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Abstract

Autonomous vehicles need a complete map of their sur-
roundings to plan and act. This has sparked research into
the tasks of 3D occupancy prediction, 3D scene comple-
tion, and 3D panoptic scene completion, which predicts
a dense map of the ego vehicle surroundings as a voxel
grid. Scene completion extends occupancy prediction by
predicting occluded regions of the voxel grid, and panoptic
scene completion further extends this task by also distin-
guishing object instances within the same class; both as-
pects are crucial for path-planning and decision-making.
However, 3D panoptic scene completion is currently un-
derexplored. This work introduces a novel framework for
3D panoptic scene completion that extends existing 3D se-
mantic scene completion models. We propose an Object
Module and Panoptic Module that can easily be integrated
with 3D occupancy and scene completion methods pre-
sented in the literature. Our approach leverages the avail-
able annotations in occupancy benchmarks, allowing indi-
vidual object shapes to be learned as a differentiable prob-
lem. The code is available at https://github.com/
nicolamarinello/OffsetOcc.

1. Introduction

Computer Vision (CV) [33] is, in large part, concerned with
extracting conceptual information from sensory data. The
field has seen significant advancements, largely driven by
improvements in Deep Learning [16], allowing it to tackle
increasingly difficult tasks. For the better part of the last
decade, progress was mainly viewed in the light of bench-
marks, providing handcrafted, narrow, and sometimes artifi-
cial metrics. However, recent advances have allowed meth-
ods to go beyond these isolated experiments to their incor-
poration into various applications showcasing their poten-
tial in the real world.
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Figure 1. OffsetOcc. Our method OffsetOcc models object oc-
cupancy as a set prediction task, where objects are represented by
their 3D center and a set of offsets that describe their shape. The
set of offsets is learned from the dataset annotations. Classifica-
tion head omitted for conciseness.

One of the most useful applications may well be enabling
autonomous agents, analyzing sensory data to build up an
accurate representation of their surroundings to guide their
decision-making. This has motivated research into 3D ob-
ject detection [27], which deals with localizing objects in
3D space, and the generation of birds-eye-view (BEV) maps
[20], which extracts a 2D top view of the entire scene. How-
ever, while performance has improved greatly, these meth-
ods leave out important information for subsequent opera-
tional modules such as prediction and planning. Detection
models output bounding boxes, which only provide coarse
object shape estimates, ignoring uncountable classes (re-
ferred to as stuff, e.g. road) [34]. In contrast, BEV maps
handle stuff and can provide more accurate shapes on the
ground plane, but they lose important height information,
which is hard to recover and could impact downstream
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tasks.
These shortcomings lead to the introduction of Seman-

tic Occupancy Prediction [42, 47], the task of labeling each
visible point in space. In the case of autonomous driving,
initial methods labeled LIDAR point clouds, but these are
usually very sparse and leave out a lot of general knowl-
edge about scene structure that is, again, very important to
solve the actual end task of autonomy. Therefore, more re-
cent work handles voxel occupancy prediction [34, 35, 39],
tasked with completing a full 3D grid of the scene (i.e. se-
mantic labeling of 3D or volumetric pixels, know as voxels).
The latest research moves to camera-only settings [2], im-
proving the learned features [21, 46, 49] and its efficiency
[8, 10, 12, 17, 26, 32, 37, 44, 48].

It is important to note that occupancy prediction aims
to reconstruct only the directly detectable voxels (i.e. de-
tected in the current frame by the camera and/or LIDAR),
which should be distinguished from Semantic Scene Com-
pletion [26, 34, 42] that intends to also reconstruct regions
that are currently occluded by other portions of the scene.
This is a very important distinction with big implications
for real-world applications. Most models evaluate the re-
construction performance by using a “camera mask” which
indicates which voxels are directly detectable in the current
frame, since these regions are determined with relative cer-
tainty and can be considered ground truth, in contrast to
undetected regions. However, while knowing how well a
method handles directly visible areas is certainly important,
it is an incomplete task, since this artificial mask that knows
what has been detected and what not is not available in a
real-world situation. Furthermore, models trained with this
mask exploit hidden regions to improve their accuracy [24].
This can give a false sense of performance by discarding
predictions in occluded regions (which might be very bad)
that are not distinguishable during inference. Moreover, it
is clear that humans can infer information about some of the
occluded areas, especially about partially occluded objects,
indicating that CV methods must share this ability to level
the playing field for reasoning capabilities. Therefore, it is
important to develop and evaluate models for these hidden
regions as well; visible portions must be reconstructed ac-
curately and occluded areas should contain reasonable pre-
dictions.

