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Depth L1 [cm]↓ PSNR↑ 116.71 18.41 15.05 24.06

ATE RMSE [cm]↓ 76.56 4.2

Figure 1. Splat-SLAM. Our system yields accurate scene reconstruction (rendering depth L1), rendering (PSNR) and tracking accuracy
(ATE RMSE) compared to MonoGS. The results averaged over all keyframes. The scene is from TUM-RGBD [56] fr1 room.

Abstract

3D Gaussian Splatting offers a compact, efficient approach
to RGB-only dense SLAM by providing high-quality map
rendering with a dense, optimized 3D Gaussian map. Exist-
ing methods, however, often underperform in reconstruction
quality compared to alternatives like neural point clouds, pri-
marily due to limited map and pose optimization or reliance
on monocular depth. We introduce the first RGB-only SLAM
system with globally optimized tracking, dynamically adapt-
ing the Gaussian map to keyframe pose and depth updates.
To address the lack of geometric priors, we incorporate
so called Disparity, Scale and Pose Optimization (DSPO)
for bundle adjustment, jointly optimizing pose, depth, and
monocular depth scale. Our tests on Replica, TUM-RGBD,
and ScanNet confirm this approach achieves superior or
comparable tracking, mapping, and rendering accuracy with
small map sizes and fast runtimes.

1. Introduction

A common factor within the recent trend of dense SLAM
is that the majority of works reconstruct a dense map by

optimizing a neural implicit encoding of the scene, either as
weights of an MLP [1, 39, 45, 57], as features anchored in
dense grids [3, 29, 42, 51, 58, 66, 67, 79, 81], using hierarchi-
cal octrees [71], via voxel hashing [8, 40, 49, 76, 77], point
clouds [18, 30, 50] or axis-aligned feature planes [33, 47].
We have also seen the introduction of 3D Gaussian Splatting
(3DGS) to the dense SLAM field [21, 24, 38, 69, 73].

Out of this 3D representation race there is, however, not
yet a clear winner. In the context of dense SLAM, a care-
ful modeling choice needs to be made to achieve accurate
surface reconstruction as well as low tracking errors. Some
takeaways can be deduced from the literature: neural implicit
point cloud representations achieve state-of-the-art recon-
struction accuracy [30, 50], especially with RGBD input.
At the same time, 3D Gaussian splatting methods yield the
highest fidelity renderings [21, 24, 38, 69, 73] and show
promise in the RGB-only setting due to their flexibility in
optimizing the surface location [21, 38]. However, they
are not leveraging any multi-view depth or geometric prior
leading to poor geometry in the RGB-only setting. The ma-
jority of the aforementioned works only deploy so called
frame-to-model tracking, and do not implement global tra-
jectory and map optimization, leading to excessive drift,
especially in real world conditions. Instead, to this date,
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frame-to-frame tracking methods, coupled with loop closure
and global bundle adjustment (BA) achieve state-of-the-art
tracking accuracy [76, 77]. However, they use hierarchical
feature grids [76, 77], not suitable for map deformations
at e.g. loop closure as they require expensive reintegration
strategies.

In this work we propose an RGB-only SLAM system
that combines the strengths of frame-to-frame tracking us-
ing recurrent dense optical flow [61] with the fidelity of 3D
Gaussians as the map representation [38] (see Fig. 1). The
3D Gaussian map enables online map deformations at loop
closure and global BA. To enable accurate surface recon-
struction, we leverage consistent so called proxy depth that
combines multi-view depth estimation with learned monocu-
lar depth. Our contribution comprises, for the first time, a
SLAM pipeline encompassing all the following parts:
• A globally consistent frame-to-frame RGB-only tracker.
• A dense deformable 3D Gaussian map that adapts online

to loop closure and global bundle adjustment.
• A novel scheme for joint Disparity, Scale and Pose Op-

timization (DSPO) that combines pose and geometry
estimation. It refines inaccurate parts of the estimated
keyframe disparity by tightly coupling a monocular depth
prior into the bundle adjustment.

• Improved map sizes and runtimes compared to other dense
SLAM approaches.

