
A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation

Supplementary Material

Keyhan Najafian1, Farhad Maleki2, Lingling Jin1, Ian Stavness1
1Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

2Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
{keyhan.najafian, lingling.jin, ian.stavness}@usask.ca, farhad.maleki1@ucalgary.ca

S7. Data Synthesis Procedure
We utilized video clips of wheat fields and background fields, which were fields without wheat. An annotated video clip
Vi = {(xit , yit)}

Ti
it=1, is defined as a series of Ti consecutive image frames, where xit represents the itth frame of Vi, and yit

represents the pixel-level annotation (mask) for xit , representing wheat heads in xit .
We used three top-view wheat field videos, V = {V1, V2, V3}, and 28 background videos, B = {Bi | 1 ≤ i ≤ 28}, featuring

fields without wheat. All videos were captured with a 12-megapixel handheld camera. The background videos contained
118, 259 frames. We manually annotated seven randomly selected frames from the wheat field videos, F = {Fi | 1 ≤ i ≤ 7},
for data synthesis. Using these frames and extracted wheat heads, we applied a cut-and-paste strategy to overlay wheat heads
onto background frames, generating computationally annotated video clips, thereby reducing manual annotation effort.

We employed a group of background videos (B), which were fields without wheat crops exhibiting various vegetation types
and environmental conditions, used as the backgrounds of synthetic videos. Figure S7 illustrates the background video frames
extraction process. This was achieved by randomly choosing video Bi from the background videos B = {Bi | 1 ≤ i ≤ 28}.
Then, τ consequent frames from Bi were selected to form a set Ci = {cit | 1 ≤ t ≤ Ti − τ}, where Ti is the Bi’s length.
Next, a random region of size 1024× 1024 was chosen, and the crop defined by this region was applied to all the frames in
Bi, resulting in a set of τ consecutive frames of size 1024× 1024, denoted as C ′

i. This set was subsequently utilized as the
background frames for overlaying objects of interest in synthesizing a video clip forming τ frames.

Figure S7. The procedure for extracting video frames from background video Bi ∈ B.

We also extracted wheat heads from a small number of manually annotated frames depicting both earlier growth stages
in green shades and harvestable-ready stages in yellow coloration, resulting in a set of real wheat heads (H) consisting of
yellow (mature) and green (mid-season) wheat heads. Note that, for wheat head extraction, we chose the frames from three
distinct videos in V that had no intersection with the W dataset used in the pseudo-labeling phase of model training. We also
used extracted wheat heads in H as cookie-cutters to extract regions with no wheat heads (fake wheat heads) from the original
frames, denoted as H.

Figure S8 illustrates the process for synthesizing a manually annotated video clip. For τ consecutive background frames
in C ′

i, a random number of fake and real wheat heads were chosen randomly from H and H, respectively. The fake wheat
heads were overlaid on the first frame of C ′

i, followed by real wheat heads. To simulate the movement and deformation of the
crop naturally caused by wind, we applied a sequence of spatial- and pixel-level transformations to each wheat head before



overlying them on consecutive frames in C ′
i. These transformations were automatically generated for each wheat head to

ensure consistent movement while showing varying degrees of deformations. Specifically, we defined two types of movement
for each wheat head object: object-level and frame-level movement. In object-level movement, we updated the position and
direction of each object individually. However, at the frame-level motion, all the objects’ positions were adjusted according to
a predefined motion behavior at the frame level.

Figure S8. This diagram illustrates the process of synthesizing videos with dimensions of 1024× 1024 and a length of τ . We generated a
synthesized video V ′ by initializing a random selection of real and fake heads from H and H, thereby uniquely augmented and positioned by
predefined parameters and overlaid on the first frame of τ frames in C′

i. Subsequent frames of V ′ were simulated based on the positions of
wheat heads in the preceding frame, utilizing both object-level and frame-level motions. Objects that were not within the frame anymore
(due to the object motions) were subsequently restored by incorporating additional real heads into the chosen object set and overlaid on the
current frame before proceeding to the next frame. The frame masks were also generated simultaneously by applying the same object- and
frame-level motions on the segmentation counters.