Furthermore, the planning and decision-making of an au-
tonomous agent also depend on the actions of other agents
in the scene. Therefore, it is important to distinguish each
instance within the same class. This has lead to models
that can produce panoptic occupancy and scene comple-
tion outputs [40, 45]. However, this topic is underexplored
and many possibilities to distinguish instances remain to be
tested or developed.

This work presents a 3D panoptic scene completion
framework for autonomous driving using only camera in-

puts. It achieves this by using a separate object decoder
through which shapes can be learned differentially and per
class. Conventional methods that uplift 2D features to
3D and leverage self-attention mechanisms effectively infer
overall object occupancy. However, approaches that distin-
guish individual object instances within the scene remain
underexplored. Notably, the proposed method can be seam-
lessly integrated with more advanced occupancy decoders
and enhanced with temporal reasoning, as explored in re-
cent works.

Our contributions are summarized as follows:
• We present a novel framework that models individual ob-

ject occupancy as a differentiable problem.
• We present an Object Module and Panoptic Module that

can extend existing 3D semantic scene completion meth-
ods, enabling panoptic 3D scene completion.

• We release our implementation to promote further re-
search.

2. Related work
Many works in this field primarily focus on semantic occu-
pancy prediction, trying to improve the learned features, in-
creasing model efficiency, or tackling the complex label an-
notation problem. Fewer works investigate the scene com-
pletion objective, which is closely related and can often
benefit from improvements to the former. Lastly, very few,
and only recently, have proposed panoptic scene completion
methods to distinguish the different object instances within
the same class.
Semantic Occupancy Prediction. To learn better features
Li et al. [21] propose using additional losses such as depth
and 2D segmentation, also explored by Zheng et al. [49]
in the form of a semantic loss and additional temporal in-
formation from past frames, a practice that is becoming in-
creasingly popular. One branch of works tackling efficiency
handle it by way of a lighter representation, such as keeping
the BEV as proposed by Yu et al. [44], a hybrid model with
BEV and BEV slices put forth by Zhang et al. [46] or BEV
and voxels by He et al. [8], extending the 2D representation
to triplane view (TPV) as presented by Huang et al. [10],
or using a low rank approximation with vertical vectors and
horizontal matrices per Zhao et al. [48]. Tian et al. [34]
propose using a full voxel grid, but starting with a coarser
version that gets refined until the output dimension. Others
reduce computational cost by choosing different operations,
like Sze et al. [32] that use sparse convolutions, Wang et al.
[37] that use a linear complexity attention with Receptance
Weighted Key Value operations [30], Li et al. [17] that ex-
change transformers for Mamba [6], or Huang et al. [12]
that use gaussians to model regions of interest, only allo-
cating compute where it is required and with the additional
benefit that the decoding is object-centric. Wang et al. [38]
explore reliability by incorporating uncertainty learning, an
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aspect that is also handled by Wang et al. [36] using diffu-
sion models, which naturally incorporate a coarse-to-fine it-
erative refinement. Lastly, Pan et al. [28] try to avoid dense
labeles by using NERFs and 2D labeling, which Pan et al.
[29] follow up by adding a teacher-student pseudo-labeling
setup. Huang et al. [11] even go a step further, using self-
supervised learning by predicting the frames before and af-
ter.

