
Supplementary Material
Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians

Erik Sandström1,2†* Ganlin Zhang1* Keisuke Tateno2 Michael Oechsle2 Michael Niemeyer2

Youmin Zhang6 Manthan Patel1 Luc Van Gool5 Martin R. Oswald4 Federico Tombari2,3
1ETH Zürich 2Google 3TU München 4University of Amsterdam 5INSAIT 6Rock Universes

∗Equal contribution †Work done while at internship at Google

This supplementary material accompanies the main paper
and provides more details on the methodology and additional
experimental results.

1. Method
We describe further details about our method that were left
out from the main paper.
Comparison to Existing Works. To further clarify the dif-
ferences between our method and existing 3DGS SLAM
works, we classify each method in Tab. 9 based on impor-
tant characteristics. It shows that our work is the first to
include loop closure, proxy depth, RGB-only and online 3D
Gaussian deformations.

RGB-only Loop
Closure

Proxy
Depth

Online 3DGS
Deformations

GS-SLAM [13] ✗ ✗ ✓ ✗
Gaussian-SLAM [15] ✗ ✗ ✓ ✗
SplaTaM [4] ✗ ✗ ✓ ✗
MonoGS [6] ✓ ✗ ✗ ✗
Photo-SLAM [3] ✓ ✓ ✗ ✗
Splat-SLAM (ours) ✓ ✓ ✓ ✓

Table 9. Method Classification. We show that our method is the
first to combine 3D Gaussian SLAM with loop closure, proxy depth
and online 3D Gaussian map deformations in an RGB-only SLAM
system.

Map Initialization. With map initialization, we refer to
the process of anchoring new Gaussians during scene ex-
ploration. For every new keyframe to be mapped, we adopt
the strategy that MonoGS [6] uses in pure RGBD mode. It
works by unprojecting the depth reading per pixel to 3D
and then downsampling this point cloud by a factor θ. New
Gaussians are then assigned their means as the point cloud.
The rotations are initialized to identity, the opacity to 0.5
and the scales are initialized related to their distance to the
nearest neighbor point in the point cloud.
Keyframe Selection and Local Windowing. As mentioned
in the main paper, we adopt the keyframe selection strat-
egy from MonoGS [6]. We describe this strategy in the

following.
Keyframes are selected based on the covisibility of the

Gaussians. Between two keyframes i and j, the covisibility is
defined using the Intersection over Union (IOU) and Overlap
Coefficient (OC):

IOUcov(i, j) =
|Gi

v ∩ Gj
v|

|Gi
v ∪ Gj

v|
, (13)

OCcov(i, j) =
|Gi

v ∩ Gj
v|

min(|Gi
v|, |G

j
v|)

, (14)

where Gi
v are the Gaussians visible in keyframe i, based on

the following definition of visibility. A Gaussian is seen as
visible from a camera pose if it is used in the rasterization
pipeline when rendering and if the accumulated transmit-
tance

∏i−1
j=1(1− αj) has not yet reached 0.5.

A keyframe i is added to the keyframe window KFs if,
given the last keyframe j, IOUcov(i, j) < kfcov or if the
relative translation tij > kfmD̂i, where D̂i is the median
depth of frame i. For Replica, kfcov = 0.95, kfm = 0.04
and for TUM and ScanNet, kfcov = 0.90, kfm = 0.08. The
registered keyframe j in KFs is removed if OCcov(i, j) <
kfc, where keyframe i is the latest added keyframe. For
all datasets, the cutoff is set to kfc = 0.3. The size of the
keyframe window is set to |KFs| = 10 for Replica and
|KFs| = 8 for TUM and ScanNet.
Pruning and Densification We also follow [6] when it
comes to Gaussian pruning and densification. Pruning is
done based on the visibility: if new Gaussians inserted within
the last 3 keyframes are not visible by at least 3 other frames
in the keyframe window KFs, they are removed. Visibility-
based pruning is only done when the keyframe window KFs
is full. Additionally, every 150 mapping iterations, Gaus-
sians with opacity lower than 0.7 are removed globally. Also
Gaussians which project in 2D with a too large scale are
removed. Densification is done as in [5], also at an interval
of every 150 mapping iterations.
Final Refinement. We perform a few refinement iterations
after the last final global BA. Also MonoGS [6] performs a

1

set of final iterations at the end of the SLAM trajectory to
refine the colors.

Our refinement strategy is straight forward. We disable
pruning and densification of the Gaussians and perform a set
of optimization iterations β using the same loss function as
in the main paper, but only sampling random single frames
per iteration.