2. Related Work

Dense Visual SLAM. Curless and Levoy [9] pioneered
dense online 3D mapping with truncated signed distance
functions, with KinectFusion [42] demonstrating real-time
SLAM via depth maps. Enhancements like voxel hash-
ing [11, 22, 40, 43, 44] and octrees [5, 31, 37, 53, 71] im-
proved scalability, while point-based SLAM [4, 6, 22, 25,
30, 50, 52, 68, 74] has also been effective. To address pose
drift, globally consistent pose estimation and dense map-
ping techniques have been developed, often dividing the
global map into submaps [2, 4, 7, 11, 15, 17, 22, 23, 30, 34–
36, 40, 48, 55, 59, 59]. Loop detection triggers submap
deformation via pose graph optimization [4, 7, 13, 14, 16–
18, 23, 27, 30, 35, 36, 40, 40, 48, 52, 55, 59, 63, 70]. Some-
times global BA is used for refinement [4, 8, 11, 18, 40,
52, 59, 61, 70, 72]. 3D Gaussian SLAM with RGBD input
has also been shown, but these methods do not consider
global consistency via e.g. loop closure [24, 69, 73]. Other
approaches to global consistency minimize reprojection er-
rors directly, with DROID-SLAM [61] refining dense optical
flow and camera poses iteratively, and recent enhancements
like GO-SLAM [77] and HI-SLAM [76] optimizing factor
graphs for accurate tracking. For a recent survey on NeRF-
inspired dense SLAM, see [62].

RGB-only Dense Visual SLAM. The majority of NeRF

inspired RGB-only dense SLAM methods do not address
the problem of global map consistency or requires expensive
reintegration strategies via backpropagation [8, 19, 20, 28,
41, 46, 49, 76, 77, 80]. MonoGS [38] and Photo-SLAM [21]
pioneered RGB-only SLAM with 3D Gaussians. However,
they lack proxy depth which prevents them from achieving
high accuracy mapping. MonoGS [38] also lacks global
consistency. MoD-SLAM [78] uses an MLP to parameterize
the map via a unique reparameterization.

Depth Priors for RGB-only SLAM. NICER-SLAM [80]
estimates the scale and shift of a relative mono-depth es-
timator and supervises all pixels equally. MoD-SLAM
[78] combines relative and metric mono-depth estimation,
and requires additional finetuning of the metric depth. HI-
SLAM [76] proposes a similar technique to ours, but regular-
izes all available keyframe depth pixels with the mono-depth
prior. In our DSPO, we instead split the optimization and use
the monocular prior to regularize the high error keyframe
depth pixels while the low error keyframe depth is kept fixed
to stabilize scale estimation.

3. Method

Splat-SLAM is a monocular SLAM system which tracks the
camera pose while reconstructing the dense geometry of the
scene in an online manner. This is achieved through the fol-
lowing steps: We first track the camera by performing local
BA on selected keyframes by fitting them to dense optical
flow estimates. The local BA optimizes the camera pose as
well as the dense depth of the keyframe. For global consis-
tency, when loop closure is detected, loop BA is performed
on an extended graph including the loop nodes and edges
(Sec. 3.1). Interleaved with tracking, mapping is done on
a progressively growing 3D Gaussian map which deforms
online to the keyframe poses and so called proxy depth maps
(Sec. 3.2). For an overview of our method, see Fig. 2.

3.1. Tracking
To predict the motion of the camera during scene explo-
ration, we use a pretrained recurrent optical flow model [60]
coupled with our so called Disparity, Scale and Pose Opti-
mization (DSPO) to jointly optimize camera poses and per
pixel disparities. In the following, we describe this process
in detail.

Optimization is done with the Gauss-Newton algorithm
over a factor graph G(V,E), where the nodes V store the
keyframe pose and disparity, and edges E store the optical
flow between keyframes. Odometry keyframe edges are
added to G by computing the optical flow to the last added
keyframe. If the mean flow is larger than a threshold τ ∈ R,
the new keyframe is added to G. Edges for loop closure
and global BA are discussed later. Importantly, the same
objective is optimized for local BA, loop closure and global
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Figure 2. Splat-SLAM Architecture. Given an RGB input stream, we track and map each keyframe, initially estimating poses through local
bundle adjustment (BA) using DSPO (Disparity, Scale and Pose Optimization). This DSPO integrates pose and depth estimation, enhancing
depth with monocular depth. It further refines poses globally via online loop closure and global BA. The proxy depth map merges keyframe
depths D̃ from the tracking with monocular depth Dmono to fill gaps. Mapping employs a deformable 3D Gaussian map, optimizing its
parameters through a re-rendering loss. Notably, the 3D map adjusts for global pose and depth updates before each mapping phase.