While there has been great progress thanks to these
works, it is only shown for visible areas, ignoring the mul-
tiple occluded regions which contain relevant information
for modules further in the pipeline of autonomous vehicles.
Moreover, by training these methods with the mask, they
learn unrealistic object shapes, which can actually be more
different from each other and, therefore, potentially make
learning general concepts more difficult.
Semantic Scene Completion. In contrast to the previ-
ous paragraph, scene completion methods aim to reason-
ably reconstruct the entire scene, including occluded areas.
Cao et al. [2] use a monocular system to show that RGB
camera-only setups can also provide reasonable outputs,
even without additional depth information. Li et al. [19]
achieve this by explicitly handling occupancy and comple-
tion separately, first reconstructing the visible voxels and
then using a masked autoencoder to complete the occluded
areas. Wei et al. [41] employ Poisson Reconstruction [13]
to fill in holes and use it to generate denser ground-truth.
Due to the high sparsity, Ma et al. [26] propose to work in
a strongly down-sampled representation, where all opera-
tions can be computed more efficiently after which it is up-
sampled and classes are predicted per mask. Lastly, sparsity
is also exploited by Liu et al. [24], by only using sparse op-
erations until the very end. To increase performance, they
also add temporal information. Additionally, they propose
RayIoU, to deal with the inaptitude of mean intersection
over union (mIoU), the dominant metric in the field, when
handling depth errors.

Despite extracting more information by filling in invisi-
ble parts, these methods rely on the models to learn any re-
lationships between classes and their plausible shapes that
are required to complete occluded areas. If a car is only
partially visible, the model must learn that voxels in the oc-
cluded region should be related to it, which is a very com-
plex learning problem, especially when labels are imperfect
in these regions.
Panoptic Scene Completion. Wang et al. [40] combine
3D detection and segmentation into one framework, using
sparsity techniques for efficiency and temporal reasoning
for improved completion. By incorporating detection, they
can separate the instances within each class. Yu et al. [45]
build on Flash-Occ, for its efficiency, to first predict occu-
pancy and then combine the related voxels into instances.

However, instance voxels are decoded individually,

meaning that models must learn what it means to be part of
an object, and that objects only have a single class. Within
the voxel decoding modules there is no notion of an en-
tity that it belongs to, they are decoded bottom-up and then
the instance is estimated. This discards valuable top-down,
object-centric information and, therefore, seems subopti-
mal.

3. Methodology
3.1. Problem setup

3D semantic scene completion is the task of reconstruct-
ing the complete surrounding environment of an ego vehi-
cle, including occluded regions (within reason, i.e. it can-
not be reasonably expected that objects which have never
been seen, behind a building corner, are also predicted).
This work focuses on the case where only camera inputs are
available (i.e. no LIDAR inputs are used). The environment
is represented as a voxel grid, with each voxel receiving
a semantic label. Given the observations from N cameras
at a specific timestamp It =

{
I1t , I

2
t , . . . , I

N
t

}
, the goal is

to generate a grid Ŷt ∈ {c0, c1, . . . , cM}L×W×H where
c0 denotes the empty class to indicate unoccupied space,
{c1, ...cM} denote the semantic classes, while L, W and
H denote the length, width and height of the grid, respec-
tively. The task can be extended to panoptic scene comple-
tion, where all voxels occupied by the same object instance
are assigned the same object ID which is unique across all
objects.

3.2. Object occupancy as a set prediction

We propose a novel framework OffsetOcc for the 3D panop-
tic scene completion task that models individual objects and
their shapes as a differentiable set prediction problem. In-
spired by DETR [3], we model each object’s occupied voxels
as a set of 3D vectors relative to the center of the object, as
shown in Fig. 1. Each of these vectors is referred to as an
offset, which aims to point towards the center of one of the
voxels occupied by the object. This modeling allows us to
effectively represent the occupancy of the object within the
3D grid. Such a representation is more efficient than com-
puting a full grid mask of each object, which becomes com-
putationally prohibitive. This approach facilitates a struc-
tured and precise representation of object shapes, support-
ing downstream tasks that require accurate object estima-
tion.

3.3. Architecture

In this section, we detail the architecture of our model. We
present an Object Module and Panoptic Module which can
be used on top of a generic baseline model. The different
components of this baseline can be instantiated with various
methods proposed in the literature.
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Figure 2. Overview of our framework OffsetOcc. Our approach can be integrated with modern occupancy models and consists of two
key components: an Object Module and a Panoptic Module. The Object Module utilizes features extracted by an uplifting encoder to detect
objects in the voxel grid and predict their occupancy using the offset occupancy mechanism. The Panoptic Module then merges these
object predictions with the occupancy grid output to produce a panoptic occupancy map. Classification head in the Object Module omitted
for conciseness.

