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Supplementary Material

This supplementary material provides additional techni-
cal details, extended analyses, and supporting evidence for
our main paper on machine unlearning in hyperbolic ver-
sus Euclidean contrastive learning spaces. We first present
formal mathematical descriptions of the CLIP and MERU
objectives to establish the geometric foundations that differ-
entiate these approaches (Section 10). Next, we clarify the
composition of our forget sets, highlighting the challenges
in precisely defining concept boundaries (Section 11). We
then provide comprehensive visualizations through confu-
sion matrices that illustrate the different unlearning be-
haviors between models (Section 12). Additionally, we
present complementary linear probing results that further
confirm how feature representations are still linearly sepa-
rable, which already can be observed in latent visualizations
(Section 13). Finally, we include extended visualizations
of the latent spaces using multiple dimensionality reduction
techniques to further support our findings on hyperbolic un-
learning (Section 14). These materials provide deeper tech-
nical understanding and additional empirical support for the
conclusions presented in our main paper.

10. Model Objectives

10.1. CLIP: Contrastive Learning in Euclidean
Space

CLIP [30] consists of two encoders, a visual encoder fimg
and text encoder ftxt, mapping images and text into a shared
Euclidean space Rd. Given a batch of images and texts
{(xi, ti)}Ni=1, we obtain embeddings x′

i := fimg(xi) and
t′i := (ftxtti). CLIP is trained extending 1 to a symmetric
cross-entropy loss:
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where sim(x′
i, t

′
j) := cos(θij) is the cosine similarity

between normalized image and text embeddings, θij is the
angle between them, and τ is a temperature parameter. This
contrastive objective places all embeddings on a unit hyper-
sphere, treating all concept relationships uniformly, regard-
less of their hierarchical nature.

10.2. MERU: Contrastive Learning in Hyperbolic
Space

MERU [9] extends contrastive learning to hyperbolic space
using Lorentz model. MERU consists of visual and textual
encoders, but it projects the image and text embeddings onto
a hyperboloid manifold. The distance between two points
x, y in the hyperboloid is given by

dL(x, y) =
1√
c
cosh−1(−c⟨x, y⟩L), (20)

where

⟨x, y⟩L = ⟨xspace, yspace⟩ − xtime · ytime (21)

is the Lorentzian inner product, x = (xspace, xtime) ∈
Rn+1, xspace ∈ Rn and xtime ∈ R, and c > 0 is the curvature
of the space. The Lorentzian norm is defined by ||x||L =√

|⟨x, x⟩L|. With this, the Lorentz model of curvature −c,
c > 0, and dimension n is given by the set of vectors:

Ln := {x ∈ Rn+1 : ⟨x, x⟩L = −1/c}. (22)

MERU is trained with a contrastive loss similar to CLIP,
but using negative hyperbolic distance as the similarity mea-
sure, simL(x, y) = −dL(x, y). Additionally, MERU incor-
porates an entailment loss to enforce partial order relation-
ships between text and image embeddings:

Lentail(x, t) = max(0, ext(x, t)− aper(t)) (23)

where ext(x, t) is the exterior angle between the text em-
bedding t, given by

ext(x, t) = cos−1
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and image embedding x, and aper(t) is the half-aperture of
the entailment cone for t,

aper(t) = sin−1
( 2K√

c∥tspace∥

)
. (25)

The hyperbolic geometry of MERU naturally accommo-
dates hierarchical relationships, as the volume of the space
grows exponentially with distance from the origin. This
property allows generic concepts to be placed closer to the
origin with more capacity to connect to numerous specific
instances, in contrast to the uniform treatment of relation-
ships in Euclidean space.



11. Defining the forget set
We built the different forget set aggregating related subfold-
ers (e.g., dog = {bordercollie, bostonterrier, etc.}, see Ta-
ble 6). However, other subfolders in the retain set, such as
alltheanimals, may contain image-text pairs related to dogs,
creating conflicting signals during unlearning. This high-
lights a broader challenge in the machine unlearning field:
properly defining concept boundaries for removal remains
an open problem [7].

