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Supplementary Material

Here, we explain things in details about pretext task, ar-
chitecture setup, provide some more results and include more
visual analysis. We also include tables which we were not
able to include in main paper due to space limitations.
• Section 7: describes challenges and future work based on

our study.
• Section 8: Pretext tasks explanation used in our analysis.
• Section 9: Training details about architectures, datasets,

and, other hyperparameters.
• Section 10: We show additional CKA maps, more results

on HMDB51 dataset and more analysis on noise robust-
ness. We added some tables for Knowledge distillation
experiments that were promised in the main paper.

• Section 11: We extend the main table and compare with
previous state-of-the-art results on HMDB51 dataset.

7. Challenges and future work
There are several key challenges in video SSL and we believe
1) long-term video understanding, 2) multi-modal learning,
and 3) robust learning are some of the less studied aspects.
The novel insights in our study regarding training dataset
size, model architectures, and robustness will play a crucial
role in guiding future work on these research directions.

8. Pretext Tasks Details
In this section, we go through each pretext task in more
detail that are used in our main work for analysis.

8.1. Spatial Transformation

Rotation Net [34] (RotNet) applies geometrical transfor-
mation on the clips. The videos are rotated by various angles
and the network predicts the class which it belongs to. Since
the clips are rotated, it helps the network to not converge to
a trivial solution.

Contrastive Video Representation Learning [56] (CVRL)
technique applies temporally coherent strong spatial aug-
mentations to the input video. The contrastive framework
brings closer the clips from same video and repels the clip
from another video. With no labels attached, the network
learns to cluster the videos of same class but with different
visual content.

8.2. Temporal Transformation

Video Clip Order Prediction [85] (VCOP) learns the
representation by predicting the permutation order. The
network is fed N clips from a video and then it predicts the
order from N! possible permutations.

Temporal Discriminative Learning [78] (TDL) In con-
trast to CVRL, TDL works on temporal triplets. It looks
into the temporal dimension of a video and targets them as
unique instances. The anchor and positive belongs to same
temporal interval and has a high degree of resemblance in
visual content compared to the negative.

8.3. Spatio-Temporal Transformation

Playback Rate Prediction [88] (PRP) has two branch,
generative and discriminative. Discriminative focuses on
the classifying the clip’s sampling rate, whereas, generative
reconstructs the missing frame due to dilated sampling. Thus,
the first one concentrates on temporal aspect and second one
on spatial aspect.

Relative Speed Perception Network [10] (RSPNet) ap-
plies contrastive loss in both spatial and temporal domain.
Clips are samples from a same video to analyze the relative
speed between them. A triplet loss pulls the clips with same
speed together and pushes clips with different speed apart in
the embedding space. To learn spatial features, InfoNCE loss
[76] is applied. Clip from same video are positives whereas
clips from different videos are negatives.

Video MAE [73] (V-MAE) applies a spatio-temporal tube
masking to the input video. The pretext task is to reconstruct
those missing tubes. Mean-squared error loss is applied
between the masked tokens and the reconstructed tokens.

9. Implementation Details
9.1. Architecture Details
Preliminary research has shown that 3D networks [27, 75]
have outperformed 2D CNN variants on video recognition
tasks. We looked into three types of capacity - small, medium
and big on the basis of number of trainable parameters. The
architecture details of all networks are mentioned in supple-
mentary.
Small capacity networks: are resource efficient, imply-
ing they can be trained in larger batches within short span



of time. The network selection is done on the basis of su-
pervised training scores on Kinetics[35] and UCF101[38].
ShuffleNet V1 2.0X [89] utilizes point-wise group convolu-
tions and channel shuffling. SqueezeNet [31] reduces the
filter size and input channels to reduce the number of param-
eters. MobileNet [61] has ResNet like architecture. With its
depthwise convolution, there’s a reduction in model size and
the network can go more deep.
Medium capacity networks: Following the conventional
3D architectures for self-supervised learning approaches
C3D, R21D and R3D are used in this study.
Big Capacity networks: Comparing across four trans-
former architectures, ViViT [5] Timesformer [8], VideoSwin
[47] and MViT [18], we selected VideoSwin, because it
outperforms others on Kinetics 400 dataset.