As shown in Fig. 2, the model takes multi-view im-
ages as input, from which features are extracted via a back-
bone. Subsequently, an Encoder uses these camera features
to generate 3D representations in a (down-sampled) voxel
grid, which we will refer to as voxel embeddings. These
then pass through the Decoder to generate the baseline
voxel occupancy predictions. Our proposed Object Module
also takes these voxel embeddings as input, and provides
instance-level occupancy predictions. Lastly, the baseline
voxel occupancy prediction and the instance-level predic-
tions are passed to our proposed Panoptic Module, which
generates the final panoptic voxel occupancy. The structure
and responsibility of each module is further detailed in the
paragraphs below. Since the proposed modules are meant
to work with generic baselines, we focus on the structure of
our proposed method; specific implementations of the base-
line modules are detailed in Sec. 4.2.

Backbone. A multi-view image feature extractor of
choice. A common set-up in the literature is the combina-
tion of a CNN backbone with an FPN on top for multi-level
feature extraction.

Encoder. The encoder lifts 2D image features to a 3D rep-
resentation, providing a per-voxel feature vector. Option-
ally, the voxel grid at this stage can be predicted as a down-
sampled version of the final prediction to reduce the com-
putational burden.

Decoder. The decoder takes in the voxel embeddings and
computes the final label predictions for each location in the
grid. This prediction is at full resolution, thus, if the in-

termediate voxel grid was down-sampled, the decoder must
also take care of up-sampling.
Object Module. Inspired by DETR’s detection approach
[3], we extend its capabilities to predict object shapes in
the form of voxel occupancy, in addition to their class and
location. Our method utilizes a stack of M transformer
layers composed of 3D deformable cross-attention [35, 51]
and self-attention layers. Starting with Q learnable object
queries, the model produces Q object embeddings using
the cross-attention layers to extract contextual information
from the voxel feature grid, while self-attention layers allow
the exchange of information between object embeddings.
After this stack, the embeddings are further enhanced by a
feed-forward network (FFN), and passed to a class head, a
position head, and an offsets head which predict the object’s
class, the 3D object center location, and shape occupancy,
respectively. Specifically, for each object i we predict the
label ŷi ∈ {c0, c1, . . . , cM}, the 3D location ĉi = (x, y, z),
and a set of K offsets relative to the center of the object. The
set of offsets for an object is defined as ôi = {ôi

1, ..., ô
i
K},

where each ôi
k = (oik,x, o

i
k,y, o

i
k,z) is a 3D vector. For each

offset, the linear layer also predicts an occupancy score ŝik.
The occupancy score spans the range [0, 1]. Formally we
describe an object occupancy as follows. First, given the ob-
ject center and the set of offsets, we define the object point
cloud as the set

V̂ i = {v̂i
k = ĉi+ ôi

k,∀k ∈ {1, 2, . . . ,K} | ŝik ⩾ 0.5} (1)

Subsequently, an occupancy mask is obtained by voxeliz-
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ing the resulting point cloud. The number of offsets K is a
parameter and must be sufficiently large to describe objects
of any size. The model is trained to assign a score ≥ 0.5
to a subset of offsets K

′
⩽ K. The direction of offsets

with score ≥ 0.5 aim to align with the center of the grid
voxels occupied by the object. Offsets with a score below
0.5 are discarded as they are predicted to be unnecessary to
describe the object occupancy. Within this framework, the
object center localizes each object within the grid, while the
relative offsets describe its occupancy shape. This frame-
work allows us to model the object’s occupancy within the
grid as a continuous and differentiable problem. Objects
classified as background are discarded. By extending the
DETR approach, our model inherently achieves panoptic ca-
pabilities, as each object’s occupancy is decoded indepen-
dently from a separate query.
Panoptic Module. This module is responsible for merging
the occupancy predictions from the baseline and the Object
Module to generate panoptic occupancy predictions. We
adopt a simple, parameter-free approach, where each voxel
classified as an object by the baseline decoder is assigned
an instance ID based on the Object Module prediction. To
smooth out the prediction and correct small localization er-
rors, we use a voting scheme using the voxels within radius
r of the reference location. The most voted ID (i.e. the ID
that is assigned most often to the sampled set of nearby vox-
els) is assigned to the reference voxel, and if no meaningful
ID was sampled, then the empty class is assigned.

