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7. Appendices
The full results for all methods and categories can be found
in this file: https://eu.mydrive.ch/shares/
88698/f808671f908f1e93d2a5597c4cd29e9c/
download/452956104-1740916171/results.
json

• Sec. 7.1: Models - Implementation details for models.
• Sec. 7.2: Datasets - Implementation details for datasets.
• Sec. 7.3: Synthetic data drift - Detailed descriptions of

synthetic perturbations used to create synthetic data drift.
• Sec. 7.4: Score distributions - Visualization of image-

level score distributions.
• Sec. 7.5: More results - PG2 and PB2 image-level results

for data drift and noisy labels experiments. Results for
experiments per dataset.

7.1. Models
This subsection describes the details of the implementation
of the models we use. All models use the pretrained fea-
ture extractor WideResNet-50-2 by TorchVision [47] unless
stated otherwise. Input size is set to 256 × 256 for all ex-
periments except Input Resolution. We remove center crop
augmentation and report results for the last epoch without
an early stop (unless it is a Validation Strategies experi-
ment). The rest of the settings we use follow the original
paper’s settings.

PatchCore: Implementation by Anomalib [1]. The fea-
ture extractor uses layers 2 and 3. The coreset sampling
ratio is 0.1, and the number of neighbors is 9. For larger
datasets (such as VAD and one of the classes in BTAD), for
resolution 512×512, we sample 25% of images for training
to fit into GPU memory, similar to [3].

Reverse Distillation: Implementation by Anomalib [1].
Trained for 200 epochs.

CSFlow: Implementation by Anomalib [1]. EfficientNet
B5 by TorchVision [47] as a feature extractor. Trained for
240 epochs.

MMR: Official implementation1 re-implemented into
Anomalib. Trained for 200 epochs with 50 warmup epochs.

MSFlow: Official implementation2. The original code
calculates two anomaly maps, one using addition to calcu-
late pixel-level AUROC and another using multiplication
to calculate pixel-level AUPRO. We modified it to calcu-
late only one anomaly map through the addition; the same

1https://github.com/zhangzilongc/MMR
2https://github.com/cool-xuan/msflow

anomaly map is used to calculate the anomaly score, ac-
cording to the paper.

DRAEM: Official implementation3. Trained for 700
epochs.

SimpleNet: Official implementation4 re-implemented
into Anomalib. Trained for 160 epochs.

GLASS: Official implementation5. For VAD and BTAD,
we do not use background masks because there is no back-
ground in the images. For the rest of the datasets, masks are
created using SAM [33]. Trained for 640 epochs.

DRA: Official implementation [22]. This model calcu-
lates only image-level anomaly scores. We use the back-
bone ResNet-18 because other backbones have not been im-
plemented. Trained for 30 epochs. We removed random
rotation augmentation because it makes results for some
datasets worse [2].

DevNet: Official implementation [45]. This model cal-
culates pixel-level anomaly scores separately from image-
level scores based on gradient back-propagation, we do not
include this in our evaluation. Trained for 50 epochs.

7.2. Datasets
This subsection describes the details of the datasets we
use. Datasets not mentioned below are used without any
changes, similar to the original papers. For MVTecLOCO,
we report mean results for logical and structural defects,
similar to the original paper. For AeBAD, we report mean
results for three types of data drift and results without data
drift separately.

SensumSODF: The original paper uses three splits; we
use one split to simplify evaluation.

Real-IAD: We use a version of the dataset with a shot
from above only. Classes included into our subset: pcb,
phone battery, plastic nut, plastic plug, porcelain doll, ter-
minalblock, usb, woodstick.

VIADUCT: Classes included into our subset:
3 pole socket housing, cylinder screw, damper large,
dsub connector, mains tester, pcb, retractor,
ring cable lug, tack, terminal block a, threaded fitting,
valve handle blue.

7.3. Synthetic data drift
To simulate data drift, an augmentation pipeline was created
to synthetically add data drift to the images of the test set.

3https://github.com/VitjanZ/DRAEM
4https://github.com/DonaldRR/SimpleNet
5https://github.com/cqylunlun/GLASS
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Table 10. Overview of the transforms used in the data drift experiment. Each test set image was augmented with 1 or 2 transforms picked
randomly from different categories.

Category Transform Parameter Value/Range*
Motion /camera quality Gaussian Blur Kernel size 7

Sigma [0.1, 1.5]
Gaussian Noise Mean 0.5

Standard Deviation 1.0
Scale [0.01, 0.05]

Lighting conditions Color Jitter Brightness factor [0.5, 1.5]
Contrast factor [0.5, 1.5]
Saturation factor [0.5, 1.5]

Random Shadow Number of Shadow Layers 3
Brightness factor 0

Camera position Random Rotation Rotation angle [-5, 5]
Random Cropping Scale [0.8, 1.0]
Perspective Transform Distortion scale 0.2

* The used parameter value was sampled uniformly from the specified range of values

Figure 5. Synthetic perturbations. The image on the left in each
row shows the original data, and the images on the right show
different augmentations produced using our pipeline.