2. Mathematical Derivation of DSPO
In the main paper, we introduce DSPO (Disparity, Scale and
Pose Optimization). Here, we provide the detailed derivation
of how to optimize the proposed DSPO objective using the
Gauss-Newton algorithm with the Schur Complement.

As described in the main paper, we optimize the following
two objective functions alternatingly. The first one (same
as the DBA optimization in [11]) optimizes the poses and
disparity maps of the involved keyframes,

argmin
ω,d

∑
(i,j)∈E

∥∥p̃ij −Kω−1
j (ωi(1/di)K

−1[pi, 1]
T)

∥∥2
Σij

.

(15)
The second objective optimizes the scale and shift factors of
the mono prior and also the disparity maps of the keyframes,

argmin
dh,θ,γ

∑
(i,j)∈E

∥∥p̃ij −Kω−1
j (ωi(1/d

h
i)K

−1[pi, 1]
T)

∥∥2
Σij

+α1

∑
i∈V

∥∥dhi − (θi(1/D
mono
i) + γi)

∥∥2
+α2

∑
i∈V

∥∥dli − (θi(1/D
mono
i) + γi)

∥∥2 . (16)

For better readability, we do not show the conversion of 3D
points to homogeneous coordinates in all equations.
DBA Optimization. First, we introduce how to solve the
DBA optimization. To keep the notation consistent with [12],
we do a mapping of the symbols we use in Eq. (15) such that

{(pi, p̃i,j) | (i, j) ∈ E} → M = {(xk
i , x

k
j)}Mk=1 , (17)

where (xk
i , x

k
j) is a corresponding pixel pair (a feature match

found by the optical flow estimation), k is the index in the
total set of matches M. For each k there are specific indices
i and j indicating the corresponding keyframes of xk

i and
xk
j , i.e. i and j are functions of k, but we write them as a

subscript directly for simplicity. Furthermore, we map the
camera poses

{ωi}Ni=1 → T = {Ti ∈ SE(3) | 1 ≤ i ≤ N} , (18)

where T are the camera to world poses of the corresponding
keyframes. Then we can rewrite the objective function in
Eq. (15) as

f(T,d) =
1

2

∑
(xk

i ,x
k
j)∈M

∥∥rk(Ti, Tj , x
k
i , x

k
j , d

k
i)
∥∥2
wk

,

(19)

where d = {dki }Mk=1 are the disparities (i.e. inverse depth),
dki is the disparity of pixel xk

i , where i is still a function
of k, but we write it as a subscript for simplicity. We de-
note ∥ · ∥wk

as the Mahalanobis distance with weighting
matrix wk. wk = diag(w1

k, w
2
k) is a 2 × 2 diagonal matrix

of the per-pixel and per-direction uncertainties of the optical
flow prediction. We add 1/2 to the objective function for
mathematical convenience as it does not change the optimal
solution. rk(·) ∈ R2 is the reprojection error function and it
is defined as

rk(Ti, Tj , x
k
i , x

k
j , d

k
i)

=xk
j −KT−1

j Ti(1/d
k
i)K

−1[xk
i , 1]

T . (20)

The formulation in Eq. (20) is the per-pixel equivalent of the
part inside the norm ∥ · ∥ in Eq. (15).

To minimize Eq. (19), we resort to the Gauss-Newton al-
gorithm. We can define the model parameters by the column
vector β = [Tj , Ti, d

k
i]

T ∈ R13. We parameterize rotations
and translations with the lie algebra se(3), so each camera
pose is parameterized by 6 values and the dki ∈ R. Despite
being an RGB-only system, optimization is done on se(3)
because we fix the poses of the two first keyframes after
initialization. This prevents gauge freedom i.e. drift in the
global scale of the scene during optimization and therefore,
se(3) optimization is sufficient. We can define the model as

gk(β) =

g1k(β)
g2k(β)

 = KT−1
j Ti(1/d

k
i)K

−1[xk
i , 1]

T . (21)

since gk ∈ R2 is not linear with respect to the parameters β
we approximate gk around a current estimate β0 (at time 0)
of the parameters with a first-order Taylor expansion. For
each dimension of gk, we get (here for the first dimension)

g1k(β) ≈ g1k(β0) + Jk(β − β0) (22)

where Jk ∈ R13 is the gradient row vector of gk with respect
to β at β0. Plugging back Eq. (22) into Eq. (20), we get (for
the first dimension)

r1k(β) ≈ {xk
j }1 − g1k(β0)− Jk(β − β0)

= r1k(β0)− Jk(β − β0) , (23)

where {xk
j }1 denotes the first dimension of xk

j . The goal of
the optimization is to minimize the squared residuals, i.e. for
pixel k and dimension 1, the term (r1k)

