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Supplementary Material

In the supplementary material, we present details of Neu-
Radar’s implementation, more information about ZOD’s
radar data, and additional visualizations. In Appendix A,
we provide information about the training process, network
architecture, and losses. In addition, we provide our hyper-
parameter values. In Appendix B, we present more detailed
information about the sequences used to evaluate our net-
work and ZOD’s radar point cloud data. In Appendix C.1,
we investigate the effects of adding radar point cloud data
on image and lidar reconstruction by comparing our method
to NeuRAD, followed by an exploration of using a DETR-
like object detection network as a radar decoder. We then
provide more figures depicting our results in Appendix C.3.
Finally, we identify the limitations of our method and out-
line potential directions for future work in Appendix D.

A. Implementation Details

Training: We train all parts of our model jointly with
20,000 iterations, using the Adam optimizer. Regarding the
number of rays in each iteration, we follow the settings in
NeuRAD [44] for camera and lidar, i.e., 16,384 lidar rays
and 40,960 camera rays. For radar, the number of rays in
each iteration is not fixed. Instead, the number of radar rays
in each iteration equals the number of radar rays in each
scan multiplied by the number of radar scans loaded in each
iteration. The radar specifications for the ZOD and VoD are
shown in Tab. 4. The number of rays per iteration is 54,784
for ZOD and 70,400 for and VoD.

For the optimization, we adopt the same settings for ex-
isting modules in NeuRAD. For the new module, the radar
decoder, we use a warmup of 5,000 steps and a learning rate
of 0.001 that decays by an order of magnitude throughout
the training.
Neural Feature Field: We use NeuRAD’s hyperparameter
settings for the neural feature field (NFF) in NeuRadar. Ad-
ditionally, radar rays have specific hyperparameters, such as
ray divergence and a scaling parameter, which are explained
in Sec. 4.1.1. All NFF-related settings are listed in Tab. 5.
Hashgrids: We follow NeuRAD and employ the efficient
hashgrid implementation provided by tiny-cuda-nn [33],
configuring two distinct hashgrids, one for the static envi-
ronments and one for dynamic actors. For the static en-
vironments, a significantly larger hash table is employed,
given that actors comprise only a minimal area of the over-
all scene.
Losses: In Sec. 3.3 and Sec. 4.2, we explain that the to-
tal loss in NeuRadar comprises the radar loss Lradar, image
loss Limage, and lidar loss Llidar, with the latter two form-

ing the NeuRAD loss. While the paper focuses on the the-
ory and motivation behind these losses, we present their de-
tailed equations here.

The image loss is computed by
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where Np denotes the number of patches, and λrgb and λvgg

are weighting hyperparameters. The lidar loss is defined as

Llidar =
1

N

N∑
i=1

(λdLd
i +λintLint

i +λpdLpd

i +λwLw
i ), (16)

where N denotes the number of lidar points, and λd, λint,
λpd , and λw are weighting hyperparameters. Finally, the
radar loss is calculated by

Lradar =

{
λradarLradar

det , if deterministic modeling,
λradarLradar

prob , if probabilistic modeling,
(17)

where λradar is a weighting hyperparameter. The values of
these hyperparameters are given in Tab. 5.
Offset Head: A critical hyperparameter for offset predic-
tion is the maximum offset value, which acts as a constraint
on the radar decoder’s offset head. With respect to this
hyperparameter, a small value makes the estimations from
NFF dominant, while a large value gives the radar decoder
more flexibility. Tab. 6 presents the performance for vary-
ing maximum offset values. The experiments are conducted
on our probabilistic radar model across three evaluation se-
quences from two datasets. For ZOD, a maximum offset
of 1.5 meters yields good results in terms of both CD and
EMD. However, the best CD and EMD values for VoD do
not align. Averaging the metrics suggests that 1.5 meters is
also suitable for VoD.

B. Datasets
In this section, we provide more detailed information about
the datasets used to evaluate our network.

B.1. ZOD
We used ZOD sequences 000030, 000546, and 000811
for our ablation studies and hyperparameter tuning. For
our final experiments we used the following ten sequences:
000005, 000221, 000231, 000244, 000387,
000581, 000619, 000657, 000784, 001186. These
sequences vary in ego speed, lighting conditions (both day



Table 4. Specifications for the radar in two datasets. The unit for ray divergence is radians.

