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6. Parameter Settings

Processing Hardware The experiments were conducted on
an OMEN HP Laptop 17 with NVIDIA® GeForce RTX™
4090 Laptop-GPU (16 GB GDDR6), Intel® Core™ i9-
Processor 13. Generation, 32 GB DDR5-5200 MHz RAM
(2x 16 GB).
B-Rep Preprocessing For facade extraction, a ray-casting
approach uses multiple rays per camera view. We integrate
camera parameters by setting the camera offset to 0.01 m
and assuming a camera height of 1.7 m above the building’s
lower bound. PCA-based local plane fitting was used for
re-triangulation of the fragmented triangular faces.
Geo-Spatial Data Extraction and FOV Computa-
tion Building footprints were extracted from CityGML
files by parsing the first posList element in the
GroundSurface. Coordinates were converted from
EPSG:25832 to EPSG:4326. For field-of-view estimation,
horizontal angles were interpolated (10 samples) between
the adjusted left and right angles, where the inward offset
was set as one-twentieth of the overall FOV (e.g., for a 60°
FOV, the offset was 3° for both sides). Five pitch samples
were also generated within a ±5◦ range around the optimal
pitch computed from wall surfaces.
Panoramic Image Auto-rectification The rectification
module uses default configuration parameters from the orig-
inal method [66]. Each panorama was partitioned into tiles
with overlapping regions in our implementation, and a con-
sensus zenith was computed via SVD. The pitch and roll an-
gles for re-projection were derived from the best-fit zenith
and further refined by histogram-based aggregation.
Building Facade Segmentation Semantic-SAM was used
to generate around 100 to 200 masks on average per street-
level image. For semantic filtering, a CLIP confidence
threshold of 0.05 was applied. Subsequent morphological
processing used a rectangular kernel from size 25 × 25 to
100 × 100 to ensure the artifacts on the contour’s bound-
ary would not influence the quadrilateral fitting; we also re-
moved connected components smaller than a certain num-
ber of pixels, which was set to 2000 on average.
Facade Mask Quadrilateral Fitting After preprocessing
the binary masks with a Gaussian blur (kernel size 25× 25)
and morphological operations, the quadrilateral fitter was
applied with the following parameters: Polygons with more
than 10 vertices were simplified using an initial epsilon of
0.1, a maximum epsilon of 0.4, and an epsilon increment of
0.02. No additional expansion margin was used. The result-
ing quadrilaterals were rectified to axis-aligned bounding
boxes for perspective transformation.

Texturing by Ray-Casting Rays were cast from the cam-
era using the 10 interpolated horizontal angles and five pitch
samples. Intersection points were projected onto the lo-
cally fitted facade plane to compute UV texture coordinates.
Texture sampling employs bilinear interpolation to ensure a
smooth mapping onto the simplified mesh.
Facade Elements Semantic Segmentation Parameters
We utilized the Mask2Former model with a Swin-
Large backbone, initializing from weights pre-trained on
ADE20K. We implemented training procedures for both
models with consistent hyperparameters: Batch size of four,
AdamW optimizer with a learning rate of 5e-5, and weight
decay of 1e-4. Models were trained for 20 epochs with early
stopping based on validation loss. Data augmentation in-
cluded random horizontal flipping and brightness/contrast
adjustments to improve generalization. Evaluation met-
rics included mean Intersection over Union (mIoU) and
per-class IoU. Visualization of segmentation results along-
side ground truth masks provides qualitative insight into
model performance, particularly for challenging cases such
as closely spaced windows or irregular architectural ele-
ments. Our experimental setup ensured fair comparison
across all models by maintaining consistent image resolu-
tion, data splits, and evaluation protocols.

7. Further Details on the Selected Baseline Se-
mantic Segmentation Methods

We evaluated the performance of four state-of-the-art se-
mantic segmentation approaches on the task of facade
opening detection: SegFormer [63], MaskFormer [8],
Mask2Former [9], and Grounded SAM2 [43] (Segment
Anything Model with semantic capabilities). Each model
represents a different architectural paradigm in the evo-
lution of transformer-based segmentation methods. For
the close-set supervised methods, SegFormer [63] com-
bines the hierarchical structure of CNNs with the global
modeling capabilities of transformers, utilizing a hierarchi-
cal transformer encoder and a lightweight MLP decoder.
MaskFormer [8] approaches semantic segmentation as a
mask classification problem rather than per-pixel classifi-
cation. It generates a set of binary masks with associated
class predictions, combining the strengths of both seman-
tic and instance segmentation paradigms. Mask2Former
[9] advances instance and semantic segmentation through
its masked attention mechanism and transformer decoder
architecture. For the supervised methods, we leveraged
the pre-trained on ADE20K [65], fine-tuned on the CMP
dataset [56]. Grounded SAM2 [42] extends the capabilities



of the Segment Anything Model by incorporating seman-
tic grounding, enabling it to perform semantic segmenta-
tion with prompt guidance. For our experiments, we used
the text prompt ”window” and ”door”.