2. We differentiate
(r1k)

2 with respect to β and set the derivative to zero. This
yields the expression

JT
k Jk(β − β0) + JT

k r1k(β0) = 0. (24)

Now that we have derived the equation to solve (for β) for a
single pixel and dimension, we can combine all observations

from all pixels (further details can be found in section 2.4
in [12]). We achieve this by stacking all residuals as a col-
umn vector r = (r11, r

2
1,· · · , r1M , r2M)T ∈ R2M . This yields

the equivalent, vector-valued equation

JT WJ(β − β0) + JT Wr

= JT WJ∆β + JT Wr

= JT WJ
[
∆T
∆d

]
+ JT Wr = 0 . (25)

Here, we combine the uncertainties into a diagonal matrix as

W = diag(w1
1, w

2
1,· · · , w1

M , w2
M) . (26)

The full Jacobian J has the shape [2M × (6N + M)],
∆T is [6N × 1] and ∆d is [M × 1]. To solve Eq. (25), we
rewrite it as

JT WJ
[
∆T
∆d

]
= −JT Wr . (27)

We now arrange the full Jacobian matrix J into two blocks
as

J =
[
JT Jd

]
, (28)

where JT ∈ R2M×6N is the Jacobian block of r with respect
to poses T, and Jd ∈ R2M×M is the Jacobian block of r
with respect to disparities d. For the detailed derivation of
JT and Jd, we refer to section 2.3.1 in [12]. This yieldsJT

T WJT JTT WJd

JTd WJT JTd WJd

∆T

∆d

 = −JT Wr . (29)

We rewrite Eq. (29) to the following form, B E

ET C

∆T

∆d

 =

v

w

 , (30)

and use the Schur Complement to solve for ∆T and ∆d,

∆T =
[
B − EC−1ET

]−1

(v − EC−1w)

∆d = C−1(w − ET∆T) . (31)

Note that C here is diagonal since each dki is only involved in
rk. Though Jd is not perfectly diagonal (it has two non-zero
values along each column), JTd WJd = C ∈ RM×M is diag-
onal. Therefore, the inverse of C is easy to compute. Also,
the size of B ∈ R6N×6N is relatively small and therefore it

is tractable to compute
[
B − EC−1ET

]−1

. This is achieved
by Cholesky decomposition. Finally we can use ∆T and ∆d
to update the poses and disparities accordingly.

Scale, Shift and Disparity Optimization. We approach the
problem of joint scale, shift and disparity optimization in
a similar manner as above. First, we rewrite the objective
function in Eq. (16) as,

f(s,dh) =
1

2

∑
(xk

i ,x
k
j)∈Mh

dk
i ∈dh

(∥∥rk(Ti, Tj , x
k
i , x

k
j , d

k
i)
∥∥2
wk

+ α1

∥∥tk(dki , si)∥∥2)+
1

2

∑
dk
i ∈dl

α2

∥∥tk(dki , si)∥∥2
(32)

where si = (θi, γi) is the scale and shift of frame i. We
denote the set

Mh = {(xk
i , x

k
j)}Hk=1 (33)

as the set of pixels where dki is deemed to have a high error
as defined by the multi-view filter in Eq. (6). The shape of
dh is [1×H] (H ≤ M) and dl denotes the set of disparities
with a low error. Adding the cardinalities of dh and dl yields
M i.e. |dh| + |dl| = H + |dl| = M . We denote the set of
scales and shifts for all frames involves as s = (s1, . . . , sN).
tk(·) ∈ R is the residual term for the regularization by the
monocular depth prior,

tk(d
k
i , si) = dki − (θi · dkmono,i + γi) . (34)

Now, we collect all the residuals as a column vector

r̂ = (. . . , r1k, r
2
k, . . . , r

1
H , r2H , t1, . . . , tM)T , (35)

i.e. a collection of all rk where k needs to ensure dki is invalid
(high error) and also all t. To define the corresponding
linear system as in Eq. (29), we begin by defining the full
Jacobian matrix Ĵ as a collection of two blocks, similar to
Eq. (28) i.e. Ĵ =

[
Ĵs Ĵd

]
, where Ĵs ∈ R(2H+M)×2N is

the Jacobian block of r̂ with respect to the scales and shifts
s, and Ĵd ∈ R(2H+M)×H is the Jacobian block of r̂ with
respect to the invalid disparities dh. Here both Ĵs and Ĵd
consist of two parts. The first part comes from rk(·) and
second part from tk(·) i.e.,