Based on [38], we probed into the performance compari-
son of several versions of these architectures. We choose 3D-
ShuffleNet V1 2.0X, 3D-SqueezeNet, and 3D-MobileNet
V2 1.0X networks based on their performance on Kinetics
and UCF-101 dataset
3D-ShuffleNet V1 2.0X [89]: It utilize point-wise group
convolutions and channel shuffling and has 3 different stages.
Within a stage, the number of output channel remains same.
As we proceed to successive stage, the spatiotemporal dimen-
sion is reduced by a factor of 2 and the number of channels
are increased by a factor of 2. V1 denotes version 1 of Shuf-
fleNet and 2.0X denotes the 2 times number of channels
compared to original configuration.
3D-SqueezeNet [31]: It uses different alteration to reduce
the number of parameters as compared to the 2D version
which employs depthwise convolution. Those three mod-
ifications are: 1) Change the shape of filters from 3x3 to
1x1, 2) Input channels to 3x3 filters is reduced, and, 3) to
maintain large activation maps high resolution is maintained
till deep layers.
3D-MobileNet V2 1.0X [61]: This network employs skip
connections like ResNet architecture in contrast to version
1. It helps the model in faster training and to build deeper
networks. There are also linear bottlenecks present in the
middle of layers. It helps in two ways as we reduce the
number of input channels: 1) With depthwise convolution,
the model size is reduced, and 2) at inference time, memory
usage is low. V2 denotes version 2 of mobilenet and 1.0X
uses the original parameter settings.

The architectures of medium capacity networks are de-
scribed as follows:
C3D [74]: This follows a simple architecture where two
dimensional kernels have been extended to three dimensions.
This was outlined to capture spatiotemporal features from
videos. It has 8 convolutional layers, 5 pooling layers and 2
fully connected layers.
R3D [27]: The 2D CNN version of ResNet architecture is
recasted into 3D CNNs. It has skip connections that helps

make the gradient flow better as we build more deeper net-
works.
R(2+1)D [75]: In this architecture, 3D convolution is bro-
ken down into 2D and 1D convolution. 2D convolution is in
spatial dimension and 1D convolution is along the temporal
dimension. There are two benefits of this decomposition:
1) Increase in non-linearity as the number of layers have
increased, and, 2) Due to factorization of 3D kernels, the
optimization becomes easier.
VideoSwin [47] It is an inflated version of original Swin
[46] transformer architecture. The attention is now spatio-
temporal compared to previous which is only spatial. 3D
tokens are constructed from the input using patch partition
and sent to the network. The architecture includes four stages
of transformer block and patch merging layers.

9.2. Original and Noise Datasets

We have shown the examples of each dataset used in the
paper in Fig. 6.

The test datasets have different number of videos for
different levels and types of noises. For Gaussian noise, we
manipulated all 3783 samples. For noise level 1, apart from
Gaussian, we had roughly 400 samples and all other levels of
severity, we have approximately 550 samples. An example
of each type of noise is shown in Fig. 7.

9.3. Pretext Tasks Configurations

Here, we briefly describe the configurations used in our
training. For VCOP, RotNet and PRP, we just manipulated
the type of augmentation from the original work. We applied
Random Rotation, Resizing, Random Crop, Color Jittering
and Random Horizontal Flipping to the input clip. CVRL has
some extra data augmentation compare to the previous ones
we mentioned. It includes grayscale and gamma adjustment
as well. RSPNet also uses some temporal augmentation. For
finetuning the augmentations are Resize and Center Crop for
all the approaches.

The k-value for Momentum contrastive network is 16384
for RSPNet, it’s 500 for TDL.

9.4. Datasets

Here we discuss datasets in detail. We use Kinetics-400
(K400) [35] and Something-Something V2 [24] for our pre-
training. For the downstream task evaluation, we perform
our experiments on UCF-101 [67], HMDB-51 [40], and Div-
ing48 [45]. Since, the pretraining and finetuning datasets
are different, the performance variation will provide us a
better picture about how much meaningful spatiotemporal
features are learned by these networks. K400 has approx-
imately 240k videos distributed evenly across 400 classes
respectively. The approximate number of videos in fine-
tuning datasets are: 1) UCF101-10k, 2) HMDB51-7k, and,
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Figure 6. Example sample from each dataset.

Figure 7. Example frame sample for each noise Gaussian, Impulse, Shot and Speckle from left to right. Sample clips are provided in
supplementary.