3.4. Training methodology

In this section, we present our model’s training methodol-
ogy, which uses two stages. In the first stage, the baseline
model is trained using the semantic labels of the occupancy
grid according to LSSC. In the second stage, the Object
Module and Panoptic Module are added and trained using
Lobjects, while the baseline model is frozen.
Baseline model supervision. The baseline model is su-
pervised based on the predictions of the decoder with the
ground truth grid Yt ∈ {c0, c1, . . . , cM}L×W×H through
the Semantic Scene Completion (SSC) loss LSSC [2].
Object module supervision. The computation of the ob-
jects loss Lobjects stems from two components: an object
detection loss Ldet and an occupancy loss Locc.

The object detection loss is similar to the approach in
DETR [3] that combines a classification loss Lcls and a cen-
ter distance loss Ldist. We use a focal loss [23] for the clas-
sification and L2 loss for the distance loss, resulting in

Ldet = λ1Lcls + λ2Ldist, (2)

We match object predictions to ground truth with the
Hungarian algorithm [15] using a cost function analogous
to the loss in Eq. (2) (any unmatched predictions are asso-
ciated with the background class), which defines a mapping

σdet that assigns object prediction indices i to ground truth
indices j such that j = σdet(i) (where the ground truth has
been padded with no-object to allow queries to predict no
object).

For the occupancy loss, once the association at ob-
ject level is established, we apply again the same
concept at a voxel level, within each individual ob-
ject. Let us consider a prediction – ground truth pair
((ŷi, ĉi, V̂ i); (yσdet(i), cσdet(i), V σdet(i))). We want to find the
best match between the point cloud points V̂ i and the list
of ground truth voxel centers V σdet(i) occupied by the ob-
ject. This can be achieved by reapplying the Hungarian al-
gorithm (bipartite matching) at the voxel level. Assuming
K is always larger than the amount of voxels occupied by a
single object, we convert the ground truth set to a list of K
elements by padding with ∅. The matching cost function
for a single pair offset – ground truth voxel is given by

Lmatch(k, σ(k)) =− 1{sσ(k) ̸=∅}ŝk

+ 1{sσ(k) ̸=∅}Ldist
(
v̂k,vσ(k)

) (3)

where σ is one of the possible matching permutations. Here
we also use the L2 norm as a distance cost between the pre-
dicted offset and the matched voxel center.

Once the optimal match σocc is determined we compute
the loss as

Locc =

K∑
k=1

[
− log ŝk + 1{sσocc(k) ̸=∅}Ldist(v̂k,vσocc(k))

]
.

(4)
In practice we also use a focal loss for the occupancy ŝ and
balance the classification and regression components with
coefficients, which leads to

Locc = λ3Lfocal + λ4Ldist. (5)

Finally, the object loss is given by

Lobjects = Ldet + Locc. (6)

Location and point cloud supervision decou-
pling. During training, unlike during inference, we
add the predicted offsets to the ground truth location ci of
the matched object, instead of the predicted location ĉi.
This approach decouples the learning of object centers and
offsets, ensuring that the offset loss does not depend on the
accuracy of the predicted objects’ locations. As a result,
the model focuses on learning the actual object occupancy
without compensating for inaccurate location predictions,
allowing each component to learn independently.