Ĵs =

Ĵ
r

s

Ĵ
t

s

 Ĵd =

Ĵ
r

d

Ĵ
t

d

 Ĵ =

Ĵ
r

s Ĵ
r

d

Ĵ
t

s Ĵ
t

d

 . (36)

Ĵ
r

d is the same as Jd in Eq. (28) except that now it only
contains the invalid disparities dh instead of d, i.e. the shape
of Ĵ

r

d is [2H×H] instead of [2M×M]. Note that we need to
use a factor 2 here because each residual rk has 2 dimensions.
Ĵ
r

s ∈ R2H×2N is 0 since none of the si are involved in any

of the rk(·) residuals. The derivatives of tk(·) with respect
to θi, γi and dki are,

∂tk
∂θi

= −dkmono,i
∂tk
∂γi

= −1
∂tk
∂dki

= 1 . (37)

Thus the form of Ĵ
t

s ∈ RM×2N is as follows,

Ĵ
t

s =

J1,1 . . . J1,N

...
. . .

...

JM,1 . . . JM,N

 Jk,i =
[
−dkmono,i −1

]
,

(38)
Finally, we construct Ĵ

t

d as follows. First define the diagonal
square matrix D = diag(1, . . . , 1) ∈ RM×M . Then we

define Ĵ
t

d as,

Ĵ
t

d = [· · ·Dk· · ·] ∈ RM×H (39)

where Dk is the kth column of D, and k needs to ensure that
dki ∈ dh. Next, we define the weighting matrix Ŵ as

Ŵ = diag(· · · , w1
k, w

2
k,· · · , w1

H , w2
H , σ1,· · · , σM) (40)

where k needs to ensure dki is invalid (high error), and σ
equals to α1 or α2, depending on the corresponding disparity
is invalid or valid (i.e. same α1 and α2 as used in Eq. (32)).
Then, similar to Eq. (29), we use the Gauss-Newton method
to form a linear equation,Ĵ

T

s ŴĴs Ĵ
T

s ŴĴd

Ĵ
T

d ŴĴs Ĵ
T

d ŴĴd

∆s

∆d

 = −Ĵ
T

Ŵr̂ , (41)

and again use the Schur Complement Eq. (30) to solve for

∆s and ∆d. Note that the lower right corner block Ĵ
T

d ŴĴd
is still diagonal. Therefore, it is easy to compute its inverse.

3. More Experiments
To accompany the evaluations provided in the main paper,
we provide further experiments in this section.
Implementation Details. As the point cloud downsampling
factor, we use θ = 32 for all frames but the first frame where
θ = 16 is used. We use β = 2000, the number of iterations
for the final refinement optimization, on the Replica dataset
and β = 26000 on the TUM-RGBD [10] and ScanNet [1]
datasets (same as MonoGS [6]). We benchmark the runtime
on an AMD Ryzen Threadripper Pro 3945WX 12-Cores with
an NVIDIA GeForce RTX 3090 Ti with 24 GB of memory.
For the remaining hyperparameters, we refer to MonoGS [6]
for the Gaussian mapping.

A Note on Rendering and Runtime with MonoGS. By de-
fault, MonoGS [6] does not evaluate the rendering error on
the mapped keyframes nor implement the exposure compen-
sation during rendering evaluation. To compare our results
fairly to MonoGS, we implement these details and run the
experiments with these settings enabled. Further, we report
the runtime for MonoGS using a single process (same as us)
compared to the reported number in the paper, which was
using multiple processes at once.
A Note on Gaussian Deformation with Photo-SLAM.
Though not fully clear from reading the paper, after dis-
cussing with the authors of Photo-SLAM [3], we find that
they do, in fact, not deform the Gaussians as a result of
global BA or loop closure. They found this to be unstable
in their experiments. This suggests that our deformation
strategy is non-trivial.
Justification of Monocular Depth Estimator. There are
already numerous monocular depth estimators, but most
of them are limited by speed, memory or quality. We use
Omnidata [2] since empirically we found it still provides
the best trade-off between output performance and runtime.
We also tested our system with Depth Anything [14], but
found that it was marginally worse in terms of the final
reconstructed mesh accuracy.

3.1. Full Evaluations Data
In Tab. 10, Tab. 11 and Tab. 12, we provide the full per scene
results on all commonly reported metrics on Replica [9],
TUM-RGBD [10] and ScanNet [1].

The reconstruction results are only measured on Replica
since the other two datasets are real world datasets which
lack quality ground truth meshes.

We show the trajectory accuracy measurement of both
keyframes and the full trajectory, which is obtained by first
linear interpolation between keyframes and using optical
flow to refine. The accuracy of these two trajectories are
similar. In the main paper, the data we report is always
measured on the full trajectory.