This process synthesized frames and their corresponding masks by applying special transformations and deformations to
both the frames and masks, ensuring consistent annotation for the resulting video clip. To create the mask corresponding to
each synthesized video frame, a 1024× 1024 blank frame was allocated for each of the τ frames in C ′

i. We kept track of the
position of each real wheat head when overlaid on the background image and its movement and deformation to convert the
corresponding region on the mask to 1. Note that the fake wheat heads were ignored. Table S3 provides a summary of the
synthesized dataset, including statistical information on the synthesized videos and the raw data used in the synthesis process.
This includes the number of background videos and the number of real wheat heads (H).

Dataset Subset Background Videos Heads Synthesized Videos Video Clips

Strain
Green Shaded 13 101 260 15600

Yellow Shaded 15 251 600 36000

Table S3. Quantitative summary of the synthetic videos and their frames distributions in the Strain dataset.

S8. Proposed Model Architecture Components

This section presents the two key components of the proposed UNet-style architecture: the Residual Building Block (top
dashed box) and the Spatiotemporal Attention Module (bottom dashed box).



Figure S9. Top dashed-box: The residual building block represents the base component of the model architecture. Bottom dashed-box: The
spatiotemporal attention module incorporates two processing streams for input feature maps: (1) Spatial Attention Stream (Top) captures and
weights informative spatial regions within individual reference frames. Group normalization is employed to highlight the spatial importance
of feature maps corresponding to each input frame. Additionally, depth-wise separable convolutions are used for the efficient processing of
large-scale feature maps; (2) the Temporal Attention Stream (Bottom) focuses on capturing temporal dynamics and dependencies. It weights
each time step across feature maps extracted from all consecutive frames.

The Residual Building Block serves as the fundamental unit of our architecture. It comprises two sequential series of
Group Normalization, Swish activation, and Convolutional layers, designed to enhance feature representation while preserving
gradient flow through residual connections. Moreover, the layer arrangement within the Residual Building Block defines a
standardized ordering framework for all preceding and succeeding modules and components in the architecture.

We also enhance the skip connections with a Spatiotemporal Attention Module, which operates alongside the diffusion
module and feature reduction modules. This module enables the aggregation of feature maps from multiple input reference
frames into a unified feature representation before being passed to the decoder. The Spatiotemporal Attention Module consists
of two parallel processing streams: Spatial Attention (top) and Temporal Attention (bottom).

The Spatial Attention Stream employs depth-wise separable convolutions, group normalization, and Swish activation
to highlight informative spatial regions within individual frames. The Temporal Attention Stream captures dependencies
across frames using adaptive average pooling, linear transformations, and layer normalization, followed by Swish or sigmoid
activation to generate temporal attention weights. The final attention-enhanced feature maps are computed by element-wise
multiplication of the original feature maps with the spatial and temporal attention outputs. This mechanism enables the model
to effectively capture both spatial and temporal information, improving segmentation performance.



S9. The Beta Distribution Scheduler
The beta distribution is parameterized by two positive shape parameters, denoted by α and β.

f(x, α, β) =
1

B (α, β)
xα−1 (1− x)

β−1 (1)

where x ∈ [0, 1], and B (α, β) is the beta function, which is a normalization constant that ensures the total area under the
curve equals 1. The beta function is also defined as:

B (α, β) =

∫ 1

0

tα−1(1− t)β−1dt (2)

The mean and variance of the beta distribution are calculated as follows, which perfectly control the randomly generated time
steps.

µ =
α

α+ β
(3)

σ2 =
αβ

(α+ β)2(α+ β + 1)
(4)

We established a scheduler to determine the values of α and β, assigning distinct beta distribution functions to each level and

Figure S10. This figure displays the shapes of beta distributions generated by our scheduler for various combinations of α and β values.
Each curve corresponds to a distinct beta distribution, illustrating the impact of parameter variation on the distribution’s shape. The curves
are arranged from left to right for a model with six skip connections, progressing bottom-up from the latent space to the highest resolution of
the upsampling path.

thereby selecting diffusion time steps. This scheduling mechanism is governed by the following equations:

α = α0 + l (5)
β = β0 − (βc ∗ l) (6)

where α0, β0 and βc represent initial and coefficient hyperparameters, and l is the upsampling level index. The index l begins
at the last skip connection and progresses towards the first skip connection, signifying the final upsampling step. Figure S10
depicts the shapes of beta distributions generated using our scheduler across varying values of α and β.