Lastly, we only train on objects that have at least one vis-
ible voxel from the cameras, even though they may occupy
several non-visible voxels.
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4. Experiments

4.1. Datasets

nuScenes dataset. nuScenes [1] is a large-scale, multi-
modal dataset containing 1,000 driving scenes, divided into
700 scenes for training, 150 for validation, and 150 for
testing. Each scene is approximately 20 seconds long and
recorded at a frequency of 20 Hz. The dataset provides RGB
images captured from six cameras with a 360◦ horizontal
field of view, along with LIDAR point cloud data. For the
object detection task, nuScenes includes annotations of 3D
bounding boxes on keyframes at 2 Hz, labeled with 10 thing
classes.
Occ3D-nuScenes. Occ3D-nuScenes [34] extends the
nuScenes dataset by incorporating voxel-wise semantic oc-
cupancy annotations, making it suitable for 3D occupancy
prediction. The occupancy grid covers a range of −40m to
40m along the x and y axes, and from −1m to 5.4m along
the z-axis in the ego coordinate frame. The voxel grid is de-
fined with a resolution of 0.4m × 0.4m × 0.4m, allowing
for dense spatial representation. Occ3D-nuScenes provides
semantic labels for 17 categories, which include 16 known
object classes and an additional “empty” class. Addition-
ally, it includes a visibility mask to indicate occluded voxels
in the camera view. Since the Occ3D-nuScenes dataset does
not include panoptic annotations, we generate them offline
by intersecting semantic voxel annotations with 3D bound-
ing boxes.
Evaluation metrics. We use intersection over union (IoU)
to evaluate scene occupancy by distinguishing between oc-
cupied and non-occupied voxels, independent of semantic
labels. This binary occupancy map is essential for captur-
ing spatial structure in 3D environments. To assess seman-
tic segmentation performance, we compute mIoU over se-
mantic classes, accounting for both occupancy and class-
specific accuracy. The standard evaluation protocol for
3D semantic occupancy relies on the visibility mask, com-
puting errors only on visible voxels. However, this ap-
proach overlooks the accuracy of object shape reconstruc-
tion, which is crucial for safe path planning and aligns more
naturally with a panoptic framework. To provide a more
comprehensive evaluation and facilitate future comparisons,
we also report performance without applying the visibil-
ity mask. We also report the Panoptic Quality (PQ) met-
ric for the panoptic LIDAR segmentation task. PQ is de-
fined as the product of Recognition Quality (RQ), which
measures detection performance, and Segmentation Qual-
ity (SQ), which evaluates the segmentation consistency of
correctly matched instances [14].

4.2. Experimental settings.

The input images are 1600 × 1200 and augmented with
GridMask [4] and photometric distortion.

For the baseline model we take inspiration from [20, 35].
We use a ResNet101 [7] pre-trained on Imagenet [5] and an
FPN [22] as the backbone. We implement the encoder with
a transformer that uses a grid of 1D sinusoidal positional
voxel queries Q ∈ [−1, 1]L/2×W/2×H/2×D, and a stack of
four layers with deformable cross-attention [51] and 3D de-
formable self-attention [35, 51]. The cross-attention layers
project reference points (the voxel grid centers) into camera
views via projection matrices, aggregating image features
potentially from multiple views (in which case features for
that point are averaged). The hidden network dimension
D is 128 and the voxel embeddings are predicted in a grid
at half resolution. The decoder up-samples the voxel em-
beddings to the output resolution of 200 × 200 × 16 using
trilinear interpolation and predicts the class per voxel with
a linear layer.

In the Object Module we set the number of object queries
Q = 900, the number of layers M = 4, and the number of
offsets K = 2197. In the Panoptic Module we set r = 9
and use the Manhattan distance.

The loss weights are set as follows: λ1 = 0.5, λ2 =
0.02, λ3 = 0.125, λ4 = 0.0125. Each stage runs for 50
epochs with AdamW [25], a learning rate of 2 × 10−4 and
an exponential learning rate decay scheduler.