BA, but over factor graphs with different structures.
The DSPO consists of two optimization objectives that are

optimized alternatively. The first objective, typically termed
Dense Bundle Adjustment (DBA) [61] optimizes the pose
and disparity of the keyframes jointly, Eq. (1). Specifically,
the objective is optimized over a local graph defined within
a sliding window over the current frame.

argmin
ω,d

∑
(i,j)∈E

∥∥p̃ij −Kω−1
j (ωi(1/di)K

−1[pi, 1]
T )

∥∥2
Σij

,

(1)
with p̃ij ∈ R(W×H×2)×1 being the flattened predicted
pixel coordinates when the pixels pi ∈ R(W×H×2)×1 from
keyframe i are projected into keyframe j using optical flow.
Further, K is the camera intrinsics, ωj and ωi the camera-
to-world extrinsics for keyframes j and i, di the disparity
of pixel pi and ∥ · ∥Σij is the Mahalanobis distance with
diagonal weighting matrix Σij . Each weight denotes the
confidence of the optical flow prediction for each pixel in
p̃ij . For clarity of the presentation, we omit homogeneous
coordinates.

In the second objective, we introduce monocular depth
Dmono as two additional data terms, to tackle noisy disparity
estimates from the DBA optimization. The monocular depth
Dmono is predicted at runtime by a pretrained relative depth
DPT model [12].

argmin
dh,θ,γ

∑
(i,j)∈E

∥∥p̃ij −Kω−1
j (ωi(1/d

h
i )K

−1[pi, 1]
T )

∥∥2
Σij

+α1

∑
i∈V

∥∥dhi − (θi(1/D
mono
i ) + γi)

∥∥2
+α2

∑
i∈V

∥∥dli − (θi(1/D
mono
i ) + γi)

∥∥2 . (2)

Here, the optimizable parameters are the scales θ ∈ R, shifts
γ ∈ R and a subset of the disparities dh classified as being

high error (explained later). This is done since the monocular
depth is only deemed useful where the multi-view disparity
di optimization is inaccurate. Furthermore, α1<α2, which
is done to ensure that the scales θ and shifts γ are optimized
with the preserved low error disparities dl. The scale θi and
shift γi are initialized using least squares fitting

{θi, γi} = argmin
θ,γ

∑
(u,v)

((
θ(1/Dmono

i )+γ
)
−dli

)2

. (3)

Equation (1) and Eq. (2) are optimized alternatively to avoid
the scale ambiguity encountered if d, θ, γ and ω are opti-
mized jointly.

Next, we describe how high and low error disparities are
classified. For a given disparity map di (separated into low
and high error parts {dli, dhi }) for frame i, we denote the
corresponding depth D̃i = 1/di. Pixel correspondences
(u, v) and (û, v̂) between keyframes i and j respectively are
established by warping (u, v) into frame j with depth D̃i as

pi = ωiD̃i(u, v)K
−1[u, v, 1]T , (4)

[û, v̂, 1]T ∝ Kω−1
j [pi, 1]

T .

The corresponding 3D point to (û, v̂) is computed from the
depth at (û, v̂) as

pj = ωjD̃j(û, v̂)K
−1[û, v̂, 1]T . (5)

If the L2 distance between pi and pj is smaller than a thresh-
old, the depth D̃i(u, v) is consistent between i and j. By
looping over all keyframes except i, the global two-view
consistency ni can be computed for frame i as

ni(u, v) =
∑

k∈KFs,
k ̸=i

1
(
∥pi − pk∥2 < η ·average(D̃i)

)
. (6)

Here, 1(·) is the indicator function and η ∈ R≥0 is a hyper-
parameter and ni is the total two-view consistency for pixel
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(u, v) in keyframe i. D̃i(u, v) is valid if ni is larger than a
threshold.

Loop Closure. To mitigate scale and pose drift, we incorpo-
rate loop closure along with online global bundle adjustment
(BA) in addition to local window frame tracking. Loop
detection is achieved by calculating the mean optical flow
magnitude between the current active keyframes (within the
local window) and all previous keyframes. Two criteria are
evaluated for each keyframe pair: First, the optical flow
must be below a specified threshold τloop, ensuring sufficient
co-visibility between the views. Second, the time interval
between the frames must exceed a predefined threshold τt to
prevent the introduction of redundant edges into the graph.
When both criteria are met, a unidirectional edge is added
to the graph. During the loop closure optimization process,
only the active keyframes and their connected loop nodes
are optimized to keep the computational load manageable.

