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Abstract

Convolutional Neural Networks (CNNs) rely on content-
independent convolution operations that extract features
shared across the entire dataset, limiting their adaptabil-
ity to individual inputs. In contrast, input-dependent archi-
tectures like Vision Transformers (ViTs) can adapt to the
specific characteristics of each input. To enhance input
adaptability in CNNs, we propose SODDCNet, an encoder-
decoder architecture for Salient Object Detection (SOD)
that employs large convolutions with dynamically generated
weights via the self-attention mechanism. Additionally, un-
like other CNN architectures, we utilize multiple large ker-
nels in parallel to segment salient objects of various sizes.
To pre-train the proposed model, we combine the COCO
and OpenImages semantic segmentation datasets to create
a 3.18M image dataset for SOD. Comprehensive quantita-
tive experiments conducted on benchmark datasets demon-
strate that SODDCNet performs competitively compared to
state-of-the-art methods in SOD and Video SOD. The code
and pre-computed saliency maps are provided here.

1. Introduction
In visual data, salient objects are defined as elements that
capture immediate attention from observers. The process of
identifying these prominent features is referred to as Salient
Object Detection (SOD) [2]. Interest in Salient Object De-
tection (SOD) is rapidly growing because it effectively iso-
lates the most visually distinct objects, providing a reliable
set of key points or landmarks. One notable area of research
is underwater salient object detection, which is increasingly
vital for autonomous underwater robots [21]. These robots
must make critical navigation and manipulation decisions
based on the relative importance of various objects in their
field of view. SOD has also gained significant importance in
the field of robotics [38, 41, 45, 61]. For instance, egocen-
tric SOD [61] helps in identifying and segmenting salient
objects from a first-person perspective, similar to how an
autonomous car or robot operates. Furthermore, saliency-

guided localization has become crucial, as shown in works
like [41] and [38]. [41] introduces a novel dataset for SOD
in traffic scenes, which is essential for autonomous vehi-
cles. [38] presents a SOD-based localization method that
allows delivery robots to navigate urban environments, such
as campuses and towns, with many unique characteristics.
Overall, SOD plays a vital role in localization by enhancing
feature extraction and tracking of important objects.

In recent years, salient object detection (SOD) solu-
tions have mainly relied on Convolutional Neural Networks
(CNNs) [19] or Vision Transformers (ViTs) [9]. ViT-based
models [33, 37] have lately outperformed CNN-based net-
works [27, 49] due to their adaptability to individual inputs
and improved performance with larger datasets. ViTs utilize
attention layers that offer a global receptive field, enabling
each input element to interact with all others, and input
dependence, allowing the model to learn specific features
dynamically. In contrast, CNNs use fixed convolutional
weights across images, limiting their adaptability. More-
over, although CNNs can theoretically support a large re-
ceptive field, their effective receptive field is often small [8].
Thus, we aim to address these limitations in CNNs for SOD.

The resurgence of large-kernel CNNs [8, 34, 36, 53, 59]
has led to significant improvements in the ability of CNNs
to capture global context in vision tasks. RepLKNet [8]
scaled convolutional kernels up to 31 × 31 using a repa-
rameterization technique that maintains computational effi-
ciency during inference. SLaKNet [34] introduced sparse
large-kernel networks with sub-linear scaling, enabling ker-
nels as large as 51 × 51 without high computational costs.
[59] highlights the importance of large kernels that enhance
weakly supervised segmentation, where broader receptive
fields allow for more accurate localization and feature ex-
traction from noisy or sparsely labeled data. Together,
these works emphasize the renewed interest in large-kernel
CNNs.

Two main approaches exist to incorporating content-
adaptability into CNNS. The first approach uses pooling-
based attention mechanisms to adaptively recalibrate fea-
ture representations based on the input. Examples include
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Model Params. (M) Backbone Pre-training dataset Pre-training epochs
PiCANet-R [32] 47.22 ResNet-50 [19] ImageNet [6] (1.28M) 90

BASNet [40] 87.06 ResNet-34 [19] ImageNet [6] (1.28M) 90
F3-Net [50] 26.50 ResNet-50 [19] ImageNet [6] (1.28M) 90
LDF [51] 25.15 ResNet-50 [19] ImageNet [6] (1.28M) 90
VST [33] 44.48 T2T-ViT [60] ImageNet [6] (1.28M) 310
PSG [58] 25.55 ResNet-50 [19] ImageNet [6] (1.28M) 90