3)Diving48-16k. The datasets can be categorized into two
ways:
Appearance-based: Kinetics, UCF101 and HMDB51
comes under this category [12, 29]. Kinetics videos length
are generally 10s centered on human actions. It mainly
constitutes singular person action, person-to-person actions
and person-object action. For pre-training, we select a ran-
dom subset of videos and maintain equal distribution from
each class. Unless otherwise stated, pre-training is done on
K400-50k subset for all experiments.
Temporal-based: In Kinetics, we can estimate the action by
looking at a single frame [12, 29]. From Fig. 6, top two rows,
we can see the person with a javelin and basketball. This
information helps in class prediction. Looking at bottom two
rows (SSv2 and Diving48 respectively), we can’t describe
the activity class until we look into few continuous frames. It
shows that temporal aspect plays an important role for these
datasets, that’s why we categorize them into temporal-based
datasets.
UCF-101 [67] : It’s an action recognition dataset that spans
over 101 classes. There are around 13,300 videos, with
100+ videos per class. The length of videos in this dataset
varies from 4 to 10 seconds. It covers five types of categories:
human-object interaction, human-human interaction, playing
musical instruments, body motion and sports.
HMDB-51 [40] : The number of videos in this dataset is
7000 comprising 51 classes. For each action, at least 70

videos are for training and 30 videos are for testing. The
actions are clubbed into five categories: 1) General facial
actions, 2) Facial actions with body movements, 3) General
body movements, 4) Body movements with object interac-
tion, and, 5) Body movements for human interaction.

10. Additional Results
Here, we will talk about some additional results, to further
strengthen the claims made in the main paper.

10.1. Preliminary Experiments
Pretext tasks evaluation Figure 8 depicts the hidden rep-
resentations of R21D network pretrained on different pretext
tasks. Here the 50k subset of K-400 was used for pretraining,
and finetuned on UCF-101.

Linear Probing vs Finetuning Firstly, we discuss linear
probing (LP) vs finetuning (FT) results for different pretext
tasks and different architectures. From Table 9, we can see
that FT outperforms LP by a margin of approximately 20%
and 40% on ShuffleNet and R21D respectively. Thus, we
perform finetuning for all of our analysis.

Network Parameters We have shown the performance
across different architectures in Table 10. ShuffleNet and
R21D performs the best across small and medium capacity



Figure 8. Pretext tasks CKA maps for RSPNet, PRP, RotNet, VCOP, CVRL on K-400 50k subset using R21D network (Left to right).
R21D pretrained on K400 shows a semi-block structure for VCOP, indicating near-saturation condition of the network on this pretext task. It
shows a more prominent grid-based structure on CVRL and RSPNet instead. These observations corroborate the quantitative results, where
pretraining on K400 for both CVRL and RSPNet gives better performance.

Figure 9. Training time CKA maps on 50, 100, 150, 200 epochs of R21D network on RSPNet pretext for K-400 10k subset (Left to
right). The block structure is visible from 50 epochs itself, which then darkens and becomes prominent by 200 epochs. With 10k subset, the
saturation starts hitting at 100 epochs.

Non-contrastive Contrastive

Epochs VCOP Rot PRP CVRL TDL RSPNet

10k 18.9 15.0 9.2 22.2 9.9 30.2
30k 19.3 11.7 11.5 25.0 10.1 37.3
50k 17.3 12.2 10.2 29.3 9.5 40.2

Table 8. Evaluation of different pretext tasks on different subset
size on R21D network on HMDB51 dataset.

Network LP FT RotNet VCOP PRP

Shuffle ✓ 4.3 12.3 2.8
✓ 16.6 40.8 21.9

R21D ✓ 2.7 12.2 4.6
✓ 41.2 51.5 46.2

Table 9. Downstream accuracy classification on UCF-101 dataset.
FT: Finetuning LP: Linear Probing

networks in most of the pretext tasks. Thus, we choose
ShuffleNet and R21D for our benchmark analysis.

10.2. Effect of dataset size

In Table 8, we extend results for different pretext tasks on
HMDB51 dataset. Similar to UCF101, the scale in subset

size doesn’t reciprocate to gain in performance for all pretext
tasks on HMDB51 dataset. From Figures 10 and 11, we
see that performance increase for Swin by a good margin,
whereas in case of ShuffleNet and R21D it’s relatively less
beyond 50k subset.

Training time Table 11 shows VideoSwin saturates at 150
epochs on UCF101 whereas CNN architectures saturates ear-
lier (100 epochs) which reflects limitation of model capacity.
Figure 9 shows the emergence of block structures for R21D
network trained on RSPNet for K400 10k. The saturation
point has reached earlier around 100 epochs which supports
the hypothesis in main work that CNN architectures mostly
saturates around 100 epochs. We see similar pattern even
after increasing the dataset size.

