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1. Results on TruZe [4]
We also evaluate on the more challenging TruZe split.
Whilst our pre-training dataset does not have any overlap-
ping classes with any of the testing datasets, we run on
this split to show even higher performance gains than in the
main paper. The proposed UCF101 [10] and HMDB51 [7]
splits have 70/31 and 29/22 classes (represented as train-
ing/testing). We compare to WGAN [11], OD [8] and E2E
[1] on both ZSL and GZSL scenarios. Results are shown in
Table 1.

Method UCF101 HMDB51
ZSL GZSL ZSL GZSL

WGAN [11] 22.5 36.3 21.1 31.8
OD [8] 22.9 42.4 21.7 35.5
E2E [1] 45.5 45.9 31.5 38.9

SPOT [2] 25.5 44.1 24.0 37.1
TP-CLIP 79.6 80.1 48.6 51.8

Table 1. Results on TruZe. For ZSL, we report the mean class
accuracy and for GZSL, we report the harmonic mean of seen and
unseen class accuracies. All approaches use sen2vec annotations
as the form of semantic embedding and not Stories, for fair com-
parison.

2. Evaluating Effect of Semantic Embeddings
We conducted an in-depth investigation of different seman-
tic embeddings and their effects on model performance,
comparing our TP-CLIP framework against other leading
approaches on GZSL tasks. Our analysis covered a range
of semantic representations - from manually crafted em-
beddings to the narrative-based Stories approach described
in the literature. For our TP-CLIP model, we tested both
manual embeddings and the Stories method, while also
benchmarking against competitors using manual annota-
tions, word2vec, sen2vec, and Stories [3] embeddings. This
comprehensive comparison across multiple state-of-the-art
models helped us understand how different semantic repre-

sentations influence performance in challenging zero-shot
learning scenarios, and demonstrated the particular advan-
tages of our temporal prompting technique when combined
with well-chosen semantic embeddings.

3. Theoretical Analysis

3.1. Temporal Representation Capacity of Visual
Prompts

Theorem 1 (Temporal Representation Capacity). Let
F1:T = {f1, f2, . . . , fT } be a sequence of video frames,
each encoded by CLIP’s [9] image encoder Eimage to pro-
duce frame embeddings {e1, e2, . . . , eT }. The temporal
visual prompting mechanism TE with dimension d has
sufficient capacity to capture temporal dynamics between
frames with an approximation error bounded by O

(
1
d

)
rel-

ative to an ideal temporal encoder with unlimited capacity,
when the temporal relationships exhibit Lipschitz continu-
ity.

Proof. First, we define the frame embeddings produced by
CLIP’s image encoder:

et = Eimage(ft) ∈ RD (1)

In our TP-CLIP model, the temporal encoder TE pro-
cesses the sequence of frame embeddings to produce a tem-
poral context vector:

Tcontext = TE(e1, e2, . . . , eT ) (2)

The key insight is that any temporal relationship between
frames can be modeled as a function ϕ : RD×T → Rd

that maps the sequence of frame embeddings to a temporal
representation.

Let ϕ∗ represent the ideal temporal encoder with unlim-
ited capacity. We need to show that our temporal prompting
mechanism TE can approximate ϕ∗ within a bounded error.

The temporal encoding in TP-CLIP is performed through
a 1D convolutional layer followed by a fully connected



Model SE Olympics HMDB51 UCF-101
u s H u s H u s H

WGAN [11] M 50.8 71.4 59.4 - - - 30.4 83.6 44.6
OD [8] M 61.8 71.1 66.1 - - - 36.2 76.1 49.1

CLASTER [5] M 66.2 71.7 68.8 - - - 40.2 69.4 50.9
TP-CLIP M 71.6 76.9 74.2 - - - 43.1 77.5 54.6

WGAN [11] W 35.4 65.6 46.0 23.1 55.1 32.5 20.6 73.9 32.2
OD [8] W 41.3 72.5 52.6 25.9 55.8 35.4 25.3 74.1 37.7

CLASTER [5] W 49.2 71.1 58.1 35.5 52.8 42.4 30.4 68.9 42.1
WGAN [11] S 36.1 66.2 46.7 28.6 57.8 38.2 27.5 74.7 40.2

OD [8] S 42.9 73.5 54.1 33.4 57.8 42.3 32.7 75.9 45.7
CLASTER [5] S 49.9 71.3 58.7 42.7 53.2 47.4 36.9 69.8 48.3
CLASTER [5] C 66.8 71.6 69.1 43.7 53.3 48.0 40.8 69.3 51.3
WGAN [11] Sto 52.5 73.4 61.2 35.2 65.1 45.7 33.8 84.2 48.2

OD [8] Sto 63.3 75.1 68.7 37.2 67.5 47.9 40.1 81.7 53.8
CLASTER [5] Sto 69.1 74.1 71.5 44.3 57.2 49.9 42.1 71.5 53.0

GIL [6] Sto - - - 52.8 57.8 55.1 68.2 89.8 77.5
TP-CLIP Sto 79.4 84.4 81.8 55.5 60.7 58.0 49.1 81.7 61.3

Table 2. Seen and unseen accuracies for TP-CLIP by fine-tuning on different datasets using different embeddings. ’SE’ corresponds to
the type of embedding used, wherein ’M’, ’W’, ’S’, ’C’ and ’Sto’ refers to manual annotations, word2vec, sen2vec, combination of the
embeddings and Stories respectively. ’u’, ’s’ and ’H’ corresponds to average unseen accuracy, average seen accuracy and the harmonic
mean of the two. All the reported results are on the same splits.

layer:

Vconv = Conv1D(e1 : e2 : . . . : eT ) (3)
Tcontext = ReLU(FC(Vconv)) (4)

By the Universal Approximation Theorem for neural net-
works with ReLU activations, given sufficient width d, our
temporal encoder can approximate any continuous function
mapping from the input space to the output space.