3.2. Influence of Monocular Depth
While we show that the monocular depth improves the geo-
metric estimation capability of our framework, it may still be
erroneous. To better understand the accuracy of the monocu-
lar depth, we replace it with the ground truth sensor depth in-
stead. This experiment acts as the upper bound of our method
if the monocular depth is perfect. The experiments are done
on Replica [9] and are shown in Tab. 13. Compared with
the standard setting with the monocular depth, the ground
truth depth setting gives improvements on both reconstruc-
tion and rendering quality, which reveals that our method
still has potential to achieve better mapping results once
better monocular depth is available. Since our method does
not require further training or fine-tuning for the monocular

Metric R-0 R-1 R-2 O-0 O-1 O-2 O-3 O-4 Avg.

Reconstruction

Render Depth L1 ↓ 2.90 2.16 2.18 2.44 1.97 2.46 2.62 2.53 2.41
Accuracy ↓ 1.99 1.91 2.06 3.96 2.03 3.45 2.15 1.89 2.43
Completion ↓ 3.78 3.38 3.34 2.75 3.33 4.36 3.96 4.25 3.64
Comp. Rat. ↑ 85.47 86.88 86.12 87.32 85.17 81.37 82.25 82.95 84.69

Rendering Keyframes
PSNR ↑ 32.25 34.31 35.95 40.81 40.64 35.19 35.03 37.40 36.45
SSIM ↑ 0.91 0.93 0.95 0.98 0.97 0.96 0.95 0.98 0.95
LPIPS ↓ 0.10 0.09 0.06 0.05 0.05 0.07 0.06 0.04 0.06

Tracking

Keyframes
Trajectory

ATE
RMSE ↓ 0.29 0.38 0.24 0.27 0.35 0.34 0.42 0.43 0.34

Full
Trajectory

ATE
RMSE ↓ 0.29 0.33 0.25 0.29 0.35 0.34 0.42 0.43 0.34

Number of
Gaussians 1000x 116 116 91 76 66 134 114 106 102

Table 10. Full Evaluation on Replica [9]. We show the ATE RMSE [cm] evaluation on the keyframes as well as on the full trajectory.

Metric f1/desk f1/desk2 f1/room f2/xyz f3/office Avg.

Rendering Keyframes
PSNR ↑ 25.61 23.98 24.06 29.53 26.05 25.85
SSIM ↑ 0.84 0.81 0.80 0.90 0.84 0.84
LPIPS ↓ 0.18 0.23 0.24 0.08 0.20 0.19

Depth
Rendering Keyframes Depth

L1↓ [cm] 8.05 15.70 15.05 14.53 25.59 15.78

Tracking

Key Frames
Trajectory

ATE
RMSE ↓ 1.92 3.05 4.43 0.23 1.41 2.21

Full
Trajectory

ATE
RMSE ↓ 1.65 2.79 4.16 0.22 1.44 2.05

Number of
Gaussians 1000x 88 78 211 173 114 133

Table 11. Full Evaluation on TUM-RGBD [10].

Metric 0000 0054 0059 0106 0169 0181 0207 0233 Avg.

Rendering Keyframes
PSNR↑ 28.68 30.21 27.69 27.70 31.14 31.15 30.49 27.48 29.32
SSIM ↑ 0.83 0.85 0.87 0.86 0.87 0.84 0.84 0.78 0.84
LPIPS ↓ 0.19 0.22 0.15 0.18 0.15 0.23 0.19 0.22 0.19

Depth
Rendering Keyframes Depth

L1↓ [cm] 8.24 18.24 13.39 23.5 11.49 18.35 13.78 10.19 11.37

Tracking

Key Frames
Trajectory

ATE
RMSE ↓ 5.66 9.17 9.48 7.03 8.72 8.42 7.47 4.97 7.61

Full
Trajectory

ATE
RMSE ↓ 5.57 9.50 9.11 7.09 8.26 8.39 7.53 5.17 7.58

Number of
Gaussians 1000x 144 157 84 108 52 127 121 191 123

Table 12. Full Evaluation on ScanNet [1].

depth, it is quite easy to just replace the current off-the-shelf
monocular depth estimator with a better one.