Global BA. For the online global BA, a separate graph that
includes all keyframes up to the present is constructed. Edges
are introduced based on the temporal and spatial relation-
ships between the keyframes, as outlined in [77]. We execute
online global BA every 20 keyframes. To maintain numerical
stability, the scales of the disparities and poses are normal-
ized prior to each global BA optimization. This normaliza-
tion involves calculating the average disparity d̄ across all
keyframes and then adjusting the disparity to dnorm = d/d̄
and the pose translation to tnorm = d̄t.

3.2. Deformable 3D Gaussian Scene Representation
We adopt a 3D Gaussian Splatting representation [26] which
deforms under DSPO or loop closure optimizations to
achieve global consistency. Thus, the scene is represented
by a set G = {gi}Ni=1 of 3D Gaussians. Each Gaussian prim-
itive gi, is parameterized by a covariance matrix Σi ∈ R3×3,
a mean µi ∈ R3, opacity oi ∈ [0, 1], and color ci ∈ R3.
All attributes of each Gaussian are optimized through back-
propagation. The density function of a single Gaussian is
described as

gi(x) = exp
(
− 1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
. (7)

Here, the spatial covariance Σi defines an ellipsoid and is
decomposed as Σi = RiSiS

T
i R

T
i , where Si = diag(si) ∈

R3×3 is the spatial scale and Ri ∈ R3×3 represents the
rotation.

Rendering. Rendering color and depth from G, given a
camera pose, involves first projecting (known as “splat-
ting”) 3D Gaussians onto the 2D image plane. This is
done by projecting the covariance matrix Σ and mean µ
as Σ′ = JRΣRTJT and µ′ = Kω−1µ, where R is the ro-
tation component of world-to-camera extrinsics ω−1 and J
is the Jacobian of the affine approximation of the projective

transformation [82]. The final pixel color C and depth Dr

at pixel x′ is computed by blending 3D Gaussian splats that
overlap at a given pixel, sorted by their depth as

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj)

Dr =
∑
i∈N

d̂iαi

i−1∏
j=1

(1− αj) , (8)

where d̂i is the z-axis depth of the center of the i-th 3D
Gaussian and the final opacity αi is the product of the opacity
oi and the 2D Gaussian density as

αi = oi exp
(
− 1

2
(x′ − µ′

i)
⊤Σ′−1

i (x′ − µ′
i)
)

. (9)

Map Initialization. For every new keyframe, we adopt the

RGBD strategy of MonoGS [38] for adding new Gaussians
to the unexplored scene space. As we do not have access
to a depth sensor, we construct a proxy depth map D by
combining the inlier multi-view depth D̃ and the monocular
depth Dmono as

D(u, v) =

{
D̃(u, v) if D̃(u, v) is valid
θDmono(u, v) + γ otherwise

(10)

Here, θ and γ are computed as in Eq. (3) but using depth
instead of disparity.

Keyframe Selection and Optimization. Apart from the
keyframe selection based on a mean optical flow threshold τ ,
we additionally adopt the keyframe selection strategy from
[38] to avoid mapping redundant frames.

To optimize the 3D Gaussian parameters, we batch the
parameter updates to a local window similar to [38] and ap-
ply a photometric and geometric loss to the proxy depth as
well as a scale regularizer to avoid artifacts from elongated
Gaussians. Inspired by [38], we further use exposure com-
pensation by optimizing an affine transformation for each
keyframe. The final loss is

min
G,a,b

∑
k∈KFs

λ

Nk
|(akCk + bk)− Cgt

k |1

+
1− λ

Nk
|Dr

k −Dk|1 +
λreg

|G|

|G|∑
i

|si − s̃i|1 , (11)

where KFs contains the set of keyframes in the local win-
dow, Nk is the number of pixels per keyframe, λ and
λreg are hyperparameters, a = {a1, . . . , ak, . . . } and b =
{b1, . . . , bk, . . . } are the parameters for the exposure com-
pensation and s̃ is the mean scaling, repeated over the three
dimensions.
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Metric GO-SLAM
[77]

NICER-SLAM
[80]

MoD-SLAM
[28]

Photo-SLAM
[21]

Mono-GS
[38]

Q-SLAM
[46] Ours

PSNR ↑ 22.13 25.41 27.31 33.30 31.22 32.49 36.45
SSIM ↑ 0.73 0.83 0.85 0.93 0.91 0.89 0.95
LPIPS ↓ - 0.19 - - 0.21 0.17 0.06

ATE RMSE↓ 0.39 1.88 0.35 1.09 14.54 - 0.35

Table 1. Rendering and Tracking Results on Replica [54] for RGB-Methods. Our method outperforms all methods on rendering and
performs on par for tracking accuracy. Results are from [62] except ours (average over 8 scenes). Best results are highlighted as first ,
second , third .

