Proc-GS: Procedural Building Generation for City Assembly with 3D Gaussians

Supplementary Material

Figure 1. (1) Clamp effect on editing. Without clamp, the bound-
ary area of edited scene is intensively corrupted by artifacts, mak-
ing it impractical to create a new building with these assets; (2)
Clamp effect on asset. We ablate effects of the clamp operation
and demonstrate the effectiveness of both strategies.

1. More Dataset Details

Our Matrixz Building Dataset consist of 17 buildings from
the City Sample Project [1, 2], as shown in Figure 2 (a),
which contains ground-truth procedural code and dense
multi-view images. These buildings are created to mimic
the building styles of Chicago, San Francisco, and New
York. In Table 1, we also provide the number of building
base assets and the total count of instantiated assets after as-
sembling complete buildings according to procedural codes.
The design of base assets combined with procedural codes
significantly reduces the model size. Figure 2 (b) shows the
dense camera capture trajectories. The ratio between train-
ing view and test view is about five to one.

2. Prompt Example

To illustrate the process of obtaining regular procedural
code from raw data, we include an example of the prompt
used in our framework in Figure 3. The goal is to summa-
rize repetitive and scalable structures within raw data and
represent them concisely using regular expressions of pro-
cedural code. The raw data represents the configuration of a
multi-layered building with modular patterns. For example,
a single row might include repetitive modules like L/ _W1I.
Learning from one or more pairs of raw data and regu-
lar procedural codes, GPT-40 [3] could transform the raw

data into a regularized procedural representation. We trans-
form verbose raw data into a structured, succinct procedural
summary that distills the input’s intrinsic regularities while
maintaining human interpretability.

3. More Qualitative Results
3.1. Sparse View

Figure 4 shows the sparse view qualitative results. Unlike
3D-GS [4], which suffers from significant artifacts when
reducing training views, Proc-GS exhibits remarkable ro-
bustness. The proposed design of shared base assets en-
ables a natural data augmentation mechanism, where base
assets are dynamically influenced by all instances through-
out the training process. This characteristic significantly en-
hances our ability to extract base assets from sparse image
sets, thereby substantially lowering the overall data collec-
tion expenses.

3.2. Clamp Strategies

While building components maintain seamless connections,
their Gaussian kernels often extend beyond asset boundaries
during component decoupling. This overlap complicates as-
set combination and building editing, as demonstrated in
Figure 1 (1). To resolve this issue, we introduced clamp
strategies. A qualitative evaluation of our clamp operations
in Proc-GS is presented in Figure 1 (2). The implementation
of these two clamp strategies successfully achieves cleaner
and more precise asset boundaries.

3.3. Building Editing

In Figure 5, we provide three building editing results from
the real-world scene. We further showcase an intriguing
building editing demo, where by manipulating variance as-
sets, we precisely spelled out our method’s name on the
building facade, thereby illustrating the remarkable control-
lability of our approach.

References

[1] https://www.unrealengine.com/marketplace/product/city-
sample. 1

[2] https://www.unrealengine.com/. 1

[3] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman,
Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda,
Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024. 1,2

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139:1-139:14,
2023. 1,3

(a) MatrixBuilding (b) Camera Trajectory

Figure 2. Dataset Overview. (a) Overview of the 17 buildings in our proposed MatrixBuilding dataset (b) Yellow cameras represent
training views and purple cameras represent test views. The proportion of training views to test views is about 5:1.

Building ‘CHB CHD CHE CHF CHG CHH CHI CHJ NYAA NYAB NYAE NYAF NYG SFA SFB SFD SFE

Base Assets | 90 30 90 32 24 19 43 8 17 24 25 37 56 54 81 12 20
Total Assets | 1559 345 1645 1170 617 1585 697 2409 1869 1920 1929 2831 438 295 821 729 1405

Table 1. Base Assets Statistics. C' H* means a building of Chicago. SF'x means a building of San Francisco. NY * means a building
of New York. # Total Assets means the total count of instantiated assets after assembling complete buildings according to the procedural
codes

User

Procedural Code

L1_CL(LI_WD*LI_W2,(L1_WI)*
L2_CIL(L2_W1)*L2_W2,(L2_ W1)*

L3 CL(L3 WDHL3 W2,(L3 Wh*
L4_CL(L4_WI)*L4_W2,@L4_WI)*

L5_CLLS WI,(LS_W2,LS W3)*L5 WI,L5 W2
L1L(L2)*L3,(L4*L5

GPT-40

Figure 3. An example of the prompt used to obtain regular procedural code. GPT-40 [3] takes the raw data, one or more examples as
well as descriptions of procedural code as input and summarizes the regular procedural code as output.

Dense Views Downsample 10x Downsample 20x Dense Views Downsample 10x Downsample 20x

Proc-GS

3D-GS

Figure 4. Sparse view qualitative results. Proc-GS demonstrates significant robustness when reduces the number of training views,
in contrast to 3D-GS [4], which exhibits a pronounced susceptibility to numerous artifacts under similar conditions. This difference is
attributed to the superior data efficiency inherent in our procedural code design, affirming its effectiveness in optimizing performance even
with limited data inputs.

Origin Building Edited Building

Figure 5. Building Editing. (1) The upper part shows synthetic data results, where we arranged variance assets to spell our method’s
name, emphasizing its high controllability. (2) The lower part presents three editing results from the real-world scene.

	More Dataset Details
	Prompt Example
	More Qualitative Results
	Sparse View
	Clamp Strategies
	Building Editing