4.3. Main results

In this section we evaluate the performance of our model for
the task of 3D semantic occupancy and panoptic LIDAR seg-
mentation as a proxy for panoptic occupancy performance.
In Fig. 3 we include qualitative results of our model.
3D semantic occupancy. We evaluate our model on the
nuScenes validation set, with results summarized in Tab. 1.
The model achieves 28.0 mIoU and 43.9 IoU, delivering per-
formance comparable to existing works. Since our goal is
to develop a model capable of predicting complete object
occupancies, we also report, in Tab. 1, the model’s perfor-
mance evaluated without the visibility mask, providing a
more comprehensive assessment of its reconstruction capa-
bilities. Under these settings, it achieves 17.2 mIoU and
24.9 IoU. For completeness, we also report the performance
of previous work trained with the visibility mask.
Panoptic LIDAR segmentation. Results on panoptic LI-
DAR segmentation are reported in Tab. 2. For evaluation,
LIDAR points were labeled according to their correspond-
ing voxel labels in the occupancy grid. The model achieved
a PQ score of 29.4, demonstrating the validity of our ap-
proach. It is likely that the gap with the best-performing
models can be attributed to two main factors. First, our
framework does not retrain the base model which might
limit the relevant features that it can extract; second, our
method does not incorporate temporal consistency across
frames, which could be especially useful for improving pre-
dictions of distant and (partially) occluded objects.
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Figure 3. Qualitative results on Occ3D-nuScenes validation set. Our model accurately differentiates and segments different objects in
the scene.

Method
Image

Backbone Temporal
Train

w/ mask
Evaluate
w/ mask mIoU IoU

MonoScene [2] R101-DCN ✗ ✗ ✓ 6.1 -
BEVDet [9] R101-DCN ✗ ✗ ✓ 19.4 -
OccFormer [46] R101 ✗ ✗ ✓ 21.9 -
BEVFormer [20] R101-DCN ✓ ✗ ✓ 26.9 -
TPVFormer [10] R101-DCN ✓ ✗ ✓ 27.8 -
CTF-Occ [34] R101-DCN ✗ ✗ ✓ 28.5 -
SparseOcc [24] R50 ✓ ✗ ✓ 30.9 -
PanoOcc [40] R101-DCN ✓ ✗ ✓ 32.5 -

TPVFormer‡ [10] R50 ✓ ✓ ✓ 34.2 66.8
OccFormer‡ [46] R50 ✗ ✓ ✓ 37.4 70.1
BEVFormer [20] R101-DCN ✓ ✓ ✓ 39.2 -
PanoOcc [40] R101-DCN ✓ ✓ ✓ 44.5 75.0

OffsetOcc (Ours) R101 ✗ ✗ ✓ 28.0 43.9
OffsetOcc (Ours) R101 ✗ ✗ ✗ 17.2 24.9

Table 1. 3D Occupancy prediction performance on the Occ3D-
nuScenes dataset. “Temporal” indicates that the model uses past
frames when generating predictions. “Train w/ mask” and “Eval-
uate w/ mask” indicate whether the model has been trained using
the camera mask and whether the performance has been measured
using the camera mask, respectively. ‡ indicates performance mea-
sured by [26]. Best performance is bolded and second best is
underlined. Per-class performance can be found in the supplemen-
tary tables in Appendix A.

4.4. Discussion and ablation

In this section, we analyze the impact of our offsets loss
and location error decoupling, the computational cost intro-
duced by the Object Module for panoptic occupancy, and
evaluate the effect of the majority voting radius r in the
Panoptic Module.

Method
Input

Modality
PQ PQ† RQ SQ

EfficientLPS [31] LIDAR 62.0 65.6 73.9 83.4
Panoptic-PolarNet [50] LIDAR 63.4 67.2 75.3 83.9
Panoptic-PHNet [18] LIDAR 74.7 77.7 84.2 88.2
LidarMulitiNet [43] LIDAR 81.8 - 90.8 89.7

PanoOcc [40] Camera 62.1 66.2 75.1 82.1
OffsetOcc (Ours) Camera 29.4 38.3 40.1 66.5

Table 2. LIDAR panoptic segmentation results on nuScenes val-
idation set. Our OffsetOcc exhibits reasonable performance, al-
beit clearly behind the state of the art (SOTA). Many recent im-
provements included in the SOTA can readily be included in our
method which will likely reduce the gap significantly.