RCSB [23] 27.90 ResNet-50 [19] ImageNet [6] (1.28M) 90
CSF-R2Net [17] 36.53 Res2Net [16] ImageNet [6] (1.28M) 100

EDNet [54] 42.85 ResNet-50 [19] ImageNet [6] (1.28M) 90
MENet [49] - ResNet-50 [19] ImageNet [6] (1.28M) 90
PGNet [55] 72.70 ResNet-18 [19] & Swin-B [35] ImageNet22k (14.2M) 90

EnergyT [62] 118.96 Swin [35] ImageNet [6] (1.28M) 350
TE7[27] 66.27 EfficientNet [46] ImageNet [6] (1.28M) 350

RMFormer [7] 87.52 Swin-B [35] ImageNet22k (14.2M) 90
VSCode [37] 74.72 T2T-ViT [60] ImageNet [6] (1.28M) 310
MDSAM [15] 100.21 SAM [25] (MAE pre-trained ViT-H) SSL (1.28M) + SA-1B (11M) 800 + 2

SODAWideNet++ [11] 26.58 - COCO [31] (0.35M) 21
Ours (XL) 78.30 - Open Images [26] + COCO (3.18M) 20
Ours (L) 61.50 - Open Images [26] + COCO (3.18M) 20

Table 1. Above, we list the backbone models and the pre-training pipelines used to pre-train these backbones, which are further used by
the current state-of-the-art SOD models.

Squeeze-and-Excitation Networks (SE-Nets) [22] and Con-
volutional Block Attention Modules (CBAM) [52], which
combine channel and spatial attention obtained through spa-
tial or channel pooling to induce input dependence. The
second approach alters the convolutional weights using in-
put features. Dynamic Convolutional Neural Networks
(Dynamic CNNs) [4], Dynamic Convolutions [64], and
CondConv [56] generate coefficients conditioned on the in-
put to adjust convolution weights for each sample. Involu-
tion [28] generates a spatial grid of weights for each input
location that acts like a feature extractor. These methods
offer effective strategies for introducing input adaptability
into CNNs.

Most State-of-the-Art (SOD) models rely on pre-trained
backbones with extensive training processes, as shown in
Table 1. For example, the recent SOD model MDSAM [15]
employs a Masked Autoencoding [53] pre-trained Vision
Transformer (ViT-H) [9], trained for 800 epochs on Ima-
geNet [6]. Similarly, RMFormer [7] and VSCode [37] use
pre-trained backbones with substantial training schedules.
However, the disconnect between the pre-training task (im-
age classification) and downstream tasks like SOD might be
sub-optimal. [20] demonstrated that models trained from
scratch can achieve ImageNet pre-trained performance lev-
els, although requiring longer training. Thus, SODAW-
ideNet++ [11] offers an alternative by modifying the COCO
semantic segmentation dataset [31] for SOD pre-training.
The resulting dataset and pre-training pipeline were signifi-
cantly shorter than previous works and led to a competitive
model.

The primary contribution of this paper is a novel

convolutional neural network (CNN) called SODDCNet,
designed for SOD with input-conditioned convolutions.
Drawing inspiration from the advantages of large-kernel
convolutions, we introduce Dynamic Long-range Units
(DLRUs), which consist of multiple stacked convolutions
that progressively increase the receptive field. We use con-
volutions with varying receptive fields at each stage to ex-
tract semantic features from diverse contexts. Addition-
ally, to introduce input dependency, we modify the convolu-
tional weights through input conditioning. Unlike previous
works [4, 56, 64] that generate a single coefficient for the
entire k × k kernel, we create individual coefficients for
each weight within the kernel. This advancement allows
for locality-specific feature aggregation. We employ Self-
Attention instead of traditional pooling methods to further
enhance the model’s capability to develop these location-
specific weights. Furthermore, we improve our model’s
performance using a task-specific pre-training dataset. We
modified the Open Images semantic segmentation dataset
[1, 26] and combined it with the altered COCO dataset
[11, 31] to create a new Salient Object Detection dataset
consisting of 3.18 million images, which we use for pre-
training our model. We summarize our contributions below
-

• We propose SODDCNet, a novel CNN model for SOD
with large-kernel input-dependent convolutions.

• We propose Dynamic Long Range Units (DLRUs) to ex-
tract spatially adaptive convolutional features from vari-
ous receptive fields.