Metrics NeRF-SLAM
[62]

DIM-SLAM
[28]

GO-SLAM
[77]

NICER-SLAM
[80]

HI-SLAM
[76]

MoD-SLAM
[78]

Mono-GS
[38]

Q-SLAM
[46] Ours

Render Depth L1↓ 4.49 - - - - - 27.24 2.76 2.41
Accuracy ↓ - 4.03 3.81 3.65 3.62 2.48 30.61 - 2.43
Completion ↓ - 4.20 4.79 4.16 4.59 - 12.19 - 3.64
Comp. Rat. ↑ - 79.60 78.00 79.37 80.60 - 40.53 - 84.69

Table 2. Reconstruction Results on Replica [54] for RGB-Methods. Our method outperforms existing works on all metrics. Results are
averaged over 8 scenes.

Map Deformation. Since our tracking framework is glob-
ally consistent, changes in the keyframe poses and proxy
depth maps need to be accounted for in the 3D Gaussian map
by a non-rigid deformation. Though the Gaussian means
are directly optimized, one could in theory let the optimizer
deform the map as refined poses and proxy depth maps are
provided. We find, however, that in particular rendering is
aided by actively deforming the 3D Gaussian map. We ap-
ply the deformation to all Gaussians which receive updated
poses and depths before mapping.

Each Gaussian gi is associated with a keyframe that an-
chored it to the map G. Assume that a keyframe with camera-
to-world pose ω and proxy depth D is updated such that
ω → ω′ and D → D′. We update the mean, scale and
rotation of all Gaussians gi associated with the keyframe.
Association is determined by what keyframe added the Gaus-
sian to the scene. The mean µi is projected into ω to find the
pixel correspondence (u, v). Since the Gaussians are not nec-
essarily anchored on the surface, instead of re-anchoring the
mean at D′, we opt to shift the mean by D′(u, v)−D(u, v)
along the optical axis. We update Ri and si accordingly as

µ′
i =

(
1 +

D′(u, v)−D(u, v)

(ω−1µi)z

)
ω′ω−1µi , (12)

R′
i = R′R−1Ri, s′i =

(
1 +

D′(u, v)−D(u, v)

(ω−1µi)z

)
si .

Here, (·)z denotes the z-axis depth. For Gaussians which
project into pixels with missing depth or outside the viewing
frustum, we only rigidly deform them. After the final global
BA optimization, we additionally deform the Gaussian map
and perform a set of final refinements (see suppl. material).

4. Experiments

We first describe our experimental setup and then evaluate
our method against state-of-the-art dense RGB and RGBD
SLAM methods on Replica [54] as well as the real world
TUM-RGBD [56] and the ScanNet [10] datasets. For more
experiments and details, we refer to the supplementary mate-
rial.

Implementation Details. For the proxy depth, we use η =
0.01 to filter points and use the condition nc ≥ 2 to ensure
multi-view consistency. For the mapping loss function, we
use λ = 0.8, λreg = 10.0. We use 60 iterations during
mapping. For tracking, we use α1 = 0.01 and α2 = 0.1 as
weights for the DSPO. We use the flow threshold τ = 4.0 on
ScanNet, τ = 3.0 on TUM-RGBD and τ = 2.25 on Replica.
The threshold for loop detection is τloop = 25.0. The time
interval threshold is τt = 20. We conducted the experiments
on a cluster with an NVIDIA A100 GPU.

Evaluation Metrics. For rendering we report PSNR,
SSIM [65] and LPIPS [75] on the rendered keyframe im-
ages against the sensor images. For reconstruction, we first
extract the meshes with marching cubes [32] as in [50] and
evaluate the meshes using accuracy [cm], completion [cm]
and completion ratio [%] (threshold 5 cm) against the ground
truth meshes. We also report the re-rendering depth L1 [cm]
metric to the ground truth sensor depth as in [49]. We use
ATE RMSE [cm] [56] to evaluate the estimated trajectory.