8. Geo-Spatial Data Extraction and FOV Com-
putation

To complement the model preprocessing, we incorporated
a geospatial analysis pipeline that served two purposes: (i)
extraction of building footprints in a GIS-friendly format
and (ii) computation of the camera’s field-of-view (FOV)
for each building.
GeoJSON Conversion from CityGML.
Building models stored in CityGML files were parsed to
extract the GroundSurface coordinates. The extracted
3D coordinates (typically in meters) were converted into 2D
polygons by retaining the (x,y) components. A coordinate
transformation (e.g., from EPSG:25832 to EPSG:4326) was
then applied to generate GeoJSON-compliant building foot-
prints. This conversion facilitated integration with external
GIS tools and provides a reliable spatial reference for sub-
sequent FOV analysis.

9. Generation of Cropped Perspective Images
with Building ID Labeling

After determining each panorama’s field-of-view (FOV) as
described in Sec. 8, we further generate cropped perspective
images of the building facades and label them with the cor-
responding building IDs. The overall pipeline is illustrated
on the left side of Figure 8, where each cropped perspec-
tive image is annotated with an ID matching the building
footprint in the CityGML data.

Overview of the Pipeline
1. Panorama Cropping Based on FOV For each

panorama, the relevant horizontal span is identified by
computing the left and right boundaries of the view. The
panorama is then cropped accordingly to focus on the
portion containing the target building facade.

2. Building Region Detection Detect facade bounding
boxes within the cropped panorama using Grounding
DINO [33], retaining only the highest-confidence box
covering the image center.

3. Perspective Transformation Using the bounding box
coordinates, a perspective transformation is applied to
extract and rectify the facade. This step accounts for
the camera’s heading and pitch, generating a front-to-
parallel view of the building surface.

4. Building ID Labeling The resulting perspective im-
age is saved with a filename or metadata embedding
the building ID. This ID is typically derived from the
CityGML data or an external GIS database, ensuring

each cropped image can be uniquely matched to the cor-
responding building footprint.
By following this pipeline, we obtain cropped,

perspective-corrected facade images automatically labeled
with building IDs. These labeled images are then used to
transfer IDs to unlabeled rectified image tiles via feature-
based matching (right side of Fig. 8). Section 10 provides
full details of this ID association process.

10. Building ID Association
As illustrated in Fig. 8, our objective is to automatically
associate labeled building images obtained from CityGML
data (which contains building footprints) with unlabeled
rectified image tiles obtained through a generic panorama
rectification process. This step enables us to assign build-
ing IDs to the previously unlabelled image tiles. The pro-
cess consists of the following steps:
1. Data Preparation and Grouping We begin by extract-

ing unique building IDs from the object detection and
CityGML’s provided footprints and obtaining labeled
building images through projection or rendering pro-
cesses (left side of Fig. 8). Simultaneously, panorama
images are rectified and split into unlabeled tiles that pri-
marily contain building facades and outlines (right side
of Fig. 8).

2. Feature Extraction and Matching To match images of
the same building from different perspectives, we em-
ploy the SIFT algorithm for keypoint detection and de-
scriptor extraction [34]. We further utilize BFMatcher,
KNN, and Lowe’s Ratio Test to perform precise feature
matching. A threshold on the number of inlier matches
is applied to filter out false correspondences.

3. Building ID Association If a labeled image and an un-
labeled rectified tile pass the feature matching threshold
(e.g., sufficient inlier matches), we associate the building
ID from the labeled image with the rectified tile. This
process allows automatic annotation of the previously
unlabeled tiles.
By following this approach, the building images with

known IDs (examples shown on the left in Fig. 8) can be
linked with rectified unlabeled facade tiles (examples on the
right in Fig. 8), enabling automatic ID assignment. Experi-
mental results demonstrate that this method achieves robust
and accurate multi-view building matching.