• We propose a self-attention based weight generation
method to induce input dependency.
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• We combine the Open Images dataset [1, 26] and modi-
fied COCO dataset [11] to create the largest SOD dataset
of 3.18M images to pre-train the proposed model.

2. Related Works

2.1. Prior works for Salient Object Detection
PiCANet-R [32] created a contextual attention module that
attends to important context locations for each pixel. BAS-
Net [40] utilizes an encoder-decoder network and a bound-
ary refinement network to produce precise saliency pre-
dictions with clear boundaries. F3-Net [50] uses a cas-
caded feedback decoder (CFD) and a cross-feature module
to refine semantic features and generate saliency outputs.
VST [33] uses a vision transformer-based SOD model as the
backbone for Salient Object Detection. PSG [58] uses a loss
function to generate auxiliary saliency maps that are used
to create accurate saliency maps incrementally. RCSB [23]
uses stage-wise feature extraction and novel loss functions
to generate saliency predictions. CS-Net [17] uses a flexible
convolution module that uses multi-scale features to gen-
erate saliency predictions. EDNet [54] presents a unique
method of downsampling to obtain a global receptive field
that generates high-level features for SOD. LDF [51] pro-
poses a framework that breaks down the original saliency
map into body and detail maps for better saliency detection.
EnergyT [62] uses an energy-based prior for salient object
detection. PGN [55] uses a combination of Resnet [19] and
Swin [35] models to generate saliency maps.TR [27] uses
an EfficientNet [46] backbone and attention-guided trac-
ing modules to detect salient objects. VSC [37] proposes
a foundational model for SOD that uses programmable
prompts to generate saliency predictions. MDSAM [15]
adapts the SAM model [25] for SOD using feature adap-
tors. Unlike these works, we propose a deep learning model
built explicitly for SOD that is pre-trained on the OpenIm-
ages [1, 26] and COCO [11, 31] datasets.

2.2. Prior Works for Video Salient Object Detection
Several prior works have significantly advanced research
in video salient object detection (VSOD). SSAV [14] in-
troduced the largest VSOD dataset, DAVSOD, along with
a saliency-shift-aware ConvLSTM model that adapts to
evolving saliency cues. STVS [3] proposed an optical
flow–free 3D CNN framework, leveraging temporal cues
within a purely spatial branch to emphasize salient fea-
tures across frames. WSV [65] explored a weakly super-
vised approach based on ConvLSTMs, reducing reliance on
labor-intensive annotations. DCFNet [63] introduced a dy-
namic context-sensitive filtering module (DCFM) that uses
dynamically generated kernels from consecutive frames to
handle video variations effectively. Lastly, MMNet [66]
employed a space-time memory (STM)–based encoder-

decoder structure to model temporal dynamics in VSOD
without relying on explicit optical flow, demonstrating ver-
satility in challenging video scenarios.

2.3. Input-Dependent Convolutions

The convolution operation, with its spatial invariance and
inductive biases, is a robust operation that has furthered the
state of the art in Computer Vision over the last decade.
Nonetheless, the convolution operation has one major draw-
back: the convolutional weights are static and shared across
images, leading to sub-optimal feature learning. Multiple
works have tried inducing content adaptivity into CNNs.
Squeeze and Excitation networks [22] improve adaptability
by adopting a channel-wise weighting mechanism based on
input features. Deformable convolutions [5] deviate from
standard convolutions by using input-specific pixel loca-
tions to extract features instead of the standard grid of loca-
tions. Furthermore, the involution operation [28] generates
per-pixel weights within a window from the input through a
series of transformations, thus emphasizing information in
that specific region. [4] use multiple convolutions in parallel
per layer and use an SE mechanism to generate weights for
each convolutional kernel. Although useful, the above oper-
ations obtain contextual information from a smaller window
or suppress spatial information excessively through global
average pooling, limiting their capabilities. Instead, we uti-
lize the attention operation, which offers a global receptive
to generate our convolutional weights.

3. Method

3.1. Overall Architecture

SODDCNet is an encoder-decoder-style network consisting
of three components. The first is the neck, which extracts
essential local information using a series of six 3×3 convo-
lutions and a stride two maxpooling layers after the second
and fourth convolutional layers. The second is the encoder,
which consists of two stages. The third component is the
decoder, exactly the same as a U-Net [42] decoder. Un-
like prior works, we do not use an ImageNet pre-trained
backbone for feature extraction. Instead, we pre-train the
entire network on the Open Images segmentation dataset by
converting the segmentation labels to saliency labels. We
explain each stage in detail in the following sections.