Dataset Azimuth range Elevation range Ray divergence #rays per scan #scans #rays per iteration

ZOD ±45.84
◦

(−4.58
◦
, 22.92

◦
) 0.015(0.8594

◦
) 3424 16 54784

VoD ±57.29
◦

(−22.34
◦
, 28.07

◦
) 0.02(1.14

◦
) 4400 16 70400

Table 5. Hyperparameters for NeuRadar. The hyperparameter val-
ues are universal across the three datasets, except for the radar ray
divergence. The most suitable value for this hyperparameter is
0.0125 for ZOD and VoD and 0.025 for nuScenes.

Hyperparameter Value
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RGB upsampling factor 3
proposal samples 128, 64
SDF β 20.0 (learnable)
power function λ −1.0
power function scale 0.1
appearance embedding dim 16
hidden dim (all networks) 32
NFF feature dim 32
Radar ray divergence δφ and δϑ 0.0125/0.025
Radar ray scaling parameter ζ 1

16
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hashgrid features per level 4
actor hashgrid levels 4
actor hashgrid size 215

static hashgrid levels 8
static hashgrid size 222

proposal features per level 1
proposal static hashgrid size 220

proposal actor hashgrid size 215
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λrgb 5.0
λvgg 5e-2
λint 1e-1
λd 1e-2
λw 1e-2
λPd 1e-2
proposal λd 1e-3
proposal λw 1e-3
interlevel loss multiplier 1e-3
λradar 2e-2

L
ea

rn
in

g
ra

te
s actor trajectory lr 1e-3

cnn lr 1e-3
camera optimization lr 1e-4
transformer lr 1e-3
remaining parameters lr 1e-2

and night), weather conditions (sunny. snowy, and cloudy),
and scenario type (highway, city, residential), which we
deemed appropriate for our experiments.

The radar point clouds in ZOD are captured every 60 ms
and stored in a standard binary file format (.npy) for each

Table 6. Results for various maximum offsets in the Cartesian
coordinate system. The unit of offset is meters.

Max Offset ZOD VoD

CD ↓ EMD ↓ CD ↓ EMD ↓
1.0 4.68 6.05 4.19 4.48
1.5 3.92 4.94 4.02 4.28
2.0 4.54 6.22 4.07 4.28
2.5 4.62 6.21 4.07 4.42
3.0 4.55 6.14 3.99 4.33

ZOD Sequence and Drive. The data contains timestamps in
UTC, radar range in meters, azimuth and elevation angles
in radians, range rate in meters per second, amplitude (or
SNR), validity, mode, and quality. The radar switches be-
tween three modes depending on the ego vehicle speed, and
the sensor has a different maximum detection range in each
mode. Mode 0 represents the radar point clouds captured
when the vehicle speed is less than 60 to 65 kph with a max-
imum detection range of 102 meters, while modes 1 and 2
represent vehicle speeds of between 60 to 65 kph and 110 to
115 kph, and more than 110 to 115 kph, respectively, with
maximum detection ranges of 178.5 and 250 meters. The
azimuth angle values are between -50 and 50 degrees. The
quality value also changes from 0 to 2, with 2 indicating the
highest quality for the detections. The radar extrinsic cal-
ibration information (i.e., latitude, longitude, and angle) is
provided in calibration files, indicating its position relative
to the reference coordinate frame.

B.2. VoD
VoD contains driving scenarios captured at 10 Hz around
Delft city from the university campus, the suburbs, and the
old town with many pedestrians and cyclists, so the dataset
itself is not very diverse and is rather challenging for NeRF-
based methods. Since VoD does not provide sequence num-
bers, we created a set of ”sequences”, each of which is
roughly 30 seconds and originates from a different drive in
the dataset. We provide the range of frames numbers in
the dataset for each sequence. The VoD sequences used for
ablations and hyperparameter tuning were 1850-2150,
7600-7900, and 8482-8749. For our final experi-
ments, we used 100-400, 2220-2520, 2532-2798,
2900-3200, 3277-3575, 3650-3950, 4050-4350,
4387-4652, 4660-4960, and 6800-7100.