Variation PQTh RQTh SQTh

OffsetOcc w/o decoupling 15.8 22.0 69.9
OffsetOcc 17.0 23.7 69.7

Table 3. Offsets loss and location error decoupling. Decou-
pling object location error from point cloud supervision improves
performance on object classes, validating the effectiveness of our
approach. The models were trained on 50% of the dataset and
evaluated on the full validation set of nuScenes.

Offsets loss and location error decoupling. Since the off-
sets L2 loss focuses on reconstructing the object point cloud
as accurately as possible, it is more effective, during super-
vision, to compare the predicted point cloud with the ground
truth point cloud, without factoring in the localization error
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of the object center. As discussed in Sec. 3.4, during super-
vision we sum the predicted offsets to the ground truth ob-
ject center. The loss between the resulting point cloud and
the ground truth point cloud will therefore only penalize in-
accurate offsets. We compare in Tab. 3 the proposed model
with a model that does not employ this design choice: i.e.
during supervision the point cloud is determined as the sum
of the predicted object location and predicted offsets. We
compare two models that use voting radius r = 0 to evalu-
ate the raw offsets quality. The results indicate that decou-
pling produces better object segmentation, achieving 17.0
PQTh compared to 15.8 PQTh for the model without the
decoupling strategy. Notably, decoupling improves RQTh

by enhancing the shape of predicted objects, resulting in a
higher number of true positives, which validates the effec-
tiveness of our design choice.
Panoptic module voting radius. We analyze the impact
of the majority voting radius r, as described in Sec. 3.3,
using panoptic metrics. As shown in Fig. 4, performance
initially improves as r increases, as a larger radius helps to
smooth out predictions. However, beyond the optimal value
of 9, performance declines because a larger r leads to incor-
rect ID assignments, as the majority voting starts consider-
ing irrelevant voxels. Notably, PQTh increases mostly due
to RQTh as the majority voting mechanism smooths predic-
tions and therefore increases the number of true positives.
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Figure 4. Effect of the voting radius. Increasing r initially im-
proves performance by smoothing predictions. However, beyond
the optimal value of 9, performance declines as the voting pro-
cess starts to incorporate irrelevant voxels, leading to incorrect ID

assignments. Tested on the mini set of nuScenes.

OffsetOcc complexity. Table 4 presents an analysis of the
overhead introduced by our framework. Our framework in-
troduces minimal overhead, making it an efficient extension
to existing 3D semantic occupancy models. The parame-
ter increase is negligible, with only 2.3 million (M) addi-
tional parameters. During training, memory consumption

remains low, as we freeze the base model’s weights and op-
timize only the Object Module, significantly reducing com-
putational demands. During evaluation, memory usage in-
creases due to the voting mechanism in the Panoptic Mod-
ule. Despite this, the overall latency increase is modest,
allowing the model to maintain efficiency for real-world de-
ployment.

Method Params Memory Latency FPS

Baseline 44.2M 14.4G/2.5G 500 ms 2.0
Baseline w/ OffsetOcc 46.5M 2.2G/14.0G 714 ms 1.4

Table 4. Overhead of our framework OffsetOcc. Our frame-
work is lightweight in both parameter count and latency while
enabling panoptic occupancy. We show train/inference memory.
Each frame includes 6 cameras. Tested on the Nvidia L40S GPU.

5. Conclusion
In this work, we propose a novel approach to 3D panoptic
scene completion. In particular, we introduce a framework
that leverages annotated occupancy maps to learn object
shapes, a crucial aspect for path planning in autonomous
driving contexts. Our method identifies objects and esti-
mates their occupancy using a set of offsets relative to their
positions. This approach enables the formulation of object
shapes learning as a continuous and differentiable problem.
Limitations. The sequential nature of the Hungarian al-
gorithm applied at the object level, introduces a bottleneck
and increases the total training time. This issue is partially
mitigated by increasing the number of training processes,
such as using multiple GPUs, where each process handles a
smaller subset of objects.
Future work. Our method highlights the potential of mod-
eling object shapes as a continuous and differentiable prob-
lem, laying a foundation for future work in this area. Future
work will focus on integrating temporal reasoning to im-
prove frame-to-frame consistency, as well as refining hyper-
parameters and a more comprehensive Panoptic Module de-
sign to enhance panoptic performance.
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