3.2. Encoder Stage

Our proposed SODDCNet comprises two encoder stages
designed to extract long-range convolutional features
through multiple DLRUs. Below, we illustrate the series
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Figure 1. The proposed SODDCNet extracts local information through the neck, followed by two encoder stages that capture global and
local features through input-conditioned convolutions. Each encoder stage consists of Dynamic Long-Range Units (DLRUs) that consist of
dynamic convolutions aided by weights generated by the Attention block. The Attention block uses attention to compute the input-specific
weights of different receptive fields. There are two decoder stages where each decoder consists of a bilinear upsampling followed by a
concatenation operation and two 3× 3 convolutions. [Best viewed in color]

of operations in an encoder stage -

f = conv(conv(X))

[attn9, ...., attn3] = Attention(X)

f9...f3 = DLRU9(X, attn9)...DLRU3(X, attn3)

f̄ = concat[f, f9, ..., f3]

fenc = conv(conv(maxpool(f̄)))

(1)

Firstly, the input is spatially transformed through two
3 × 3 convolutions, each illustrated by conv. Each conv
also consists of a Batch Normalization operation followed
by a ReLU activation function. Simultaneously, we use At-
tention to generate convolutional weights for all DLRUs in
this stage, denoted by attni. Next, each DLRU takes the
transformed features as input and extracts long-range fea-
tures denoted by fi, where i denotes the kernel size. Then,
features from all the DLRUs are concatenated along with f
and sent through a maxpooling layer to reduce spatial reso-
lution, followed by two conv layers for spatial transforma-
tion. Finally, we supervise the output from each stage with
ground-truth saliency and contour maps.

3.3. Attention Block
Previous works [4, 18] that generate dynamic convolu-
tional kernels use a Global Average Pooling (GAP) layer
to condense spatial information and generate convolutional
weights. This leads to a significant loss of spatial features,
a suboptimal characteristic for a dense prediction task like

SOD. Thus, because of its global receptive field, we use
Self-Attention (SA) [47] to generate dynamic convolutional
weights. The Attention block in our model consists of a
series of operations. Firstly, the input’s spatial resolution
is reduced using Average Pooling, followed by two 3 × 3
convolutions.

Pin = conv(conv(avgPool(X)))

Next, we perform the attention operation on the subse-
quent feature maps, followed by a convolution operation to
change the channel size to equal the window size.

Pattn = SA(Pin)

attnk×k = conv(Pattn)

where SA is the self-attention operation, which is described
as -

SA(X) = softmax(
Q ·KT

√
ddim

) · V

K, Q, and V are the key, query, and value tensors generated
from the input X . ddim indicates the embedding dimen-
sion. Once we compute the attention features, we obtain
attnk×k ∈ Rk×k×h′×w′

using a 1 × 1 convolution. Each
attnk×k feature map is a per-pixel mask generated for each
convolution kernel with spatial resolution k × k. h′ and w′

indicate the height and width of the mask features. We use
a different convolution layer to obtain the weights for each
k. Figure 1 visually illustrates the entire procedure.
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3.4. Dynamic Long Range Unit (DLRU)
Traditional convolutions extract features by scanning the
entire feature map through fixed-weight matrices, which
search for common patterns across the dataset. Although
this leads to spatial invariance, these spatially shared fil-
ters struggle to identify sophisticated characteristics in each
input. Furthermore, the most famous CNN architectures
[19, 44] for SOD rely on tiny 3 × 3 convolutions, which
significantly restrict the receptive field in each layer.

We address these limitations by generating input-specific
convolutional weights using self-attention, inducing spatial
adaptability in a convolution operation. Additionally, we
used multiple large-kernel convolutions in parallel to cap-
ture features from different receptive fields at once. As seen
in Figure 1, each DLRU contains four components. Two
3 × 3 convolutions to pre-process and post-process feature
maps, a k × k standard convolution to reduce channel size
and spatial resolution, and finally the dynamic convolution
dyn conv.

fpre = conv(f i−1
k )

flower = convk×k(fpre)

fdyn = dyn convk×k(flower, attnk×k)

fk×k = act(norm(fdyn))

f i
k = conv(fk×k)

We stack multiple DLRUs on top of each other, which is
denoted by i ∈ [1, ...., N ]. To reduce computational com-
plexity, the spatial resolution of the input is reduced using
a strided convolution with the same kernel size as the dy-
namic convolution. After the dyn conv operation, a bilin-
ear upsampling operation increases the spatial resolution to
bring it to the input size. We visualize the outputs from each
DLRU in both the encoding stages in Figure 5.