C. Additional Results
C.1. Effects on Image and Lidar Rendering
To investigate whether incorporating a radar branch affects
image and lidar rendering, we compare the performance of
NeuRAD and NeuRadar on image and lidar rendering tasks.
The results are shown in Tab. 7. We report PSNR, SSIM
[45], and LPIPS [56] as image similarity metrics for cam-
era simulation. We evaluate the fidelity of lidar simulation
using four metrics: L2 median depth error, RMSE intensity
error, ray drop accuracy, and Chamfer Distance (CD). For
both datasets NeuRadar’s performance is similar to Neu-
RAD and the addition of radar does not affect the camera
and lidar reconstruction performance.

C.2. DETR as Radar Decoder
As mentioned in Sec. 4.1.2, a potential solution to radar
modeling is to directly predict radar detections, or in this
case MB parameters, from the NFF features using a network
commonly used for object detection. To further explore this
idea, we evaluate novel view synthesis using a DETR-like
transformer network [9] as the radar decoder, where the
number of output queries is equal to the maximum poten-
tial number of radar detections. In Fig. 6 we show the radar
and lidar detections generated by this network. Although
the method can predict a reasonable point cloud from pre-
viously seen viewpoints, it is completely incapable of true
novel view synthesis, implying that the network ignores the
geometric info about the scene and has merely learned to
copy the ground truth regardless of features.

C.3. Visualizations
In this section, we visualize the qualitative results of our
experiments. Fig. 7 shows the novel view synthesis results
for two VOD sequences using our probabilistic method.
VOD is a dataset specifically curated for urban scenarios
with many pedestrians and cyclists, making it a challenging
dataset to use for NeRF-based methods.

D. Limitations and Future Work
In this work, NeuRadar effectively generates realistic radar
point clouds. However, certain characteristics of radar data
are not fully captured. Here, we describe two limitations
of our work, which also point to directions for enhancing
NeuRadar.

First, NeuRadar’s radar decoder does not predict radar
range rate, signal-to-noise ratio (SNR), or radar cross sec-
tion (RCS). We believe that extending NeuRadar to in-
corporate these values and addressing the associated chal-
lenges could make a valuable contribution. Another limi-
tation stems from the inherent mechanisms of NeRFs. De-
signed primarily for visual data, NeRFs focus on surface
geometry and visible features, which hinders NeuRadar’s

(a)

(b)

Figure 6. Radar point cloud (in red) rendered by the naive DETR-
based radar decoder depicted along rendered lidar point cloud. (a)
shows the output for an interpolated sensor pose in a ZOD se-
quence, and (b) shows the radar detections rendered with a 2 meter
ego pose shift. The radar detections have merely shifted in posi-
tion and do not reflect the geometry of the scene as shown by lidar.

ability to fully leverage radar’s strength in detecting visu-
ally occluded objects. Addressing this limitation presents a
promising research direction.



Table 7. Performance comparison of novel view synthesis for image and lidar. NeuRAD results are obtained using its public code with
recommended settings.

Dataset Method Camera Lidar

PSNR ↑ SSIM ↑ LPIPS ↓ Depth ↓ Intensity ↓ Drop acc. ↑ Lidar CD ↓

ZOD

NeuRAD 30.9 0.878 0.187 0.028 0.041 95.8 3.69
Baseline 29.96 0.871 0.192 0.035 0.043 95.5 3.75

Deterministic 30.4 0.870 0.190 0.035 0.045 95.6 3.73
Probabilistic 30.1 0.870 0.191 0.030 0.041 95.5 3.59

VoD

NeuRAD 21.68 0.687 0.366 0.167 0.158 85.78 13.96
Baseline 21.59 0.680 0.372 0.217 0.158 85.73 14.45

Deterministic 21.63 0.683 0.365 0.172 0.163 85.86 11.92
Probabilistic 21.75 0.683 0.363 0.167 0.159 85.75 11.66

original originalreconstruction reconstruction

Figure 7. Novel view synthesis results VoD sequences.


