extracted 512 dimension

features are then concatenated into manual features vman

and non-manual features vnon:

vman = Concat([vLH ,vRH ,vB ]), (15)

vnon = Concat([vF ,vM ]), (16)

where vLH , vRH , vB , vF , and vM represent features from

left hand, right hand, body, face, and mouth, respectively.

To model temporal relationships, two separate 3-block 8-

head Transformers (Tman and Tnon) are leveraged to pro-

cess these features and generate the final pose embedding:

v = Concat([Tman(vman), Tnon(vnon)]), (17)

where final pose embedding v is 1024 dimensions.

A.3. Data Preprocessing.
For data preprocessing, we select aforementioned 75 key-

points for pose input per frame and resize all RGB frames

to 224 × 224. For computational efficiency, we uniformly

sample T = 32 frames from each sequence.

A.4. Data Augmentation
For the query and key samples, we ensure consistency in hy-

perparameters during data augmentation while performing

the process independently. For random temporal cropping,

Figure 7. The visualization of the whole-body 133 keypoints from

[23].

we first apply continuous temporal cropping to the input se-

quence, randomly extracting a clip from the interval [lT, T ]
frames. Subsequently, we uniformly sample a fixed number

of K frames from the cropped interval. In our approach, we

set l = 0.1 and K = 64.

B. Visualization of Motion-Preserving Mask-
ing

As shown in Fig. 8 and Fig. 9, the generated motion-

preserving videos effectively suppress static regions while

highlighting motion areas. Furthermore, since motion-

preserving videos significantly alter the pixel distribution

of the original videos, we further generate binary motion-

preserving mask sequences from the motion-preserving

videos. These mask sequence are applied to mask origi-

nal videos, explicitly mitigating static information redun-

dancy in RGB modality. The visualizations indicate that

MPM preserves semantically informative regions such as

hand and facial features, while effectively suppressing se-

mantically irrelevant areas including clothing textures and

background elements, enhancing the cross-modal feature

alignment between pose and RGB representations.



(b) Label: understand

Original 
video

Motion-Preserving video

Mask
sequence

Masked
video

(a) Label: good

Original 
video

Motion-Preserving video

Mask
sequence

Masked
video

Figure 8. The visualizations of motion-preserving masking.



Original 
video

Motion-Preserving 
video

Mask
sequence

Masked
video

Original 
video

Motion-Preserving 
video

Mask
sequence

Masked
video

(a) Label: wow

(b) Label: yes

Figure 9. The visualizations of motion-preserving masking.