The data drift augmentations consisted of 7 types of trans-
forms across 3 categories, listed in Table 10. Gaussian blur
and Gaussian noise to simulate camera motion and camera
quality, color jitter and random shadow to simulate vary-
ing lighting conditions, and random rotation, random crop-
ping and perspective transforms to simulate varying camera
placement conditions. A random selection of 1 or 2 data
drift categories was applied to each image from the test set.
Within each of the selected categories, a single transform
type was chosen randomly.

7.4. Score distributions
7.5. More results
Due to restricted space in the paper, we include PG2 and
PB2 image-level results for Noisy Labels and Data Drift ex-
periments in Tab. 11 and Tab. 12 respectively. It can be seen
that the best-performing models in terms of PG2 are differ-
ent compared to image-level AUROC. In the Data Drift ex-

Table 11. Noisy labels experiment, additional results. The best
result is marked in bold. D denotes the mean value for VAD, Sen-
sumSODF, and VIADUCTs datasets. M means Methods. Metrics
are im.PG2/im.PB2.

M D D4% D8% D16%
InR 15.9/28.2 18.7/60.4 18.3/61.2 19.1/58.8
PtC 37.0/56.9 30.0/87.1 33.1/81.4 26.8/79.5
RD 33.1/48.9 30.0/71.7 30.9/65.2 30.6/66.8
MMR 32.7/49.8 28.3/69.6 27.1/66.9 27.1/64.4
CSF 32.7/47.4 31.1/63.4 26.2/57.8 26.0/55.5
MSF 38.8/43.9 36.2/49.1 32.4/45.4 28.0/37.9
SN 25.7/42.9 18.5/44.1 15.8/38.6 14.0/28.7
DR 16.4/34.8 14.0/46.8 11.2/34.9 14.9/27.5

Table 12. Data drift experiment, additional results. The best result
is marked in bold. D denotes the mean value for RIADs, BTAD,
VAD. M means Methods. Metrics are im.PG2/im.PB2.

M D D+dr AeBAD AeBAD+dr
PtC 40.9/66.5 14.2/25.3 11.7/15.3 15.2/13.2
RD 44.7/63.8 2.0/0.8 38.7/22.2 31.7/16.3
MMR 44.4/63.5 17.3/5.4 26.1/42.0 23.7/27.8
CSF 37.1/54.3 3.6/4.1 9.1/5.9 6.9/3.3
MSF 38.4/41.2 5.2/0.0 10.9/0.0 3.8/0.0
SN 31.4/50.3 3.4/0.9 2.2/0.0 3.9/0.0
DR 28.2/43.1 3.4/2.9 7.8/0.0 4.4/0.0
GL 28.8/49.4 5.8/1.5 15.7/0.0 4.9/0.0

periment, MSFlow performs better than PatchCore, which
is also demonstrated in Fig. 6, which shows a clearer separa-
tion of good images (measured by PG2) by MSFlow versus
PatchCore. With the PG2 metric, PatchCore clearly outper-
forms other models; it is visualized in Fig. 6.



Figure 6. Image-level score distributions for different models for SensumSODF, capsule. Bad part scores are shown in red, and good in
blue. The X axis shows scores, and the Y axis shows frequency.

Table 13. Noisy labels experiment per dataset. Metrics are
im.AUROC/pix.AUPRO.

Method Dataset D4% D8% D16%
InR SSODF 77.0/69.4 80.7/70.1 77.7/70.2

VIADUCTs 76.6/85.4 75.3/83.9 75.2/84.7
VAD 83.1/0.0 83.0/0.0 82.8/0.0

PtC SSODF 92.6/91.0 92.6/90.9 90.7/89.7
VIADUCTs 81.8/72.8 80.9/71.3 78.8/69.7
VAD 87.4/0.0 85.6/0.0 84.8/0.0

RD SSODF 91.0/93.4 91.1/93.7 89.4/93.8
VIADUCTs 81.5/89.7 81.0/90.4 79.7/90.2
VAD 83.8/0.0 82.8/0.0 82.9/0.0

MMR SSODF 90.8/93.1 90.1/93.4 89.6/94.5
VIADUCTs 79.5/87.3 78.8/87.2 78.1/86.8
VAD 84.3/0.0 83.3/0.0 82.1/0.0

CSF SSODF 89.5/40.0 88.1/42.4 88.0/44.4
VIADUCTs 81.1/34.6 78.7/33.6 76.5/35.2
VAD 80.3/0.0 78.8/0.0 78.0/0.0

MSF SSODF 90.1/82.0 88.9/84.8 86.9/87.9
VIADUCTs 82.9/74.1 80.9/74.8 78.4/75.0
VAD 83.5/0.0 82.2/0.0 80.4/0.0

SN SSODF 80.0/71.8 74.1/60.9 70.0/56.9
VIADUCTs 84.1/86.7 81.3/86.0 79.9/84.1
VAD 64.3/0.0 61.2/0.0 56.6/0.0

DR SSODF 83.9/66.7 82.1/60.4 78.6/62.5
Viaducts 76.4/63.4 75.9/61.5 71.4/60.2
Vad 54.9/0.0 57.2/0.0 55.8/0.0

Another interesting outcome in the Noisy Labels ex-
periment is that adding a little label contamination (4%)
strongly improves the separation of bad images (PB2) for
almost all models. PatchCore shows the best improvement

Table 14. Input size experiment per dataset. Metrics are
im.AUROC/pix.F1Max/im.PG2.