3.3. Impact of Deformation

During runtime, we deform the 3D Gaussian map to account
for adjustments to poses and depth that have already been in-
tegrated into the existing map. An alternative to performing
the deformation is to solely rely on optimization to resolve
the new map. We conduct two experiments to show the ben-

efit of performing the deformation, especially when it comes
to rendering accuracy. In Tab. 15, we vary the number of
final refinement iterations and evaluate the rendering depth
L1 and PSNR on the Replica office 0 scene. We find
that utilizing online 3D Gaussian deformations yields better
rendering and depth L1 accuracy regardless of the number
of iterations. In Tab. 14 we conduct the same experiment,
but over a set of scenes on ScanNet. We find that on average,
by enabling the deformation, we achieve higher rendering

Metric R-0 R-1 R-2 O-0 O-1 O-2 O-3 O-4 Avg.

Reconstruction

Render Depth L1 ↓ 2.38 1.31 1.73 1.15 1.60 1.29 5.71 1.93 2.14
Accuracy ↓ 1.29 0.91 1.05 1.22 0.83 0.96 1.24 1.07 1.07
Completion ↓ 3.43 2.83 2.66 1.50 2.46 3.57 3.46 3.61 2.94
Comp. Rat. ↑ 86.61 88.69 88.70 93.44 89.09 85.20 84.60 85.32 87.71

Rendering
PSNR ↑ 35.66 37.65 38.87 43.95 43.28 37.93 37.41 39.88 39.33
SSIM ↑ 0.96 0.96 0.97 0.99 0.98 0.96 0.96 0.98 0.97
LPIPS ↓ 0.04 0.05 0.03 0.02 0.02 0.06 0.04 0.03 0.04

Tracking ATE RMSE ↓ 0.29 0.38 0.24 0.28 0.39 0.35 0.45 0.40 0.35

Table 13. Full Evaluations on Replica [9] with ground truth depth. Both reconstruction and rendering results improve significantly with
the ground truth depth, suggesting that our method is bounded by the quality of current day monocular depth estimation. Since we do not
require any extra training or fine-tuning of the monocular depth estimator, it is easy to plug in a better estimator once available. Tracking
performance does not change much.

accuracy and lower depth L1 error. The improvement is,
however, more significant when it comes to the rendering
accuracy.

3.4. Final Refinement
After the final global BA step, we perform a final refinement,
similar to MonoGS [6], but include the geometric depth loss
as well and do not only refine with a color loss. We ablate
the influence on the results by varying the number of iter-
ations of the final refinement in Tab. 16. We find that the
rendering accuracy increases monotonically with the number
of iterations while the geometric accuracy decreases with
more than 2K iterations. We believe this to be a result of
fitting to the noisy monocular depth. We choose to use 2K
iterations since this provides the best trade-off between ren-
dering and geometric accuracy. 2K iterations takes around
15 seconds on our benchmark hardware which consists of an
AMD Ryzen Threadripper Pro 3945WX 12-Cores with an
NVIDIA GeForce RTX 3090 Ti with 24 GB of memory.

Next, we investigate the benefit of the final refinement
(and final global BA) in Tab. 17. The table shows the geomet-
ric accuracy as the depth L1 rendering error and the common
RGB rendering metrics on the keyframes. We show both
before and after the final refinement + global BA. The final
refinement constitutes to an improvement in performance.
The only existing method that does not use final refinement
is Photo-SLAM [3], to which our results are comparable.

3.5. Impact of Downsampling Factor
During mapping, the point cloud formed from unproject-
ing the depth input is downsampled to avoid adding redun-
dant Gaussians to the scene representation. We investigate
the impact of using stronger versus weaker downsampling
in Tab. 18 where we also compare to the sensitivity of
MonoGS[6] with respect to the same parameter. Table 18
shows that both systems are not very sensitive to the model
compression as a result of a larger downsampling factor θ.
When both systems use the same number of Gaussians on av-
erage (θ = 32 for MonoGS and θ = 64 for our method), we

find that our method performs significantly better in terms of
depth rerendering and photometric accuracy. For all results
in the main paper, we use θ = 32.

3.6. Impact of Scene Representation
In our pipeline, we use 3D Gaussian Splatting as map repre-
sentation. We also investigate the impact of using another
map representation, namely the neural point cloud as in
Point-SLAM [7]. To compare the effect of the scene repre-
sentation, we keep the tracking part fixed, and replace 3DGS
with neural points. The map deformation is also modified to
fit the neural point cloud setting: before each mapping step,
we re-anchor the neural points on the surface of scene by the
updated camera poses and updated proxy depth map. The
experiment results are shown in Tab. 20, the results of neural
pointcloud representation is denoted as “ours w/ npc”. The
3DGS representation demonstrates superior results in both
reconstruction and rendering metrics.