10.3. Impact of task complexity
Figures 12 shows for ShuffleNet dark patterns with increase
in complexity. R21D shows staggering grids. It supports our
hypothesis that model capacity plays an important role to
learn meaningful features and always increasing the com-
plexity doesn’t reciprocate to better spatio-temporal fea-
tures.

10.4. Effect of data distrbituion
Figure 14 illustrates CKA maps for networks pretrained on
different source datasets - for R21D pretrained on K400-50k



Networks Parameters GFLOPs Rot† VCOP † PRP† RSPNet
ShuffleNet 4.6M 1.1 42.2 41.6 41.1 68.8
MobileNet 3.1M 1.1 38.0 40.0 37.4 63.1
SqueezeNet 1.9M 1.8 41.3 41.4 39.2 62.9

C3D 27.7M 77.2 57.7 54.5 58.1 67.6
R3D 14.4M 39.8 51.1 50.7 52.1 62.1

R(2+1)D 14.4M 42.9 46.9 56.8 58.9 78.0

Table 10. Comparison of FLOPs and trainable parameters for each network on UCF101 dataset. † - pretraining on Kinetics 700 [9].

Epochs Shuffle R21D Swin

10k 30k 50k 100k 10k 30k 50k 100k 10k 30k 50k 100k
50 59.1 66.3 68.1 68.9 66.8 71.1 75.0 77.2 - 40.4 44.9 52.0

100 60.3 67.6 68.7 69.0 69.5 75.2 76.1 80.0 37.2 44.3 49.6 58.5
150 61.8 66.7 69.4 69.7 69.5 76.6 76.5 78.8 37.9 46.2 50.7 61.3
200 61.5 68.2 68.5 69.9 69.6 76.6 77.4 78.3 36.8 46.3 52.5 61.5

Table 11. RSPNet with different subset size on ShuffleNet/R21D/VideoSwin on UCF101 dataset.

Figure 10. Multiple architectures and data subsets on UCF101.
Pretext task is RSPNet. (x-axis: subset size, y-axis: Top-1 Accu-
racy) Here, 10 means 10k dataset subset, 30 means 30k and so on.

Non-contrastive Contrastive

RotNet VCOP PRP CVRL TDL RSP

No Noise 41.2 51.5 46.2 61.2 31.7 78.0
Gaussian 40.9 47.0 14.6 12.7 28.0 16.7
Impulse 38.1 30.5 5.4 3.5 18.8 8.5
Shot 33.4 45.1 20.9 26.4 21.5 45.1
Speckle 34.7 43.9 14.4 13.1 24.7 27.0

Table 12. Analysis of all pretext tasks with noise severity level 1
on R21D network on UCF101 dataset.

on VCOP and CVRL respectively. The stark difference in
semi-block structure of spatial (VCOP) vs grid-like structure
of spatio-temporal (CVRL) shows spatio-temporal outper-
forms spatial pretext task.

Figure 11. Multiple architectures and data subsets on HMDB51.
Pretext task is RSPNet. (x-axis: subset size, y-axis: Top-1 Accu-
racy) Here, 10 means 10k dataset subset, 30 means 30k and so on.

10.5. Robustness of SSL tasks
Table 12 shows performance of each pretext on each type
of noise for severity level 1. Fig. 13 shows a relative de-
crease in performance for three different severity level on
UCF101 dataset. Non-contrastive tasks are more robust than
contrastive on average even at different severity levels.

10.6. Feature Analysis
We employ knowledge distillation to evaluate how comple-
mentary information from different datasets can be used to
train a student model that could take advantage of this in
terms of performance gain and training time reduction. Here
we show the numbers quantitatively. Table 13 shows smaller
architecture leans complementary information whereas big-
ger architecture depends on pretext task. Table 14 shows that



Figure 12. Complexity CKA maps PRP ShuffleNet (Left) and R21D (Right) network increasing complexity from 2 to 4 (Left to right).
ShuffleNet has lower performance than R21D, and it shows darkest patterns when complexity is increased from 3 to 4. For both of these
complexities, R21D shows staggering grids.

Figure 13. Relative decrease in performance at three different severity levels in increasing order from left to right. The pretext tasks is
depicted by following colors - RotNet, VCOP, PRP, CVRL, TDL, RSPNet.

Figure 14. Out-of-distribution CKA maps: on VCOP and CVRL
for R21D Network (Left to right). The semi-block structure of
VCOP contrasts sharply with the grid-like structure of CVRL.

for each pretext task, we learn complimentary information
from two different source datasets. Thus, student always
outperforms the teachers. Table 15 shows that distilling
knowledge from a spatial and a temporal task outperforms
the standalone spatio-temporal task in both contrastive and
non-contrastive case.

