
Data Scaling Laws for End-to-End Autonomous Driving

Supplementary Material

A. More Details on the Dataset
We analyze the distribution of the vehicle’s speed and the
distance to take actions (i.e. lane changing and taking a
turn). We group these statistics into bins with an interval of
10 km/h for the speed and 2 m for the action distance. The
distributions are provided in Fig. 7 and Fig. 8 respectively.

[0,
 10

)

[10
, 2

0)

[20
, 3

0)

[30
, 4

0)

[40
, 5

0)

[50
, 6

0)

[60
, 7

0)

[70
, 8

0)

[80
, 9

0)

[90
, 1

00
)

[10
0,

11
0)

[11
0,

12
0)

[12
0,

13
0)

[13
0,

inf
)

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge
 (%

)

Speed (km/h)

Figure 7. Speed distribution of the ego vehicle.

0 20 40 60 80 100
Action Distance in meters

0

2

4

6

8

Pe
rc

en
ta

ge
 (%

)

Lane Change
Turning

Figure 8. Distribution of the action distance.

A.1. Data Quality Analysis

Our data pre-processing pipeline relies on auto-labeling,
which may result in some portion of noisy samples i.e. with
inaccurate turn angles. We validated label quality by com-
paring turn angles (local linear approximations of lanelets)
with their global counterpart (linear approximations of full
lanelets). Fig. 9 (left) shows where they match (green) and
where they don’t (red) and Fig. 9 (right) shows the ratio of
accurately labeled turn angles for different angle bins and

we show that the accuracy of our labeling drops in sharper
turns.

(-1
80

, -1
35

]

(-1
35

, -9
0]

(-9
0,

-75
]

(-7
5,

-60
]

(-6
0,

-45
]

(-4
5,

-30
]

(-3
0,

-15
]

(-1
5,

-10
]

(-1
0,

-5]
(-5

, 0
]
(0,

 5]
(5,

 10
]

(10
, 1

5]

(15
, 3

0]

(30
, 4

5]

(45
, 6

0]

(60
, 7

5]

(75
, 9

0]

(90
, 1

35
]

(13
5,

18
0]

Turn Angle (degrees)

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f O
cc

ur
re

nc
es

Distribution of Turn Angles
Misaligned turn angles
Aligned turn angles

Figure 9. Turn angle alignment.

A.2. Data Curation Procedure

We provide some additional information for the dataset cu-
ration pipeline in the following.

Geofencing. We utilize an H3 cell resolution of 11,
corresponding to a cell edge length of 24.91m and a cell
diameter of 49.82m.

ODD Distribution. Maintaining near-identical ODD
proportions in splits smaller than 32 hours remains chal-
lenging, especially when factoring in large session clus-
ters. We investigated breaking up these clusters by ana-
lyzing which H3 cells are responsible for large connected
regions and assessing what would happen if they were re-
moved, but ultimately opted against this strategy because
the cluster connections were too complex and dense in our
data. Instead, to obtain the final splits, we iteratively grow
each dataset portion by randomly sampling a session cluster
from the smallest 50% of the remaining ones and assigning
it to the split that best preserves the desired distribution. Re-
peating this approach multiple times and selecting the con-
figuration closest to the real-world distribution yielded the
best results, and we verified that this ODD distribution re-
mains valid across all dataset sizes.

Action Labeling. Due to issues with the temporal
consistency of the localization when using lanelet matching

[55] based on position and orientation, we implemented a
trajdata extension that generates diverse map-based anchor
paths (DMAPs) following [52]. This enables the computa-
tion of map-based anchor paths for the ego-vehicle from any
initial position. For each anchor path, we measure align-
ment with the ground truth ego-motion to determine the
ego’s future lane sequence. The matching score is computed
as

s = αsIoU + (1− α)sLI

where sIoU is the Intersection over Union (IoU) of the ego
and anchor paths (each with 1m of buffer), sLI is the per-
centage of the ego path within the lanelets given by the an-
chor path, and weighting factor α ∈ [0, 1]. We save the
action distance in a global reference frame, i.e. as driven
distance from the session start. Since multiple snapshots
will contain the same action, this global reference frame en-
ables the removal of noisy snapshot data by using majority
voting to determine the final action. To simplify the ac-
tion encoding for training, we only take actions within the
ground truth traveled distance into account and save only
one action conditioning input per snapshot, although multi-
ple inputs might have been generated. We use manual visual
debugging to verify the procedure qualitatively.

A.3. Corner Case Handling

We focus on analyzing overall model performance improve-
ment as dataset size increases and provide a more compre-
hensive understanding of AV data-scaling laws, rather than
analyzing corner cases. Detecting corner cases would re-
quire (subjective) definitions, targeted labeling, and addi-
tional mechanisms like novelty or out-of-distribution detec-
tion, which are out of the scope of this work.

B. Model Diagram and Details
We provide details on our perception module in Ap-
pendix B.1.

B.1. Details on the Perception Module

We provide further clarification on the variables and opera-
tions introduced in the Perception Module. The perception
module processes input images from multiple camera views
and extracts feature representations for downstream tasks.
Below is a brief explanation of the key variables used:
• Iv ∈ RH×W×3: The rectified image from each camera

view, where v denotes the camera view (front f , left l, or
right r).

• E(·): The ResNet-based encoder used to extract features
from each input image. It includes a global average pool-
ing layer that reduces the spatial dimensions of the feature
maps to a single vector.