12. Confusion Matrices from Zero-Shot Clas-
sification

Figures 3 and 4 present confusion matrices for zero-shot
classification before and after unlearning for CLIP and
MERU, respectively. These visualizations provide detailed
insights into how concept removal affects classification be-
havior across different classes.

For CLIP (Figure 3), we observe partial concept removal,
with the ”dog” classification accuracy reduced but not elim-
inated. Most misclassified dog images are assigned to the
”cat” category, indicating that CLIP maintains some under-
standing of semantic similarity even when attempting to for-
get. The retain classes show minimal disturbance, maintain-
ing strong diagonal elements in the confusion matrix.

In contrast, MERU (Figure 4) exhibits complete con-
cept removal, with dog images almost entirely reassigned
to other categories. The redistribution follows semantic hi-
erarchies, with most dog images classified as ”cat” which is
a semantically animal category. This pattern supports our
hypothesis that hyperbolic geometry leverages hierarchical
relationships during unlearning, reassigning forgotten con-
cepts according to their position in the semantic taxonomy.
We further observe a decrease in performance on retaining
the ”horse” concept. However, this can be explained by ob-
serving how the original MERU already confuses horses by
dogs, and then HAC, treating horses as if they were dogs,
also removes them.

13. Linear Probing
Linear probing extracts embeddings from image encoder
and trains a linear classifier on these features. This evalu-
ates whether class information remains linearly separable in
the latent space after unlearning. Accuracy is reported for
both retained and forgotten classes, quantifying how suc-
cessfully target concepts have been removed while preserv-
ing desired knowledge. Testing linear separability of image
features provides different insights. While R-acc and F-acc
in zero-shot classification measure the unlearning perfor-
mance in the alignment between images and texts embed-
dings. Here we measure whether after the damage is done
the image features have been mixed between different cate-
gories or not.

The linear probe classification results provide comple-
mentary insights into how unlearning affects the underlying
feature representations. Consistent with prior work on hy-
perbolic classification [14], Euclidean representations show
slightly better linear separability. However, the high for-
get accuracies in both methods reveal an important distinc-
tion between our approach and traditional class-unlearning:
alignment calibration specifically targets cross-modal asso-
ciations rather than altering the fundamental feature struc-
ture of either modality in isolation. This explains why im-
ages from the class related to the concept to forget remain
linearly separable—their visual features are preserved while
their association with corresponding text is disrupted. This
insight can be also illustrated in a qualitative analysis of the
latent spaces Sec. 6.

14. Additional Latent Space Visualizations
To complement visualizations from Section 6 we include
more instances in visualizations. Additionally, for the hy-
perbolic case, we include visualizations from another per-
spective, using CO-SNE [13]. This method leverages hy-
perbolic Cauchy distribution (instead of hyperbolic stu-
dent’s t-distribution) and Lorentz distance, to represent
global hierarchy and local distances in the same visualiza-
tion. This allow us to ”zoom-in” and see the origin of the
hyperboloid from a closer point of view. Figure 5, illus-
trates the latent space of MERU from three perspectives be-
fore and after unlearning. CO-SNE allow us to better see
that text embeddings of ”dogs” remain closer to the ori-
gin, while other instances are pushed further, as discussed in
Section 6. Figure 6 illustrates the same idea when scaling
the unlearning problem to multiple concept removal. Ob-
serve that when ”cats” are included in the forget set, the
text embeddings for cats also remain close to the origin,
and this is not disturb when including ”food” and ”plants”,
illustrating the robustness of HAC at scaling the unlearning
task.



