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Abstract

NadirFloorNet a novel deep-learning approach for predict-
ing complex indoor floor plans with ceiling heights from
a minimal set of registered gravity-aligned 360◦ images of
cluttered rooms with vertical walls. This document comple-
ments the main paper by providing additional material. In
particular, we include details on the network architecture
and its implementation, additional qualitative and quanti-
tative results, details on the performance of the component
that infers depth of individual rooms, and an analysis of
failure cases.

1. Network architecture and implementation
details

Our NadirFloorNet pipeline, whose structure is summa-
rized in Fig. 1, directly maps a set of panoramic equirect-
angular images, each with its associated reference frame, to
a complete floor plan with room heights, without any inter-
mediate processing step.

The pipeline includes a network module, called Nadir
Shape Network, for processing individual images (Fig. 2).
The network infers from a single equirectangular image its
Nadir shape, i.e., the estimation of the free floor of the im-
aged room in the local reference frame of the camera. The
training (Fig. 2) is performed by combining and extending
depth and layout losses, simultaneously supervising the un-
cluttered depth (i.e., layout depth) and the room footprint
in the horizontal plane (i.e., Nadir shape). At the begin-
ning of the network, an attention mask is estimated with
a very lightweight (4M parameters for this paper) autoen-
coder based on a U-Net architecture (purple network in-
Fig. 2). Using a binary cross-entropy loss, we pre-train such

attention mask network with the Structured3D [5] dataset,
which contains the registered representation of empty and
non-empty rooms. The Nadir shape network is trained by
combining indoor depth and layout losses (see main pa-
per) with λd = 1.0, λdss = −0.5, λl = 1.0, λh = 0.1,
λn = 0.1, λg = 0.1.

The Floorplan processor, which processes the Nadir
floorplan image, is implemented by two elements: the
NadirFloor network and the 2D/3D floorplan builder
(Fig. 1). The NadirFloor network predicts rooms’ logits and
corners. Its training is supervised with the same strategy
employed by RoomFormer [4], and we refer the reader to
the original paper for details. It should be noted, however,
that while the strategy remains the same, we take as input
the registered representations inferred for each room by the
pre-trained Nadir shape prediction network module rather
than occurrence maps from point clouds.

The 2D/3D floorplan builder finally converts the network
output into closed 2D polygons, eliminating redundant cor-
ners to have consistent polygons ready for mesh creation.
Then, exploiting the heights predicted by the NadirShape
network (Fig. 2) and the metric information also provided
by it (i.e., metric scaling and original aspect), the poly-
gons are transformed into watertight 3D meshes, represent-
ing each room.



Figure 1. Final floorplan generation pipeline and Floorplan module implementation (i.e., NadirFloor network and 2D/3D floorplan builder).

Figure 2. Nadir shape network pipeline and supervised training overview.



2. Additional qualitative Results

We present additional qualitative results of our method on
the benchmarks adopted in the paper. Figure 3 illustrates
results on several interesting synthetic multi-room layouts
from the Structured3D dataset [5], while Figure 4 provides
results on selected real-world layouts contained in the ZInD
dataset [1]. For each image, we show the predicted Nadir
map, the final reconstructed polygons (Predicted FP), the
ground truth floorplan (GT FP), and a 3D view of our pre-
diction, once rescaled to metric aspect (2D/3D floorplan
builder).

In both the real-world and synthetic cases, our method
reconstructs floorplans with many rooms and of non-trivial
complexity, even in the presence of wall shapes that are not
aligned with canonical directions. A recurring issue in real-
world cases, which adds difficulty to the reconstruction, is
the inherent ambiguity of the original annotations. A promi-
nent example is in the third row of Figure 4. Such anno-
tations are derived from manual approximations and often
do not tightly correspond to the real shape of the structure.
Even in these cases, our method still manages to resolve the
ambiguity.