Datasets. We use the RGBD trajectories from [57] captured
from the synthetic Replica dataset [54]. We also test on real-
world data using the TUM-RGBD [56] and the ScanNet [10]
datasets.
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Figure 3. Rendering Results on ScanNet [10] and TUM-RGBD [56]. Our method yields better rendering quality MonoGS. First column:
The red box shows a rendering distortion, likely from the large trajectory error. The green boxes show that our method fuses information
from multiple views to avoid motion blur, present in the input. Fourth column: The rendering is from the pose of the red box in the third
column.

Method Metric 0000 0059 0106 0169 0181 0207 Avg.

RGB-D Input

SplaTaM
[24]

PSNR↑ 19.33 19.27 17.73 21.97 16.76 19.80 19.14
SSIM ↑ 0.66 0.79 0.69 0.78 0.68 0.70 0.72
LPIPS↓ 0.44 0.29 0.38 0.28 0.42 0.34 0.36

MonoGS
[38]

PSNR↑ 18.70 20.91 19.84 22.16 22.01 18.90 20.42
SSIM ↑ 0.71 0.79 0.81 0.78 0.82 0.75 0.78
LPIPS↓ 0.48 0.32 0.32 0.34 0.42 0.41 0.38

Gaussian-
SLAM [73]

PSNR↑ 28.54 26.21 26.26 28.60 27.79 28.63 27.67
SSIM ↑ 0.93 0.93 0.93 0.92 0.92 0.91 0.92
LPIPS↓ 0.27 0.21 0.22 0.23 0.28 0.29 0.25

RGB Input

GO-
SLAM [77]

PSNR↑ 15.74 13.15 14.58 14.49 15.72 15.37 14.84
SSIM ↑ 0.42 0.32 0.46 0.42 0.53 0.39 0.42
LPIPS↓ 0.61 0.60 0.59 0.57 0.62 0.60 0.60

MonoGS
[38]

PSNR↑ 16.91 19.15 18.57 20.21 19.51 18.37 18.79
SSIM ↑ 0.62 0.69 0.74 0.74 0.75 0.70 0.71
LPIPS↓ 0.70 0.51 0.55 0.54 0.63 0.58 0.59

Ours
PSNR↑ 28.68 27.69 27.70 31.14 31.15 30.49 29.48
SSIM ↑ 0.83 0.87 0.86 0.87 0.84 0.84 0.85
LPIPS ↓ 0.19 0.15 0.18 0.15 0.23 0.19 0.18

Table 3. Rendering Performance on ScanNet [10]. Our method
performs even better or on par with all RGB-D methods. We take
the numbers for SplaTaM and Gaussian-SLAM from [73].

Baseline Methods. We compare our method to numerous
works on dense RGB and RGBD SLAM. The main baseline
is MonoGS [38].

Method Method f1/desk f2/xyz f3/off f1/desk2 f1/room Avg.

RGB-D Input

SplaTaM
[24]

PSNR↑ 22.00 24.50 21.90 - - -
SSIM ↑ 0.86 0.95 0.88 - - -
LPIPS ↓ 0.23 0.10 0.20 - - -

Gaussian-
SLAM [73]

PSNR↑ 24.01 25.02 26.13 23.15 22.98 24.26
SSIM ↑ 0.92 0.92 0.94 0.91 0.89 0.92
LPIPS ↓ 0.18 0.19 0.14 0.20 0.24 0.19

RGB Input

Photo-
SLAM [21]

PSNR↑ 20.97 21.07 19.59 - - -
SSIM ↑ 0.74 0.73 0.69 - - -
LPIPS ↓ 0.23 0.17 0.24 - - -

MonoGS
[38]

PSNR↑ 19.67 16.17 20.63 19.16 18.41 18.81
SSIM ↑ 0.73 0.72 0.77 0.66 0.64 0.70
LPIPS ↓ 0.33 0.31 0.34 0.48 0.51 0.39

Ours
PSNR↑ 25.61 29.53 26.05 23.98 24.06 25.85
SSIM ↑ 0.84 0.90 0.84 0.81 0.80 0.84
LPIPS ↓ 0.18 0.08 0.20 0.23 0.24 0.19

Table 4. Rendering Performance on TUM-RGBD [56]. Our
method performs competitively or better than RGB-D methods. For
all RGB-D methods, we take the numbers from [73].