3.5. Dynamic Convolution
To address the limitations of the traditional convolution
operation, we propose Dynamic Convolution, a context-
adaptive operation designed to capture highly localized,
spatially varying features. In dynamic convolution, each
pixel location in the input feature map receives an individ-
ualized kernel, adaptively computed from the local spatial
and semantic context, thus enabling per-pixel modulation
of feature extraction.

Let X ∈ RH×W×Ci denote the input feature map with a
height H , width W , and Ci input channels. A convolutional
weight W ∈ Rco×ci×k×k is a set of weight matrices with a
kernel size of k×k. Thus, a standard convolution operation
for each pixel location Pij in the output Y can be written as
-

Y (Pij) =
∑
Pn∈S

WPn
·X(Pij + Pn) (2)

Fixed weights

Dynamic weights

Figure 2. The Dynamic convolution operation consists of three
sets of tensors, fixed weights (W ), the weights generated by the
Attenion block (Wdyn), and the input tensor. The Attention block
generates per-pixel masks, and each such mask is multiplied by
every tensor in W , generating per-pixel convolutional weights. We
use these weights to generate long-range dynamic features.

where S = {⟨⌊−k/2⌋, ⌊−k/2⌋⟩, ..., ⟨⌊k/2⌋, ⌊k/2⌋⟩} refers
to the offsets in the neighborhood of the window.

Our dynamic convolution implementation modifies 2 by
adding a dynamic weight parameter W dyn ∈ Rk×k×h×w.

Y (Pij) =
∑
Pn∈S

WPn
·X(Pij + Pn) ·W dyn

Pn
(3)

Each pixel Pij in the spatial domain is associated with a
unique k×k weighting map from W dyn, as shown in Figure
2. This design allows the network to adaptively adjust con-
volutional parameters on a per-pixel basis, enabling highly
localized feature extraction that can better capture complex
spatial dependencies compared to a single, static kernel.

3.6. Loss Function

Feature maps of each DLRU, encoder stage (ENC), and de-
coder stage (DEC) produce saliency and contour outputs.
To supervise these outputs, we follow the same loss func-
tion proposed by [11], consisting of binary-cross-entropy
loss, dice loss, IoU loss, and L1 loss.

Lsalient =

4∑
i=1

(Lsal
DLRU1,i

) +

3∑
i=1

(Lsal
DLRU2,i

)+

2∑
i=1

(Lsal
ENC(i)

+ Lsal
DEC(i)

)

(4)

We use four DLRUs in the first encoder stage and three
DLRUs in the second encoder stage, denoted by the first and
second loss terms in Equation 4, respectively. Similarly, the
total contour loss is written as:
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Methods/Datasets DUTS-TE [48] DUT-OMRON [57] HKU-IS [29] ECSSD [43] PASCAL-S [30]
Fmax MAE Em Sm Fmax MAE Em Sm Fmax MAE Em Sm Fmax MAE Em Sm Fmax MAE Em Sm