11. Further Details on the ReLoD3 Texture
Dataset Benchmark Creation

Extraction of Ground-Truth Openings. We extracted
precise opening masks directly from 3D building models in
the CityGML format to establish reliable ground truth for
evaluating semantic segmentation models on facade open-
ings. Our approach leveraged the explicit geometry infor-
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Figure 8. Pipeline of building ID association. The left side illus-
trates labeled building images obtained from CityGML data, while
the right side presents rectified unlabelled facade tiles. The asso-
ciation is performed using feature matching (BFMatcher + KNN
+ Lowe’s Ratio Test) to automatically establish correspondences
and assign IDs.

mation available in LoD3 building models, where archi-
tectural elements such as doors and windows are explic-
itly modeled. The extraction process started by identify-
ing wall surfaces (bldg:WallSurface) in the CityGML
file and their associated opening elements. For each wall,
we extracted the 3D coordinates of the facade polygon and
all opening polygons. These 3D points were then pro-
jected onto a 2D plane using Principal Component Anal-
ysis (PCA) to obtain the facade’s principal plane. After
projection, we converted the 2D points to Shapely [12]
polygons for geometric operations. To address potential
topology issues in closely positioned openings (e.g., adja-
cent windows), we implemented a proximity-based group-
ing algorithm that merged openings within a specified dis-
tance threshold (0.1 meters). The facade polygon and open-
ing polygons were combined through boolean operations,
where openings were subtracted from the facade to cre-
ate a comprehensive representation of the wall structure.
More details are presented under the project page: [URL
anonymized for the submission].
Automatic Download of the Street-View Images. To ef-
ficiently acquire street-view images corresponding to build-
ing facades, we have designed an automated download pro-
cess. This process leverages the implementation of [48].
The workflow is as follows:

1. Sampling Point Generation Starting from the prede-
fined start and end coordinates, we use linear interpo-
lation to generate multiple sampling points along the
line connecting these coordinates. These points cover
the area around the building, ensuring that the collected
panorama images contain the relevant building facades.

2. Panorama Query and Download We query for nearby
panorama images for each sampling point. The unique
panorama ID is checked against a set of already down-
loaded IDs to avoid duplicate downloads.

3. Metadata Recording During the download process, the
script collects metadata for each panorama, including
panorama ID, latitude, longitude, heading (in both ra-
dians and degrees), capture date, and location; Then, it
stores it in a CSV file. This metadata facilitates later as-
sociation with the CityGML data and further analysis.

Figure 9. Schematic illustration of building footprint (black),
sampling points (red), and the buffer area (gray dashed circles).
The buffer defines a maximum distance from each sampling point
within which building facades can be captured or considered visi-
ble. This ensures coverage of the building’s facade from multiple
vantage points and avoids unnecessary distant panoramas.

As illustrated in Fig. 9, the buffer is a circular region
around each sampling point (with a user-defined radius,
e.g., 50 meters). Only those building surfaces (or facade el-
ements) intersecting this buffer are considered relevant for
capturing street-view panoramas. This automated workflow
ensures high spatial consistency between the street-view
images and the building data while significantly improv-
ing the efficiency of data collection, thereby providing a
robust foundation for subsequent facade texturing and anal-
ysis tasks.
Manual 4-point Projection of Perspective Images The
manually projected perspective terrestrial optical images of
the digital camera (Sony α7) were acquired specifically for
validating automatic texturing purposes. The campaign was
designed to capture the building model facades with a min-
imum number of photographs per triangle in the existing
LoD2 building models to ensure texture consistency with-
out any additional image stitching.

The 4-point projection refers to the texturing implemen-
tation of the proprietary SketchUp Pro [53] software with
the CityEditor [2] plugin. While the default SketchUp
Pro allows for the manual identification of four image-to-
model projection points, the CityEditor allows the load-
ing of CityGML building models into the SketchUp soft-
ware. Additionally, LoD3 ground-truth models were loaded
to guide the manual projection process. Nevertheless, ow-
ing to still persistent distortions, the deviations between the
ground-truth LoD3 and manual projection exist. As such,
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Figure 10. An illustration of our raycasting-based texturing setup.
The camera (e.g., mounted on a vehicle at 1.7 m height) casts mul-
tiple rays toward the building’s facade, which extends from the
lower bound to the upper bound obtained from the GML data. We
sample horizontal angles between the left and right viewing direc-
tions and interpolate a small range of pitch angles to capture the
relevant parts of the facade.

the distortion-free and cm-accurate LoD3 masks shall be
treated as the ground truth.

12. Texturing after triangulation

We first employ our wireframe preprocessing pipeline
(Sec. 3.1) to enable robust texturing of building facades to
convert highly subdivided B-Reps into minimal quadrilat-
eral faces. After this simplification step, we perform ray
casting from known camera poses to identify which faces
are visible from each viewpoint. Figure 10 illustrates how
the camera, positioned at 1.7 m above the ground, casts rays
spanning a specified field of view. The building facade’s
lower and upper vertical bounds are derived from CityGML
data, ensuring that our texturing pipeline only samples the
relevant portions of the geometry. For each B-Rep:

1. We compute the camera origin and direction based on
geographic coordinates and a small offset from the fa-
cade.

2. We cast multiple rays spanning the horizontal viewing
angles (from left to right and a range of pitch angles
around the facade’s center.