Rendering. In Tab. 1, we evaluate the rendering perfor-
mance on Replica [54] and find that our method performs su-
perior among all baseline RGB-methods. Table 3 and Table 4
show the rendering accuracy on the ScanNet [10] and TUM-
RGBD [56] datasets. In particular, we outperform existing
RGB-only works with a clear margin, while even beating
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Figure 4. Reconstruction Results on Replica [54] on Normal Shaded Meshes. Our method achieves higher geometric accuracy compared
to existing works. MonoGS suffers significantly from a lack of proxy depth, despite multiview optimization.

Method 00 59 106 169 181 207 Avg.-6 54 233 Avg.-8

RGB-D Input
NICE-SLAM [79] 12.0 14.0 7.9 10.9 13.4 6.2 10.7 20.9 9.0 11.8
Co-SLAM [64] 7.1 11.1 9.4 5.9 11.8 7.1 8.7 - - -
ESLAM [33] 7.3 8.5 7.5 6.5 9.0 5.7 7.4 36.3 4.3 10.6
MonoGS[38] 16.1 6.4 8.1 8.7 26.4 9.2 12.5 20.6 13.1 13.6

RGB Input
MonoGS[38] 149.2 96.8 155.5 140.3 92.6 101.9 122.7 206.4 89.1 129.0
GO-SLAM [77] 5.9 8.3 8.1 8.4 8.3 6.9 7.7 13.3 5.3 8.1
HI-SLAM[76] 6.4 7.2 6.5 8.5 7.6 8.4 7.4 - - -
Q-SLAM[46] 5.8 8.5 8.4 8.7 8.8 - - 12.6 5.3 -
Ours 5.5 9.1 7.0 8.2 8.3 7.5 7.6 9.4 5.1 7.5

Table 5. Tracking Accuracy on ScanNet [10] Our method per-
forms on average competitively with HI-SLAM and better than all
other methods. Results for the RGB-D methods are from [30].

the currently best RGBD method, Gaussian-SLAM [73] on
most metrics, despite the fact that we do not implement view-
dependent rendering in the form of spherical harmonics. We
attribute this to our deformable 3D Gaussian map, optimized
with strong proxy depth along a globally consistent track-
ing backend. In Fig. 3 and Fig. 1 we show renderings on
the real-world ScanNet [10] and TUM-RGBD [56] datasets.
Due to high tracking errors, MonoGS [38] performs poorly

Method f1/dsk f2/xyz f3/off Avg.-3 f1/dsk2 f1/rm Avg.-5

RGB-D Input
SplaTAM [24] 3.4 1.2 5.2 3.3 6.5 11.1 5.5
GS-SLAM [69] 1.5 1.6 1.7 1.6 - - -
GO-SLAM [77] 1.5 0.6 1.3 1.1 - 4.7 -
MonoGS [38] 1.4 1.4 1.5 1.5 5.1 6.3 3.1

RGB Input
MonoGS [38] 3.8 5.2 2.9 4.0 75.7 76.6 32.8
Photo-SLAM [21] 1.5 1.0 1.3 1.3 - - -
DIM-SLAM [28] 2.0 0.6 2.3 1.6 - - -
GO-SLAM [77] 1.6 0.6 1.5 1.2 2.8 5.2 2.3
MoD-SLAM [78] 1.5 0.7 1.1 1.1 - - -
Q-SLAM [46] 1.3 0.9 - - 2.3 4.9 -
Ours 1.6 0.2 1.4 1.1 2.8 4.2 2.1

Table 6. Tracking Accuracy on TUM-RGBD [56]. Our method
performs even better than RGB-D methods.

on some scenes, yet fails to achieve the same fidelity as our
method when the tracking error is low, as a result of the weak
geometric constraints during optimization.

Reconstruction. We show quantitative and qualitative re-
sults on the Replica [54] dataset in Tab. 2 and Fig. 4 re-
spectively. Our method achieves the best performance on
all metrics. Qualitatively, we show normal shaded meshes
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RGB DBA DBA+ DSPO Ground
mono prior Truth

Figure 5. Comparison of Estimated Depth. We show the depth output D̃ from the tracker. The pixels which are invalid (high error) are
colored dark blue. DBA is the method that Droid-SLAM [61] uses. The DBA+mono prior strategy is used in HI-SLAM [76], i.e. the
mono prior supervises all pixels directly. It is clear that our formulation (DSPO) provides the most consistent keyframe depth.