PiCANet-R [32]18 0.860 0.051 0.862 0.869 0.803 0.065 0.841 0.832 0.918 0.043 0.936 0.904 0.935 0.046 0.913 0.917 0.868 0.078 0.837 0.852
BASNet [40]19 0.860 0.048 0.884 0.866 0.805 0.056 0.869 0.836 0.928 0.032 0.946 0.909 0.942 0.037 0.921 0.916 0.860 0.079 0.850 0.834
F3-Net [50]20 0.891 0.035 0.902 0.888 0.813 0.053 0.870 0.838 0.937 0.028 0.953 0.917 0.945 0.033 0.927 0.924 0.882 0.064 0.863 0.857
LDF [51]20 0.898 0.034 0.910 0.892 0.820 0.051 0.873 0.838 0.939 0.027 0.954 0.919 0.950 0.034 0.925 0.924 0.887 0.062 0.869 0.859
VST [33]21 0.890 0.037 0.892 0.896 0.825 0.058 0.861 0.850 0.942 0.029 0.953 0.928 0.951 0.033 0.918 0.932 0.890 0.062 0.846 0.871
PSG [58]21 0.886 0.036 0.908 0.883 0.811 0.052 0.870 0.831 0.938 0.027 0.958 0.919 0.949 0.031 0.928 0.925 0.886 0.063 0.863 0.858
RCSB [23]22 0.889 0.035 0.903 0.878 0.810 0.045 0.856 0.820 0.938 0.027 0.954 0.918 0.944 0.033 0.923 0.921 0.886 0.061 0.858 0.857
CSF-R2Net [17]20 0.890 0.037 0.897 0.890 0.815 0.055 0.861 0.838 0.935 0.030 0.952 0.921 0.950 0.033 0.928 0.930 0.886 0.069 0.855 0.862
EDNet [54]22 0.895 0.035 0.908 0.892 0.828 0.048 0.876 0.846 0.941 0.026 0.956 0.924 0.951 0.032 0.929 0.927 0.891 0.065 0.867 0.860
MENet [49]23 0.913 0.028 0.921 0.905 0.834 0.045 0.882 0.850 0.948 0.023 0.960 0.927 0.955 0.031 0.925 0.928 0.901 0.057 0.866 0.868
PGNet [55]22 0.917 0.027 0.922 0.911 0.835 0.044 0.887 0.855 0.948 0.024 0.961 0.929 0.960 0.027 0.932 0.918 0.904 0.054 0.878 0.874
EnergyT [62]21 0.910 0.029 0.909 0.909 0.839 0.050 0.886 0.858 0.947 0.023 0.961 0.930 0.959 0.023 0.933 0.942 0.900 0.055 0.869 0.876
TE7 [27]22 0.927 0.022 0.934 0.919 0.828 0.048 0.876 0.846 0.951 0.020 0.964 0.934 0.959 0.026 0.927 0.936 0.911 0.049 0.880 0.880
SODAWideNet++ [11]24 0.915 0.030 0.916 0.910 0.847 0.046 0.896 0.868 0.949 0.025 0.960 0.932 0.957 0.030 0.927 0.935 0.900 0.063 0.868 0.874
RMFormer [7]23 0.931 0.023 0.933 0.925 0.861 0.040 0.904 0.877 0.957 0.019 0.968 0.940 0.964 0.021 0.934 0.949 - - - -
VSCode [37]24 0.931 0.024 0.931 0.926 0.861 0.042 0.899 0.876 0.957 0.021 0.965 0.940 0.965 0.021 0.934 0.949 0.912 0.051 0.870 0.885
MDSAM [15]24 0.927 0.024 0.929 0.920 0.868 0.039 0.908 0.878 0.956 0.020 0.967 0.941 0.968 0.021 0.937 0.948 0.903 0.055 0.874 0.880
SODDCNet-XL (Ours) 0.928 0.024 0.929 0.923 0.858 0.042 0.904 0.878 0.956 0.021 0.966 0.941 0.964 0.024 0.932 0.945 0.912 0.051 0.876 0.885
SODDCNet-L (Ours) 0.927 0.025 0.928 0.922 0.852 0.043 0.902 0.872 0.955 0.022 0.964 0.938 0.966 0.025 0.932 0.944 0.915 0.052 0.882 0.885

Table 2. Quantitative comparison of our method with 17 other state-of-the-art models in terms of Fmax, MAE, Em, and Sm measures
across different datasets. Best, second, and third results are highlighted in Red, Blue, and Green, respectively.

Image GT Ours (XL) Ours (L) [15] [37] [7] [27] [62] [55]

Figure 3. Qualitative comparison. Our model distinctly generates masks on five samples compared to the ground truth and state-of-the-art
methods. For example, 1) both the monkeys, the foxes, and the birds, 2) the entire man without the chair, and 3) the entire building.

Lcontour =

4∑
i=1

(Lcon
DLRU1,i

) +

3∑
i=1

(Lcon
DLRU2,i

)+

2∑
i=1

(Lcon
ENC(i)

+ Lcon
DEC(i)

)

Lcon = 0.001 · LBCE + Ldice

(5)

LBCE and Ldice are the binary cross-entropy and dice
loss, respectively. Finally, from Equations 4, and 5, the total
loss to train our model is given as

Ltotal = Lsalient + Lcontour (6)

4. Experiments and Results

4.1. SOD Datasets
To pre-train our model, we combine the modified OpenIm-
ages dataset [1, 26] of 944K annotated images and the mod-
ified COCO dataset from [10], creating a 1.28M dataset. We
further augment the Open Images dataset to create a 3.18M
dataset, which we use to pre-train our model. Then, we fine-
tune our model on the DUTS [48] dataset, which contains
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Dataset & Metric SSAV [14] WSV [65] STVS [3] DCF [63] MMN [66] Ours