10.7. Clip retrieval

In Table 16, we show clip retrieval across different archi-
tectures on HMDB51 and UCF101 dataset. Amongst small
capacity networks, ShuffleNet outperforms others and in
medium-capacity R21D outperforms.

TC↓ RotNet VCOP PRP

T1 20.1/48.3 41.6/56.8 24.2/38.9
T2 20.2/58.3 41.8/54.8 18.1/44.4
T3 16.6/41.2 40.6/55.6 21.9/46.2

S 75.0/56.6 75.4/43.5 76.1/61.0

Table 13. Complexity variation with at three levels as teachers (T1,
T2, T3) for all three pretext tasks. TC: Task complexity. Results
are shown on UCF101 with ShuffleNet/R21D as backbones.

K400 (T1) SSV2(T2) Student

RotNet 36.2 42.5 59.8
VCOP 50.4 59.7 67.6
CVRL 56.9 34.7 66.6
RSPNet 76.4 69.5 80.2

Table 14. Out-of-Distribution settings on UCF101 dataset using
R21D network with teachers as different source datasets.

S (T1) T(T2) Student

Non-Contrastive RotNet VCOP 61.1
Contrastive CVRL TDL 70.3

Table 15. Knowledge distillation across different pretext tasks.
Teachers: ShuffleNet; Student: ShuffleNet.



Network Top@1 Top@5

Squeeze 15.9/38.5 37.6/56.5
Mobile 16.2/37.4 36.5/55.6
Shuffle 19.3/43.1 42.0/62.1

C3D 19.9/43.2 43.4/61.6
R3D 19.3/40.4 42.5/60.2
R21D 18.2/42.7 40.1/62.8

Table 16. Top K Clip Retrieval on HMDB51/UCF101 across differ-
ent architectures for RSPNet.

11. Main Table
In this section, we firstly expand the Table 6 (main paper) in-
cluding results on HMDB51 dataset (Table 17). Knowledge
distilled network discussed in the main paper still shows
competitive performance on HMDB51. Going in depth, the
works outperforming us are AVTS[39], GDT [54] in multi-
modal and VIMPAC [70], VideoMAE [73], TCLR [13] and
CVRL [56] in single modality. AVTS and GDT uses two
modalities, have more number of frames and AVTS also
uses a bigger spatial size. Coming to Generative-based, both
VIMPAC and VideoMAE uses a bigger backbone architec-
ture. CVRL uses a longer temporal sequence and bigger
frame resolution compared to ours and TCLR utilize 64 ef-
fective frames. Thus, the performance on HMDB51 is still
competitive.



Approach Venue NxW/H Backbone Pre-training UCF101 HMDB51

Generative

VIMPAC [70] - 10x256 ViT-L HTM 92.7 65.9
VideoMAE [73] NeurIPS’22 16x224 ViT-B K400 91.3 62.6
VideoMAE ∗ [73] NeurIPS’22 16x112 R21D-18 K400 76.2 45.4

Context

PacePred [83] ECCV’20 16x112 R21D-18 K400 77.1 36.6
TempTrans [32] ECCV’20 16x112 R3D-18 K400 79.3 49.8
STS [79] TPAMI-21 16x112 R21D-18 K400 77.8 40.5
VideoMoCo [53] CVPR’21 16x112 R21D-18 K400 78.7 49.2
RSPNet [10] AAAI’21 16x112 R21D-18 K400 81.1 44.6
TaCo [6] - 16x224 R21D-18 K400 81.8 46.0
TCLR[13] CVIU’22 16x112 R21D-18 K400 88.2 60.0
CVRL† [56] CVPR’21 32x224 R21D-18 K400 92.9 67.9
TransRank [17] CVPR’22 16x112 R21D-18 K200 87.8 60.1

Multi-Modal

AVTS [39] NeurIPS’18 25x224 I3D K400 83.7 53.0
GDT [54] - 32x112 R21D IG65M 95.2 72.8
XDC [4] NeurIPS’20 32x224 R21D K400 84.2 47.1

Ours ∗ - 16x112 R21D-18 K400-30k 97.3 51.5

Table 17. Comparison with previous approaches pre-trained on K400. Ours ( ∗ best performing) is RSPNet pretrained on 30k subset of
K400. † modified backbone.
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