Method Dataset Size 128 Size 512
PtC RIADs 83.4/18.9/15.9 94.4/46.7/56.6

BTech 93.1/41.7/50.9 95.9/64.7/75.5
VAD 79.4/0.0/11.8 88.7/0.0/21.0

RD RIADs 86.6/24.2/27.7 94.9/51.3/51.1
BTech 93.2/51.3/64.5 82.8/60.6/64.0
VAD 81.8/0.0/12.9 69.8/0.0/8.8

MMR RIADs 78.8/24.7/10.4 94.9/51.0/50.5
BTech 86.6/41.8/38.9 92.8/54.8/50.9
VAD 79.7/0.0/10.2 78.9/0.0/10.4

CSF RIADs 77.2/1.3/12.2 89.2/4.8/36.5
BTech 91.5/23.0/41.0 95.0/29.4/71.1
VAD 76.1/0.0/12.2 84.4/0.0/24.3

MSF RIADs 81.3/1.4/17.9 91.5/22.8/42.2
BTech 85.6/17.0/58.4 90.8/44.0/64.1
VAD 76.7/0.0/10.7 75.6/0.0/14.5

SN RIADs 77.4/16.6/11.4 94.2/40.7/54.2
BTech 91.9/37.7/61.3 87.5/38.5/41.3
VAD 61.0/0.0/4.9 61.7/0.0/3.9

DR RIADs 82.5/53.5/23.4 84.6/45.5/19.3
BTech 88.9/31.6/49.8 90.8/24.4/23.9
VAD 70.1/0.0/7.2 59.3/0.0/4.3

GL RIADs 82.9/26.9/18.3 92.1/55.1/36.2
BTech 74.5/29.6/32.1 95.2/51.0/62.1
VAD 74.8/0.0/11.4 80.3/0.0/12.8

at 30.2 points, ReverseDistillation improves by 22.8 points.
This phenomenon requires further investigation. It also
demonstrates the importance of metrics, which qualify the
classification results differently for good and bad parts.



Results per dataset are in Tab. 13, Tab. 14 and Tab. 15.
Tab. 14 gives a particular insight into how input size is con-
nected to the size of defects presented in the dataset. RIADs
show improvement for all models, demonstrating that a big-
ger input size helps to detect small defects. Meanwhile,
VAD and BTech show no improvement or even reduction
due to some large defects not processed properly by the fea-
ture extractor.

Table 15. Data drift experiment per dataset. Metrics are
im.AUROC/pix.AUPRO/im.PG2.

Method Dataset No drift Drift
PtC RIADs 91.4/92.0/39.0 65.9/19.5/0.7

BTech 95.5/76.9/67.3 87.8/40.4/28.8
VAD 88.0/0.0/16.5 69.4/0.0/13.0

RD RIADs 93.2/95.0/46.3 47.9/25.5/0.0
BTech 94.3/79.5/67.7 46.2/11.4/4.1
VAD 84.7/0.0/20.1 51.7/0.0/2.0

MMR RIADs 92.4/96.3/42.7 67.2/15.4/16.7
BTech 93.7/77.9/62.9 67.0/26.7/22.3
VAD 87.6/0.0/27.6 61.3/0.0/12.8

CSF RIADs 86.3/47.9/22.7 57.9/19.0/0.0
BTech 95.1/57.5/71.5 67.9/12.4/8.7
VAD 82.2/0.0/17.1 52.4/0.0/2.0

MSF RIADs 89.2/85.6/31.1 55.7/7.1/6.7
BTech 90.0/62.6/57.4 51.9/0.0/5.9
VAD 84.4/0.0/26.6 53.1/0.0/7.2

DR RIADs 85.6/86.8/26.9 52.4/16.4/7.2
BTech 89.6/52.6/55.9 53.7/9.6/4.8
VAD 57.7/0.0/1.8 51.2/0.0/3.1

GL RIADs 88.8/67.1/30.7 56.1/15.8/5.8
BTech 90.9/61.1/45.5 53.6/7.7/6.4
VAD 79.2/0.0/10.3 58.1/0.0/5.1

SN RIADs 82.6/77.6/35.4 55.1/15.8/0.0
BTech 89.7/68.0/53.5 57.3/15.4/6.1
VAD 69.7/0.0/5.3 57.1/0.0/4.1