• Fv = E(Iv) ∈ Rd: The encoded feature vector for each
view v, where d is the dimension of the feature vector

after global pooling.
The multi-view fusion process leverages cross-attention to
combine information from all available views (front, left,
and right), ensuring balanced integration of lateral perspec-
tives:
1. Define the front view’s feature map, Ff , as the query

(Q), and use the left and right feature maps, Fl and Fr,
as keys (K) and values (V) in separate cross-attention
layers.

2. Apply cross-attention to combine features, where each
cross-attention layer updates Ff by attending to Fl and
Fr:

Af,l = CrossAttn(Ff ,Fl)

Af,r = CrossAttn(Ff ,Fr)

Here, Af,l and Af,r represent the attention outputs for
the front-left and front-right interactions, respectively.
These outputs are then aggregated to form the final fused
representation.

3. Symmetric Fusion: The final fused feature map, Ffused,
is computed by aggregating the cross-attention outputs.
We use a simple element-wise summation:

Fimg = Ff +Af,l +Af,r

This symmetric fusion captures contextual information
from both lateral views equally, enhancing the spatial
awareness of the front view.

C. Impact of Varying Training Points on Scal-
ing Law Estimators

As illustrated in Fig. 11 and Tab. 4, incorporating more data
points to train the M2 estimator on FDE values enables a
closer fit to the scaling curve, improving the alignment with
the data and leading to lower extrapolation loss on the test
set.

D. Selecting Scaling Law Estimators
As described in the method section, the estimators are
trained using the first six data points, with the 1024-hour
and 2048-hour points reserved for validation. Figure 10 il-
lustrates the scaling law fitting on FDE across all scenarios.
Among the estimators, M2 and M4 demonstrate the best fit,
achieving the lowest mean squared error (MSE). In contrast,
M1 fails to capture the trend and reduces to a straight line (a
pure power law), while M3 provides overly optimistic esti-
mates, with values decreasing too quickly toward the end,
resulting in a higher MSE. Following Occam’s Razor, we
choose M2 over M4 in our analysis.

Moreover, we believe the discrepancies in scaling law
curve-fitting arise more from the inherent challenges of
scaling law estimation than dataset quality, as existing esti-
mators exhibit varying levels of robustness across different

101 102 103

Dataset Size

1.3

8 × 10 1

9 × 10 1Fin
al

 D
isp

la
ce

m
en

t E
rro

r (
FD

E)
M1; error = 0.074

Train. points
Val. points
regressor fit

101 102 103

Dataset Size

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100 M2; error = 0.006

101 102 103

Dataset Size

9 × 10 1

1.1 × 100

1.2 × 100

1.3 × 100

1.4 × 100

1.5 × 100

1.6 × 100

1.7 × 100
M3; error = 0.034

101 102 103

Dataset Size

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100 M4; error = 0.006

Figure 10. Comparison of fitting all scaling law estimators on the full dataset.

101 102 103 104

Dataset Size

100

Fin
al

 D
isp

la
ce

m
en

t E
rro

r (
FD

E)

Training points
Test points
estim. with 5 points
estim. with 6 points
estim. with 7 points
estim. with 8 points

Figure 11. Analyzing the performance for M2: y − ϵ∞ = βxc in
the case of iteratively increasing the number of training points.

Points β c ϵ∞ Extrapolation Loss
5 2.1837 -0.1274 0.0000 0.2002± 0.0135
6 1.9010 -0.3319 0.7917 0.0244± 0.0002
7 1.8594 -0.3133 0.7663 0.0338± 0.0009
8 1.9488 -0.3486 0.8103 0.0179± 0.0004

Table 4. Quantitative extrapolation results for M2: y− ϵ∞ = βxc

using an iteratively increasing numbers of training points, comple-
menting the visualization in Fig. 11.

data regimes. Collecting measurements averaged over mul-
tiple runs could reduce noise and improve curve-fitting, but
would require significantly more compute power and time.
A piecewise function could reduce error, but would intro-
duce artificial discontinuities. Additionally, the plateau be-
comes apparent only for datasets exceeding 103 hours, with
metrics like FDE and ADE improving steadily in a near-
linear trend on a log-log scale before this point. This re-
flects natural diminishing returns at larger scales, also seen
in scaling law analyses in the computer vision and natural
language domains, rather than a limitation of data quality.

E. Experimental Setup
E.1. Hyperparameters

We use the Adam optimizer for training our models without
applying any weight decay. Training is conducted in FP32
precision, as we encountered instabilities when using FP16
or BF16 precisions. We employ a cosine annealing schedule
for the learning rate, with the final learning rate set to 0 (i.e.,
ηmin = 0). The initial learning rate (ηmax) is scaled lin-
early with the total effective batch size in distributed train-
ing. Specifically, we use a learning rate of 0.001 for an ef-
fective batch size (bs) of 1024, and scale the initial learning
rate for other batch sizes accordingly:
• bs = 512 → ηmax = 0.0005
• bs = 1024 → ηmax = 0.001
• bs = 2048 → ηmax = 0.002
• etc.

E.2. Training Time and Hardware

We use a compute cluster consisting of A-100 GPUs. Par-
ticularly, training a model with the ResNet-18 backbone on
the largest data split (8192 hours) takes around 24 hours on
8×A-100 GPUs.