3.7. Runtime Evaluation
To be consistent with the keyframe selection hyperparam-
eters of MonoGS [6], we report on the same parameters
as MonoGS uses by default. In practice, this means that
few keyframes from the tracking system (determined via
mean optical flow thresholding) are actually filtered out and
not mapped. In Tab. 19, we show that by altering the hy-
perparamters, we can speed up the system during runtime,
while still rendering and reconstructing the scene well. Note
that we evaluate the rendering performance on the same set
of views for all runs. We benchmark the runtime on an AMD
Ryzen Threadripper Pro 3945WX 12-Cores with an NVIDIA
GeForce RTX 3090 Ti with 24 GB of memory. We note that
we currently do not leverage multiprocessing to the amount
possible in practice i.e. currently we first do tracking and
then mapping i.e. there is no simultaneous tracking and map-
ping. This is, however, straightforward to include, which
should further speed up the runtime.

In the main paper, only the total runtime (including track-
ing and mapping) is reported. We also divide the runtime for

Metric 0000 0054 0059 0106 0169 0181 0207 Avg.

Rendering W/O Deform
W Deform

PSNR↑ 25.15 28.39 27.77 25.25 29.41 30.38 29.30 27.95
PSNR↑ 28.68 30.21 27.69 27.70 31.14 31.15 30.49 29.58

Depth
Rendering

W/O Deform
W Deform L1↓ [cm] 7.86 22.81 10.51 24.19 11.54 18.48 13.66 15.58

8.24 18.24 13.39 23.5 11.49 18.35 13.78 15.28

Table 14. Gaussian Deformation Ablation on ScanNet [1].

Nbr of Final Iterations β 0K 0.5K 1K 2K

Recon-
struction

W/O Deform
W Deform

Render Depth L1 ↓ 8.84 3.49 2.64 2.6
Render Depth L1 ↓ 6.55 2.37 2.34 2.40

Rendering W/O Deform
W Deform

PSNR ↑ 22.86 34.30 37.66 37.86
PSNR ↑ 30.50 39.87 40.59 41.20

Table 15. Gaussian Deformation Ablation on Replica [9]
office 0.

Nbr of Final Iterations β 2K 5K 10K 26K

Reconstruction

Render Depth L1 ↓ 2.36 2.45 2.51 2.59
Accuracy ↓ 2.46 2.66 2.84 3.02
Completion ↓ 3.60 3.61 3.59 3.60
Comp. Rat. ↑ 84.87 84.71 84.80 84.77

Rendering Keyframes PSNR ↑ 36.77 37.80 38.41 38.95

Table 16. Final Refinement Iterations Ablation on Replica [9].
The results are averaged over the 8 scenes.

Metric R-0 R-1 R-2 O-0 O-1 O-2 O-3 O-4 Avg.

Before Refinement
Render Depth L1 ↓ 5.90 5.01 3.82 4.53 2.89 4.43 3.91 3.46 4.24
PSNR ↑ 27.55 29.47 30.77 35.75 37.58 31.67 31.90 33.25 32.24
SSIM ↑ 0.83 0.86 0.90 0.94 0.96 0.91 0.93 0.94 0.91
LPIPS ↓ 0.18 0.18 0.13 0.10 0.08 0.14 0.09 0.10 0.13

After Refinement
Render Depth L1 ↓ 2.90 2.16 2.18 2.44 1.97 2.46 2.62 2.53 2.41
PSNR ↑ 32.25 34.31 35.95 40.81 40.64 35.19 35.03 37.40 36.45
SSIM ↑ 0.91 0.93 0.95 0.98 0.97 0.96 0.95 0.98 0.95
LPIPS ↓ 0.10 0.09 0.06 0.05 0.05 0.07 0.06 0.04 0.06

Table 17. Evaluation on Replica [8]. Comparison before and after
final global BA + refinement. We show the depth L1 metric in [cm]
on the rendered depth maps along the recorded trajectory and the
re-rendering metrics for the same frames.

Downsampling Factor θ 16 32 64

Reconstruction Ours
MonoGS [6]

Render
Depth L1 ↓

2.38 2.40 2.46

33.43 28.47 28.09

Rendering Ours
MonoGS [6] PSNR ↑

36.63 36.45 36.31

31.17 30.87 29.64

Number of
Gaussians

Ours
MonoGS [6] 1000x↓

141 102 83

97 83 73

Table 18. Downsampling Factor θ Ablation on Replica [9]. The
results are averaged over the 8 scenes.

tracking and mapping separately in Tab. 21.

kfcov, kfm 0.95, 0.04 0.90, 0.08 0.85, 0.08 0.80, 0.12 0.70, 0.16 0.60, 0.20 0.50, 0.30