Mono
Depth

Multiview
Depth

Multiview
Filtering

PSNR
[dB] ↑

Acc.
[cm] ↓

Comp.
[cm] ↓

Comp. Ratio
[cm] ↑

✓ ✗ ✗ 36.02 3.62 4.08 81.16
✗ ✓ ✓ 36.17 2.64 4.73 80.12
✗ ✓ ✗ 36.21 18.71 4.06 80.29
✓ ✓ ✓ 36.45 2.43 3.64 84.69

Table 7. Ablation Study on Replica [54]. We show that the
combination of filtered multiview depth completed with monocular
depth yields the best performance on all metrics. Mono Depth refers
to Dmono, Multiview Depth refers to D̃ and Multiview Filtering
means enabling Eq. (6). All results are averaged over 8 scenes.

from different viewpoints. Our method can reconstruct finer
details than existing works, especially around thin structures
(e.g. second row), where our strong proxy depth coupled
with the 3D Gaussian map representation yields superior
depth rendering, which directly influences the mesh quality.
MonoGS [38] suffers significantly from the lack of proxy
depth, visible in all scenes. Figure 1 shows depth rendering
on the real-world TUM-RGBD [56] room scene. We com-
pute the average depth L1 error over all keyframes, achieving
15.05 cm, beating existing works.

Tracking. In Tab. 1, Tab. 5 and Tab. 6, we report the tracking
accuracy of the estimated trajectory on Replica [54], Scan-
Net [10] and TUM-RGBD [56]. On all datasets, our method
shows competitive results in every single scene and gives the
best average value among the RGB and RGB-D methods.

Ablation Study. In Tab. 7, we conduct a set of ablation
studies, by enabling and disabling certain parts. We find that
the combination of filtered multiview depth completed with
monocular depth yields the best performance in terms of
rendering and reconstruction metrics.

In Fig. 5, we show the benefit of the DSPO on the the
valid estimated depth maps D̃, yielding more consistent
depth estimation.

Memory and Runtime. In Tab. 8, we evaluate the peak
GPU memory usage, map size and runtime of our method.
We achieve a comparable GPU memory usage with GO-
SLAM [77] and SplaTaM [24]. Our map size is similar
to MonoGS [38]. Regarding runtime, we are faster than
SplaTaM and comparable to MonoGS. GO-SLAM has the

GO- SplaTAM MonoGS
SLAM [77] [24] [38] Ours

GPU Usage [GiB] 18.50 18.54 14.62 17.57
Map Size [MB] - - 6.8 6.5
Avg. FPS 8.36 0.14 0.32 1.24

Table 8. Memory and Running Time Evaluation on Replica [54]
room0. Our peak memory usage and runtime are comparable to
existing works. We take the numbers from [62] except for ours and
MonoGS and we add the Map Size, which denotes the size of the
final 3D representation. GPU Usage denotes the peak usage during
runtime. All methods are evaluated on an NVIDIA RTX 3090 GPU
using single threading for fairness.

fastest runtime, but as shown in Tab. 1 and Tab. 2, it sacrifices
rendering and reconstruction quality for speed.

Limitations. We currently do not model the appearance
with spherical harmonics, since it only yields a marginal
gains in rendering accuracy, while requiring more memory.
It is is straightforward to add. We only make use of globally
optimized frame-to-frame tracking, which fails to leverage
frame-to-model queues from the 3D Gaussian map. Another
limitation is that our construction of the final proxy depth
D is quite simple and does not fuse the monocular and
keyframe depths in an informed manner, e.g. using normal
consistency. Finally, as future work, it is interesting to study
how surface regularization can be enforced via e.g. quadric
surface elements as in [46].

5. Conclusion
We proposed Splat-SLAM, a dense RGB-only SLAM
system which uses a deformable 3D Gaussian map for
mapping and globally optimized frame-to-frame tracking
via optical flow. Importantly, the inclusion of monocular
depth into the tracking loop, to refine the scale and
to correct the erroneous keyframe depth predictions,
leads to better rendering and mapping. By using the
monocular depth for completion, mapping is further
improved. Our experiments demonstrate that Splat-SLAM
outperforms existing solutions regarding reconstruction
and rendering accuracy while being on par or better with
respect to tracking as well as runtime and memory usage.
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