DAVIS [39]
S ↑ 0.893 0.828 0.892 0.914 0.897 0.914
M ↓ 0.028 0.037 0.023 0.016 0.020 0.016
F ↑ 0.861 0.779 0.865 0.900 0.877 0.901

DAVSOD [14]
S ↑ 0.724 0.705 0.744 0.741 0.777 0.781
M ↓ 0.092 0.103 0.086 0.074 0.065 0.061
F ↑ 0.603 0.605 0.650 0.660 0.708 0.705

DAVSOD-N [14]
S ↑ 0.661 0.633 0.675 0.686 0.688 0.708
M ↓ 0.117 0.14 0.108 0.094 0.088 0.094
F ↑ 0.509 0.485 0.540 0.574 0.555 0.603

DAVSOD-D [14]
S ↑ 0.619 0.572 0.623 0.613 0.622 0.657
M ↓ 0.114 0.163 0.097 0.090 0.089 0.079
F ↑ 0.399 0.383 0.409 0.403 0.418 0.482

Table 3. Performance on four video SOD benchmarks
(DAVIS [39], DAVSOD [14], DAVSOD-N [14], DAVSOD-
D [14]) with state-of-the-art methods. Metrics S (S-measure), M
(MAE), F (F-measure). Higher is better for S/F , lower is better
for M .

Image GT Ours (L) [66] [3]

Figure 4. Qualitative comparison. Our model distinctly generates
masks on three samples compared to the ground truth and state-
of-the-art methods. For example, 1) all the humans and 2) all the
animals.

10,553 images for training. We further augment it to obtain
a training dataset of 31,659 images. We use five datasets
to evaluate the proposed model. They are DUTS-Test [48]
consisting of 5019 images, DUT-OMRON [57] which con-
sists of 5168 images, HKU-IS [29] which consists of 4447
images, ECSSD [43] which consists of 1000 images and
PASCAL-S [30] dataset consisting of 850 images.

4.2. VSOD Datasets
To train our model for Video Salient Object Detection, we
combine the train splits of the DAVIS [39] and DAVSOD
[14] datasets. DAVIS consists of 30 videos for training and
20 videos for testing. We specifically utilize the 480p res-
olution data. DAVSOD consists of a train set and three
different test sets: DAVSOD-Easy (DAVSOD) with 35
videos, DAVSOD-Normal (DAVSOD-N) with 25 videos,
and DAVSOD-Difficult (DAVSOD-D) with 20 videos.

4.3. Implementation Details
We provide two models SODDCNet-XL with 78.3M pa-
rameters and SODDCNet-L with 61.5M parameters. The
smaller model replaces two 3 × 3 convolutions by a 3 × 3
convolution followed by a 1×1 convolution. Also, the 3×3
convolutions in each DLRU are replaced by a 1× 1 convo-
lution. For OpenImages pre-training, we train our model

for 20 epochs. We use a cosine learning rate scheduler with
a two-epoch warmup. For SOD fine-tuning, we train our
model for a further 11 epochs with a starting LR of 0.001,
multiplied by 0.5 after five epochs. Images are resized to
384 × 384 for training and testing. The first stage uses
convolution kernels of sizes [9, 7, 5, 3]. The kernel sizes
for the second encoder stage are [9, 7, 5]. We finalized the
kernel sizes in the encoder through experimentation. We
use Adam optimizer [24] with its default parameters to up-
date the weights. The evaluation metrics for comparing
our works with prior works are the Mean Absolute Er-
ror(MAE), maximum F-measure, the E-measure [13], and
the S-measure [12]. For VSOD implementation, we use
the DUTS-trained model since prior works use DUTS pre-
training as a preliminary step before VSOD training. We
use the same training regime used in SOD training for
VSOD training. We report the maximum F-measure, the
S-measure [12], and MAE as evaluation metrics.