3. Nadir shape network depth inference perfor-
mance

The Nadir shape generation is performed, for each input im-
age, by the Nadir shape network (Figure 1). The network
takes as input an equirectangular image Ic of a cluttered
room, and outputs in the forward pass a regularized prob-
ability map of the free floor area Np with the floor-ceiling
planes distances hf and hc (Figure 2). The same network
also outputs, as an intermediate result used for training, the
equirectangular depth of the emptied scene. This depth
is used in loss computation and weight update during the
backward pass of training (Figure 2). In Tab. 1 investigate
the performance of our network by benchmarking such an
intermediate depth map.

Method MAE RMSE δ1
SliceNet [2] 0.402 0.194 0.932
PanoFormer [3] 0.064 0.156 0.970
Our NS cluttered 0.060 0.043 0.964
Our NS uncluttered 0.034 0.027 0.981

Table 1. Nadir shape - pure depth estimation performance. As
an orthogonal experiment, we show our quantitative performance
(in bold) compared to other representative state-of-the-art works in
terms of depth estimation. We adopt mean absolute error (MAE),
root mean square error of linear measures (RMSE) and relative
accuracy δ1, defined as the fraction of pixels where the relative
error is within a threshold of 1.25, with training and testing on
Structured3D [5].

In particular, we show the single view depth performance
of the Nadir shape network as the Our NS uncluttered case
in Tab. 1, comparing to baselines for which training sup-
port and results on Structured3D [5] were available, such
as SliceNet [2] and PanoFormer [3]. For clarity, the Our
NS uncluttered results correspond to the canonical config-
uration of our network, i.e., related to the prediction of an
empty panoramic scene. This explains the significant mar-
gin in performance compared to the other methods that pre-
dict complete clutter scenes instead. To provide a fairer
comparison just in terms of depth estimation, we retrained
our Nadir shape network to predict a full, cluttered, scene.
The comparison using the output of this retrained network,
which is the same expected by the compared methods [2, 3],
is reported in Tab. 1 as Our NS cluttered. Even in this case,
our approach is in line with the state of the art. This shows
the benefit of having a training pass additionally supervised
by the annotated layout.

Given the good performance of this solution, as illus-
trated in Tab. 1, we used this configuration (i.e., Our NS
cluttered) to estimate full depth maps from the input images
to generate the data required by other methods that gen-
erate floor plans for panoramic images [4]. This is done
by applying the Our NS cluttered to predict the depth of
the room using monoscopic panoramic depth inference fol-
lowed by vertical projection and accumulation to compute
the occupancy maps. See results sections of the main paper
for benchmark discussion.

4. Failure cases

Our method exploits indoor-specific priors to permit the re-
construction of plausible structures when minimal informa-
tion is available. As for all environment- or object-specific
methods, this capability also leads to failure cases when the
imaged model does not meet our prior assumptions.

Figure 5 illustrates some clear failure cases that may oc-
cur when using our method.

The first row of Figure 5, created from examples present
in the ZInD dataset [1], shows the error that arises when
some structural parts, such as stairs, become dominant in
the scene. Such structures generate ambiguity in both the
uncluttering process and the geometric reconstruction. The
second example in the same row illustrates, instead, the case
of an environment with partially outdoor parts, where the
assumption of an indoor environment fully bounded by ver-
tical walls is not met.

The second row of Figure 5, created from examples
present in the Structured3D dataset [5], shows instead an-
other specific failure case. In this scene, formally compati-
ble with a standard indoor, the method fails to separate the
clutter from the structure, particularly because of the type
of shelves present, that partially let see the structure through
them. Also to be noted is the error, although minor, in the



(a) Nadir map (b) Predicted FP (c) GT FP (d) Predicted 3D

Figure 3. Qualitative examples. We present additional scenes from the Structured3D [5] dataset reconstructed by our method.



(a) Nadir map (b) Predicted FP (c) GT FP (d) Predicted 3D

Figure 4. Qualitative examples. We present additional scenes from the ZInD [1] dataset reconstructed by our method.



(a) Input samples (b) Nadir map (c) Prediction (d) GT

Figure 5. Failure case examples. We present some examples where our method fails to reconstruct the floorplan. In the first row, we show
a scene from the ZInD [1] dataset, and in the second row a scene from the Structured3D [5] dataset.

other room, mainly due to the presence of a textured out-
door visible through the window and reflective surfaces that
confound the reconstruction.
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