3. We collect all intersected faces and compute appropri-
ate UV coordinates for texturing. Faces whose normals
point inwards are automatically flipped to ensure the tex-
ture is placed on the exterior surface.

Finally, once all relevant faces are identified, we project
the corresponding panoramic images onto these faces using
a planar mapping approach (Eq. (13)). This step ensures
that the final textured facade remains visually coherent and
avoids the distortions that can arise when projecting onto
densely triangulated B-Reps. The resulting textured model
forms the basis for subsequent facade analysis and segmen-
tation (Sec. 3.3).

(a) Coarse segmentation (10 masks) (b) Fine-grained segmentation (127
masks)

Figure 11. Comparison of segmentation results using different
numbers of retained candidate masks. A small number of masks
(left) leads to fewer, larger segments capturing the main facade re-
gion. In contrast, a larger number of masks (right) produces more
detailed but also more fragmented subregions.

13. Building Facade Segmentation: Influence
of Candidate Masks

This step aims to detect and isolate the main building fa-
cade from the textured geometry. Our approach employs a
semantic segmentation pipeline built upon Semantic-SAM,
which automatically generates a set of candidate masks
for each panoramic or perspective image. We then fil-
ter these masks to retain only those corresponding to the
”building facade” class, discarding irrelevant classes such
as sky, road, or cars. Small floating artifacts are removed via
connected-component analysis, and we apply morphologi-
cal smoothing to obtain a clean, consolidated facade mask
suitable for further processing.

Figure 11 demonstrates how adjusting the quantity of
retained candidate masks affects the final segmentation. In
Fig. 11(a), retaining only 10 masks results in coarser seg-
mentation with fewer, larger regions that effectively capture
the overall facade shape. Such coarse segmentation is of-
ten advantageous when the primary goal is to isolate the fa-
cade with minimal clutter. Conversely, Fig. 11(b) shows a
more fine-grained segmentation derived from 127 candidate
masks, revealing additional details such as windows or or-
namental features. While this can benefit downstream tasks
requiring higher granularity, it also increases the likelihood
of fragmented subregions that complicate facade isolation.

14. Test-time Alignment for Mask Evaluation

Due to the inherent transformation challenges in panorama
rectification, we implement a test-time scale and shift ad-
justment procedure when evaluating predicted segmenta-
tion masks against ground truth masks. This adjustment is
necessary because the rectification process introduces un-
avoidable geometric distortions, causing the segmented ob-
jects to lose their absolute scale and position relative to
the original panoramic view. Our method employs a two-
stage optimization approach: First, conducting a coarse grid
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Figure 12. Comparison of the baselines and the Texture2LoD3 method to the Scan2LoD3 method leveraging multi-modal fusion of laser
scanning, 3D model priors, and street-level images. Such an approach clearly outperforms only image and model combinations. Yet such
a multi-modal setup is scarcely available in practical scenarios, unlike street-level images and 3D models. Figure parts copied and edited
from the original Scan2LoD3 article, where experiments were conducted on the same object, courtesy of Wysocki et al. [59].

search over a constrained parameter space (scale factors
between 0.75 and 1.2, and pixel translations within ±100
pixels), followed by a finer search within a more focused
range around the best parameters identified in the first stage.
For each candidate transformation, we compute the Inter-
section over Union (IoU) between the predicted mask and
the transformed ground truth mask, selecting the parame-
ters that maximize this metric. This alignment procedure
ensures a fair comparison between prediction and ground
truth by compensating for the scale and positional discrep-
ancies introduced during the rectification process without
altering the structural integrity of the segmentation bound-
aries.

15. Comparison to the Scan2LoD3 method

As mentioned in Related Work (Section 2), there are meth-
ods leveraging the accuracy of laser scanning, building
priors, and images to reconstruct LoD3 building models.
We acknowledge that this approach yields superior perfor-
mance to our work owing to the use of accurate laser scan-
ning modality and physics-oriented ray analysis. Due to that
fact, this comparison is out of the scope of the main publi-
cation part. Nevertheless, such a comparison is worth show-
casing modalities’ limitations, primarily since experiments
were performed partially on the same objects. Here, we se-
lected an excerpt from the Wysocki et al. [59] Scan2LoD3
method that performed the analysis on the same building
(the so-called building 23). As we show in Figure 12, the
performance on the same facade increases significantly ow-

ing to the laser scanner modality. It scored 78% while using
high accuracy scanner, and 64% when using lower grade
Velodyne scanner. This experiment shows a minimum of
5% and a maximum of 14% increase compared to the best
baseline image-based segmentation. Yet, as we elaborate in
Related Work (Section 2), such a multi-modal setup is still
scarcely available, in contrast to the ubiquitous street-level
images and 3D prior models.