4.4. Quantitative Results
Table 2 presents the performance of our SODDCNet model
compared to other state-of-the-art SOD models. Despite
a significantly smaller pretraining pipeline using OpenIm-
ages, our model competes well with other more recent
transformer-based models like VSCode, RMFormer, and
MDSAM. Remarkably, SODDCNet performs very com-
petitively against the most recent work, MDSAM, despite
using an 800-epoch pre-trained backbone. Also, SOD-
DCNet outperforms the state-of-the-art CNN-based SOD
model Tracer(TE7) on DUT-OMRON, HKU-IS, and EC-
SSD datasets. It consistently ranks in the top three across
all evaluation metrics and datasets. Similarly, for VSOD,
we compare against five state-of-the-art models on four
benchmark datasets. SODDCNet beats all the other mod-
els by a significant margin on most metrics. Especially on
the DAVSOD-N and DAVSOD-D datasets, our model ex-
ceeds the performance of previous sota models by at least
2%. These metrics demonstrate the efficacy of our proposed
SODDCNet and the utilization of a pre-training pipeline
closely related to the target task.

4.5. Qualitative Results
Figure 3 illustrates the visual results of our model against
other state-of-the-art SOD models. The salient objects in
all the figures seem to blend with their respective back-
grounds, making it difficult to identify their boundaries pre-
cisely. Nonetheless, our model outperforms all the other
models by consistently segmenting the salient objects. For
example, most models failed to detect the larger monkey
in the first row, whereas our model precisely identified it.
Similarly, none of the other models segmented the smaller
animal in the second row, whereas our method accurately
captured both animals. The same is the case with the third
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Image GT Prediction
3× 3 5× 5 7× 7 9× 9 5× 5 7× 7 9× 9

Figure 5. The above visual displays the intermediate features generated by each DLRU with a specific receptive field. In the first encoder
stage, the smaller convolution kernels 3× 3 and 5× 5 identify edges, whereas the larger kernels capture the entire object. However, in the
second encoder stage, all the kernels consistently concentrate on the salient object.

row, where most models failed to differentiate the smaller
white bird from the background snow. In the fourth row, all
the other models could not distinguish between the human
and the chair, ending up segmenting both objects, whereas
our model precisely segmented only the human and not the
chair. A similar observation from the last row shows that
our model possesses superior background-foreground dif-
ferentiation ability than prior works. Similar observations
can be made from Figure 4, which contains visual VSOD
results.

5. Ablation Studies
In this section, we understand the behavior of various com-
ponents of the proposed network. All the results are re-
ported on the DUTS test set. We use MAE and Fmax met-
rics for evaluating the different configurations.

5.1. Influence of different convolutions kernels
In this section, we consider three different convolutional
kernels, traditional large kernels, dilated convolutions, and
small kernels, to study their influence on our proposed
model as shown in table 4. We start with attention-
generated large convolution kernels in the proposed SOD-
DCNet. To understand the importance of these larger ker-
nels, we replace them with 3 × 3 dilated convolutions with
the same receptive field and traditional 3 × 3 convolutions.
These three scenarios are named as S1, S2, and S3. S1 cor-
responds to the SODDCNet setting, S2 replaces all the con-
volution layers with 3×3 dilated convolution with appropri-
ate dilation rates with the same receptive field as in S1. The
final setting S3 consists of the same number of traditional
3× 3 convolutions.

5.2. Impact of Attention-generated weights
Each Dynamic convolution is a feature extraction unit in
a DLRU that contains the attention-generated weights and

Setting MAE Fmax

Large kernels (S1) 0.025 0.927
Dilated Convolutions (S2) 0.030 0.917

Small kernels (S3) 0.030 0.915

Table 4. Perfomance when using attention-generated large, di-
lated, and small convolutions.

standard convolutional weights. Using only the static con-
volution translates our network to a traditional CNN whose
weights are content-independent and constant during the in-
ference. We report performance with and without attention-
generated convolutional weights in Table 5.

Setting MAE Fmax

w.o Dynamic Weights 0.028 0.923
w. Dynamic Weights 0.025 0.927

Table 5. Performance of SODDCNet with and without the dy-
namic weights generated by self-attention.

6. Conclusion
Our proposed method, SODDCNet, integrates large kernel
convolutions with attention-based weight generation. We
create convolutional weights that extract input-specific
semantic features from multiple receptive fields using Dy-
namic Long Range Units (DLRUs). Specifically, we gener-
ate per-pixel masks that guide the convolutional weights,
promoting content adaptability. To pre-train our model,
we merge the Open Images semantic segmentation dataset
with the COCO dataset, resulting in a comprehensive
dataset of 3.18 million images. Our model demonstrates
competitive performance compared to state-of-the-art
models, even those with extensive pre-training schedules,
across two tasks and nine benchmark datasets. Addition-
ally, it achieves superior results in qualitative assessments.
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