Concept-
class

Subreddits Image-text samples % on Redcaps % on Redcaps2

dogs dogpictures, bordercollie, bostonterrier,
lookatmydog, doggos, bulldogs,
australiancattledog, frenchbulldogs,
bernesemountaindogs, australianshepherd,
beagle, chihuahua, corgi, dobermanpinscher,
husky, labrador, pitbulls, pomeranians, pug,
pugs, rarepuppers, rottweiler

511585 4.26% 7.33%

cats cats, blackcats, supermodelcats, catpictures,
siamesecats, bengalcats, siberiancats

532640 4.43% 7.63%

food food, foodporn, veganfoodporn, healthyfood,
breakfastfood, chinesefood, tastyfood,
budgetfood, baking, bento, breadit,
breakfastfood, breakfast, burgers, chefit, pizza,
sushi, tacos, veganrecipes, vegetarian

630971 5.25% 9.04%

plants houseplants, plants, plantedtank, airplants,
plantbaseddiet, plantsandpots,
carnivorousplants, flowers, bonsai,
botanicalporn, cactus, microgreens, monstera,
orchids, permaculture, roses, succulents,
vegetablegardening, gardening

587798 4.89% 8.42%

Total 68 subreddits 2262994 18.85% 32.43%

Table 6. Grouping of subreddits to higher-order concepts.

Table 7. Linear probing accuracy in retain set (R-acc) and forget set (F-acc), across different tasks, after unlearning: (A) ”dog”; (B) ”dog”
and ”cat”; (C) ”dog”, ”cat”, ”food” and ”plant”. We report results for both CLIP and MERU after alignment calibration using the optimal
configuration from Section 4.3. Values in bold indicate whether AC or HAC performed better at retaining or unlearning across A, B and C.

Task Method Unlearn
Set

CIFAR-10 CIFAR-100 STL-10 O-IIIT Pets Food101 Flowers102

R-acc F-acc R-acc F-acc R-acc F-acc R-acc F-acc R-acc F-acc R-acc F-acc
A 89.9 85.2 71.5 - 95.1 92.4 86.1 87.5 84.5 - 95.4 -
B 95.8 91.3 71.6 - 95.8 91.3 - 87.3 84.6 - 95.7 -AC
C 95.9 91.4 71.0 84.3 95.9 91.4 - 87.0 - 84.3 - 95.4

A 89.3 85.5 69.8 - 94.9 93.6 84.8 86.7 83.8 - 93.8 -
B 95.5 92.1 69.7 - 95.5 92.1 - 85.0 83.9 - 93.7 -

Linear Probe
Classification

HAC-reg
C 95.4 92.4 68.6 83.1 95.4 92.4 - 85.6 - 83.0 - 92.6



Figure 3. Confusion matrices for CLIP zero-shot classification at different scales of the unlearning task. After unlearning, CLIP shows
moderate confusion, with dog images primarily misclassified as cats, but still retaining some dog classification capability.



Figure 4. Confusion matrices for MERU zero-shot classification at different scales of the unlearning task. After unlearning, MERU
demonstrates complete forgetting of the dog class, with dog images redistributed primarily to cat and horse categories according to semantic
similarity.



(a) Original MERU: T-SNE (b) Original MERU: HT-SNE (c) Original MERU: CO-SNE

(d) Unlearned MERU: T-SNE (e) Unlearned MERU: HT-SNE (f) Unlearned MERU: CO-SNE

Figure 5. Latent space visualizations with T-SNE, hyperbolic T-SNE and CO-SNE of MERU before and after removing the concept-class
”dog”. △ refer to text embeddings, ◦ to image embeddings, and colors to dogs, cats, pizzas, buses, birds, and apples.



(a) Original MERU (b) Unlearned ”dog”

(c) Unlearned ”dog”,”cat” (d) Unlearned ”dog”, ”cat”, ”food”, ”plant”

Figure 6. Latent space visualizations with CO-SNE of MERU at different unlearning tasks. △ refer to text embeddings, ◦ to image
embeddings, and colors to dogs, cats, pizzas, buses, birds, and apples.
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