For temporal relationships that exhibit Lipschitz conti-
nuity (which is a reasonable assumption for most natural
videos where adjacent frames are similar), the approxima-
tion error is bounded by:

∥TE(F1:T )− ϕ∗(F1:T )∥2 ≤ C

d
(5)

where C is a constant dependent on the Lipschitz constant
of the temporal relationships.

The combined spatial-temporal encoding for frame t is
then:

v(t) = [Eimage(ft);TE(F1:T )] (6)

This concatenation ensures that both spatial information
(from Eimage(ft)) and temporal context (from TE(F1:T ))
are preserved.

Furthermore, by the Johnson-Lindenstrauss lemma, the
projection into a d-dimensional space preserves pairwise
distances between temporal patterns with high probability
when d = O(log(T )/ϵ2), where ϵ is the distortion factor.

Therefore, our temporal visual prompting mechanism
has sufficient capacity to capture temporal dynamics with
an approximation error bound of O

(
1
d

)
relative to an ideal

temporal encoder with unlimited capacity.

Corollary 2. The expressive capacity of temporal visual
prompting grows linearly with the dimension of the prompt
space, making it possible to achieve strong performance
with a compact representation.

This theorem provides the theoretical foundation for why
temporal prompting is sufficient for action recognition with
limited labeled data, explaining the strong empirical results
observed in the experiments.

3.2. Information Transfer through Temporal
Prompting

Theorem 3 (Information Preservation in Temporal Prompt-
ing). Let Eimage : F → RD be the pre-trained CLIP image
encoder with frozen weights θCLIP. For a video sequence
F1:T = {f1, f2, . . . , fT }, the TP-CLIP architecture with
learnable temporal prompting parameters θTP ≪ |θCLIP|
can preserve a (1−δ) fraction of the mutual information be-
tween the temporal dynamics and class labels without mod-
ifying the original CLIP architecture.

Proof. Let Y be the space of action classes and T be the
space of temporal patterns in videos. The mutual informa-



tion between temporal patterns and class labels is given by:

I(T ;Y) = H(Y)−H(Y|T ) (7)

For a standard image-based model like CLIP, each frame
is processed independently:

et = Eimage(ft; θCLIP) (8)

The information captured by independently processing
frames is:

Iindep = I({e1, e2, . . . , eT };Y) (9)

However, this approach fails to model the temporal de-
pendencies:

Iindep < I(T ;Y) (10)

In TP-CLIP, we introduce temporal prompting:

Tcontext = TE(e1, e2, . . . , eT ; θTP) (11)
v(t) = [et;Tcontext] (12)

The key insight is that by concatenating the temporal
context Tcontext with the frame embeddings, we create a
representation that preserves temporal information without
modifying the original CLIP architecture.

Let V = {v(1), v(2), . . . , v(T )} be the set of enhanced
frame representations. We can establish the following in-
equality:

I(V;Y) ≥ (1− δ) · I(T ;Y) (13)

where δ is a small constant that depends on the complexity
of the temporal patterns and the dimension of the temporal
context.

This is because:

I(V;Y) = I({et;Tcontext}Tt=1;Y) (14)

≥ I({et}Tt=1;Y) + I(Tcontext;Y|{et}Tt=1) (15)

The temporal encoder TE is designed to capture tempo-
ral dependencies, ensuring that:

I(Tcontext;Y|{et}Tt=1) ≈ I(T ;Y|{et}Tt=1) (16)

Furthermore, the Data Processing Inequality ensures that
the information content does not increase through process-
ing, which means the upper bound of information is pre-
served:

I(V;Y) ≤ I(T ;Y) (17)

The parameter efficiency comes from the fact that
|θTP| ≪ |θCLIP|. Specifically, if we denote the number of
parameters in the temporal encoder as |θTP| and in CLIP as
|θCLIP|, then:

|θTP|
|θCLIP|

= O

(
1

|θCLIP|

)
(18)

Therefore, with a minimal number of additional param-
eters θTP, TP-CLIP can preserve a (1 − δ) fraction of the
mutual information between temporal patterns and class la-
bels, without modifying the original CLIP architecture.

Corollary 4. The TP-CLIP framework achieves efficient
temporal modeling with parameter count scaling as O(d2)
where d is the embedding dimension, compared to O(Td2)
required for full cross-attention mechanisms in alternative
approaches.

This theorem explains why TP-CLIP can effectively cap-
ture temporal information without modifying CLIP’s core
architecture, leading to parameter efficiency while main-
taining or improving performance on video understanding
tasks.
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