Reconstruction

Render Depth L1 ↓ 2.90 2.94 2.97 3.08 3.37 3.53 4.78
Accuracy ↓ 1.99 1.94 2.06 2.04 2.54 3.20 6.20
Completion ↓ 3.78 3.76 3.79 3.77 3.86 3.93 5.23
Comp. Rat. ↑ 85.47 85.58 85.39 85.53 85.03 84.33 80.38

Rendering PSNR ↑ 32.25 31.65 31.31 30.59 30.12 29.25 27.59

Runtime FPS ↑ 1.24 1.45 1.62 2.02 2.50 3.03 3.67

Table 19. Keyframe Hyperparameter Search on Replica [9] room 0. By changing the keyframe selection hyperparameters, we can
speed up our runtime without impacting reconstruction and rendering too much. We evaluate the rendering performance on the same set of
frames for all runs. In comparison, with the default kfcov = 0.95, kfm = 0.04, MonoGS [6] yields PSNR: 26.12 and render depth L1: 17.38
cm.

Dataset Metric Ours w/ npc Ours

Replica

Accuracy ↓ 2.96 2.43
Completion ↓ 3.95 3.64
Comp. Rat. ↑ 83.72 84.69

PSNR↑ 31.04 36.45
SSIM ↑ 0.91 0.95
LPIPS ↓ 0.12 0.06

ScanNet
PSNR↑ 22.45 29.48
SSIM ↑ 0.85 0.85
LPIPS ↓ 0.30 0.18

TUM-RGBD
PSNR↑ 20.99 25.85
SSIM ↑ 0.77 0.84
LPIPS ↓ 0.30 0.19

Table 20. Scene Representation Ablation on Replica [9], Scan-
Net [1] and TUM-RGBD [10]. Both rendering and reconstruction
metrics improve with the 3DGS (Ours) representation over the
neural point cloud representation found in [7] (Ours w/ npc). The
results are averaged for each dataset across the test scenes.

Total Tracking FPS Total Mapping FPS Total FPS

Avg. FPS 4.66 1.65 1.24

Table 21. Runtime Evaluation on Replica [9] room0. Separated
into tracking and mapping as well.

References
[1] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:
Richly-annotated 3D reconstructions of indoor scenes. In Con-
ference on Computer Vision and Pattern Recognition (CVPR).
IEEE/CVF, 2017. 4, 5, 7, 8

[2] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 10786–10796, 2021. 4

[3] Huajian Huang, Longwei Li, Hui Cheng, and Sai-Kit Yeung.
Photo-slam: Real-time simultaneous localization and photo-
realistic mapping for monocular, stereo, and rgb-d cameras.
arXiv preprint arXiv:2311.16728, 2023. 1, 4, 6

[4] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathon Luiten. Splatam: Splat, track and map 3d gaus-
sians for dense rgb-d slam. arXiv preprint, 2023. 1

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
1

[6] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and An-
drew J Davison. Gaussian splatting slam. arXiv preprint
arXiv:2312.06741, 2023. 1, 4, 6, 7, 8

[7] Erik Sandström, Yue Li, Luc Van Gool, and Martin R Oswald.
Point-slam: Dense neural point cloud-based slam. In Inter-
national Conference on Computer Vision (ICCV). IEEE/CVF,
2023. 6, 8

[8] Julian Straub and etal. The replica dataset: A digital replica
of indoor spaces. arXiv preprint arXiv:1906.05797, 2019. 7

[9] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 4, 5, 6, 7, 8

[10] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evaluation
of RGB-D SLAM systems. In International Conference on
Intelligent Robots and Systems (IROS). IEEE/RSJ, 2012. 4, 5,
8

[11] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. Advances in neural
information processing systems, 34:16558–16569, 2021. 2

[12] Zachary Teed et al. Optimization Inspired Neural Networks
for Multiview 3D Reconstruction. PhD thesis, Princeton Uni-
versity, 2022. 2, 3

[13] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang, Bin
Zhao, and Xuelong Li. Gs-slam: Dense visual slam with 3d
gaussian splatting. arXiv preprint arXiv:2311.11700, 2023. 1

[14] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth anything: Unleash-
ing the power of large-scale unlabeled data. arXiv preprint
arXiv:2401.10891, 2024. 4

[15] Vladimir Yugay, Yue Li, Theo Gevers, and Martin R. Os-
wald. Gaussian-slam: Photo-realistic dense slam with gaus-
sian splatting, 2023. 1

	Method
	Mathematical Derivation of DSPO
	More Experiments
	Full Evaluations Data
	Influence of Monocular Depth
	Impact of Deformation
	Final Refinement
	Impact of Downsampling Factor
	Impact of Scene Representation
	Runtime Evaluation