S10. Input Diffusion Process
In this section, we present our strategy for diffusing input images in a patching style. Each reference frame in the mini-batch
undergoes diffusion with a patching rate of Pd = 0.5, following the forward diffusion process with random time steps ranging
from 0 to 1000. Figure S11 illustrates an example of an input image after applying this diffusion process.

Figure S11. A depiction of an image frame alongside its diffused version, produced through the forward diffusion process.

S11. Ablation Studies and Experimental Insights
This section details the ablation studies performed to evaluate the performance of our proposed architecture across various
configurations, both in the current setting and under alternative scenarios. Specifically, the IMSynt, VMSynt, and XMSynt models
were developed on individual frames (only for IMSynt) and video clips, from our Strain and ∆ datasets. Similarly, the IMPseu,
VMPseu, XMPseu were trained on individual frames (only for IMPseu) and video clips from the Ptrain and Pvalid datasets.
All experiments are conducted under consistent configurations and settings, except for those settings that were intentionally
modified, which are clearly explained in the following list:
1. QAI: This experiment evaluates the performance of frame-level models trained for image segmentation and reconstruction

tasks, where the query frame is used as input in a conventional segmentation setting. The architecture includes only the
encoder, decoder, and heads, excluding the skip-spatiotemporal attention modules of the proposed video model.
• IMSynt: This model, evaluated without pretraining, shows moderate performance in comparison to other configurations,

where a slight performance improvement is observed.
• IMPseu: Pretrained on IMSynt, this configuration demonstrates a noticeable performance improvement, outperforming the

previous model by a significant margin.

2. PPQAI: This experiment evaluates the model’s performance when fully integrated with all components for DVOS, starting
from the pretrained frame-based models. This partial pretraining allows the video models to benefit from the skip modules,
which are still untrained in this configuration. Asterisks denote the best-performing models among various configurations.
The full architecture is trained for the DVOS task, with the reference frame as input, and predicts the query frame and mask
as output.
• VM∗

Synt: Partially pretrained with IMSynt, this model performs moderately, achieving solid results.
• VM∗

Pseu: Pretrained with VM∗
Synt, this model shows a significant improvement over all other models, achieving the best

overall performance across all configurations.

3. RRAI: This experiment investigates the performance when frame-based models are trained with random reference frames
as input. For each training sample, a single input frame is randomly selected from the set of reference frames, and the query
frame and its mask are predicted in a frame-level frame/mask prediction training paradigm.
• IMSynt: Without pretraining, this model demonstrates relatively poor performance compared to other configurations,

indicating the need for better initialization.



• IMPseu: Pretrained with IMSynt, this model shows a slight improvement, though its performance still remains relatively
low when compared to other, better-pretrained models.

4. PPRAI: This experiment assesses the performance when the model is partially pretrained on the RRAI IMPseu model. The
entire architecture is trained for the DVOS task, with the reference frame as input, and predicting the query frame and mask
as output.
• VMSynt: Pretrained with IMSynt, this configuration provides moderate results compared to the more optimized models in

other settings.
• VMPseu: Pretrained with VMSynt, this model shows a noticeable performance improvement.

5. FS: This experiment evaluates DVOS models trained from scratch, without any pretraining.
• VMSynt: Trained from scratch, this model shows poor performance relative to the other models that benefit from

pretraining.
• VMPseu: Trained from scratch with VMSynt.

6. NDNA: This experiment tests the model’s performance trained from scratch, without input and skips diffusion and without
applying color augmentation.
• VMSynt: Without these components, the model’s performance is significantly reduced, resulting in notably lower scores.
• VMPseu: Despite the absence of diffusion and color augmentation, this model still shows an improvement, but its

performance is relatively poorer compared to our best-performing models.

7. RFI: This experiment evaluates the model using a frame interval of 2. The first training stage on synthetic data is skipped
due to the lack of natural motion in frame-per-second settings. Here, the best-performing model, VM∗

Synt, is used as the
pretraining stage for the second stage. The model is first trained and tested with a frame interval of 2 and later tested with a
frame interval of 1, identified as RFITI1.
• VM=

Pseu: Tested with a frame interval of 2, this configuration demonstrates a slight performance drop compared to the
model tested with a frame interval of 1, as seen in RFITI1.

8. RFITI1: This experiment tests the model with a frame interval of 1.
• VM=

Pseu: With a frame interval of 1, this model shows a clear improvement compared to the performance of RFI tested
with a frame interval of 2, suggesting better performance with a shorter frame interval.

9. RRFI: This experiment investigates random intervals of 1 or 2 for the reference frames.
• VMPseu: Trained with reference frame intervals randomly chosen between 1 or 2, this model shows a modest performance

drop compared to the best-performing model VM∗
Pseu from the PPQAI experiment.

10. XMem Model: This experiment compares our model with the XMem [3] model. We used XMem as our base model due to
its strong performance in VOS. XMem takes the first-frame segmentation mask as input and effectively propagates object
masks across subsequent frames using a dynamic memory mechanism. Its ability to balance segmentation accuracy and
computational efficiency makes it well-suited for practical applications. Furthermore, XMem remains a state-of-the-art
method on multiple VOS benchmarks, providing a strong foundation for evaluating our proposed approach. As discussed
in the paper, this model manipulates the given first frame’s mask and generates the segmentation mask for the query mask
while mainly ignoring the inputted reference and query frames, achieving higher quantitative scores by generating identical
masks to the ground truth. However, in the presence of noisy input masks, it fails to predict the objects of interest, which
are examined accurately through visual inspection of its predicted masks (Video 1 in Figure S12).
• XMSynt: Evaluated with XMem-s012 [3] pretraining, this model shows better performance compared to other configura-

tions of our models.
• XMPseu: Pretrained with XMSynt, this configuration outperforms all previous configurations, setting the bar as the

best-performing model.



Table S4. Ablation Study Results Across Different Model Configurations. This table presents the results of various ablation experiments
conducted to evaluate the performance of the proposed model under different configurations. The experiments assess the impact of different
model components, pretraining strategies, and training conditions on segmentation performance, measured by Dice and IoU metrics.

Experiment Model Pretrained On Metric Ψ Γ Ptest

Query as Input
(QAI)

IMSynt None
Dice 0.729 0.408 0.145

IoU 0.580 0.278 0.0861

IMPseu IMSynt
Dice 0.759 0.761 0.647

IoU 0.621 0.619 0.513

Partially Pretrained on QAI
(PPQAI)

VM∗
Synt IMPseu

Dice 0.482 0.453 0.244

IoU 0.335 0.307 0.150

VM∗
Pseu VM∗

Synt
Dice 0.650 0.791 0.679
IoU 0.493 0.657 0.542

Random Reference as Input
(RRAI)

IMSynt None
Dice 0.304 0.169 0.036

IoU 0.193 0.100 0.200

IMPseu IMSynt
Dice 0.284 0.376 0.378

IoU 0.178 0.248 0.254

Partially Pretrained on RAI
(PPRAI)

VMSynt IMPseu
Dice 0.487 0.416 0.315

IoU 0.337 0.277 0.204

VMPseu VMSynt
Dice 0.611 0.773 0.672

IoU 0.451 0.634 0.532

From Scratch
(FS)

VMSynt None
Dice 0.423 0.320 0.118

IoU 0.290 0.212 0.069

VMPseu VMSynt
Dice 0.647 0.782 0.670

IoU 0.489 0.647 0.535

No Diffusion & No Color Augmentation
(NDNA)

VMSynt None
Dice 0.347 0.080 0.018

IoU 0.232 0.046 0.010

VMPseu VMSynt
Dice 0.664 0.578 0.675

IoU 0.504 0.429 0.541

Reference Frame Interval of 2
(RFI) VM=

Pseu VM∗
Synt

Dice 0.555 0.735 0.622

IoU 0.398 0.586 0.476

RFI Tested on Interval of 1 (RFITI1) VM=
Pseu VM∗

Synt
Dice 0.645 0.780 0.671

IoU 0.484 0.641 0.532

Random Reference Frame Intervals of 1 or 2
(RRFI) VMPseu VM∗

Synt
Dice 0.533 0.741 0.623

IoU 0.383 0.595 0.478

XMem Model [3]

XMSynt XMem-s012 [3]
Dice 0.794 0.454 0.448

IoU 0.668 0.314 0.302

XMPseu XMSynt
Dice 0.831 0.811 0.835
IoU 0.716 0.690 0.726



Figure S12. Segmentation prediction performance of VM∗
Pseu across various videos in Ptest.


