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Abstract

Tracking multiple objects based on textual queries is a chal-
lenging task that requires linking language understanding
with object association across frames. Previous works typ-
ically train the whole process end-to-end or integrate an
additional referring text module into a multi-object tracker,
but they both require supervised training and potentially
struggle with generalization to open-set queries. In this
work, we introduce ReferGPT, a novel zero-shot referring
multi-object tracking framework. We provide a multi-modal
large language model (MLLM) with spatial knowledge en-
abling it to generate 3D-aware captions. This enhances its
descriptive capabilities and supports a more flexible refer-
ring vocabulary without training. We also propose a robust
query-matching strategy, leveraging CLIP-based semantic
encoding and fuzzy matching to associate MLLM gener-
ated captions with user queries. Extensive experiments
on Refer-KITTI, Refer-KITTIv2 and Refer-KITTI+ demon-
strate that ReferGPT achieves competitive performance
against trained methods, showcasing its robustness and
zero-shot capabilities in autonomous driving. The codes
are available on https://github.com/Tzoulio/
ReferGPT

1. Introduction
Referring Multi-Object Tracking (RMOT) has emerged as
a crucial problem in computer vision, particularly in au-
tonomous driving, surveillance and human-machine inter-
action. Unlike the standard Multi-Object Tracking (MOT)
task [9, 24], which associates detections across frames
without explicit user guidance, RMOT introduces textual
queries to specify which objects to track [13, 34, 42]. For
instance, given a user query such as “the blue car turning
right”, an RMOT system must identify and track the rele-
vant object across a sequence of frames. This capability is
particularly valuable in autonomous driving and intelligent
traffic monitoring, where integrating natural language guid-

Figure 1. Comparison between ReferGPT and previous RMOT
methods. (a) End-to-end models jointly learn tracking and refer-
ring. (b) Tracking-by-detection frameworks follow a modular ap-
proach and train the referring text module. (c) Our method builds
on (b) while eliminating the need for training, enabling zero-shot
referring MOT.

ance enhances situational awareness and enables more intu-
itive human-machine interaction in complex environments.

Generally, RMOT approaches can be divided into two
categories, as seen in Fig.1. The first category (Fig.1(a))
consists of end-to-end transformer-based frameworks, such
as TransRMOT [34], where a single supervised unified
model performs both object tracking and referring. The
second category, depicted in Fig.1(b), includes modular
frameworks that follow a tracking-by-detection paradigm,
such as iKUN [8], where a dedicated supervised referring
module is introduced into an existing tracker. However,
while both categories have shown promising results, they
remain constrained by two fundamental limitations. First,
supervised RMOT methods tend to generalize poorly due
to their reliance on a closed-set of predefined queries, limit-
ing their ability to handle open-set ones. Second, 2D-based
methods struggle with spatial alignment, particularly for
queries that contain explicit spatial information. For ex-
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ample, queries such as “cars which are faster than ours”
or “the car is moving away from us”, are difficult to re-
fer to using only 2D representations. Additionally, end-
to-end joint-detection-and-tracking methods often experi-
ence task interference, which degrades association perfor-
mance. Tracking-by-detection methods remain more reli-
able, as separating detection and association allows for in-
dependent optimization of each task [7, 30].

To address these limitations, we propose ReferGPT, a
zero-shot referring MOT framework that combines multi-
object tracking through Kalman filtering [31] with a Multi-
Modal Large Language Model (MLLM)-based referring
modules for query matching. Unlike traditional RMOT
methods [8, 34, 42] that operate solely in the 2D space, our
approach leverages spatial information from a 3D tracker
[35] to enrich the MLLM’s understanding of the scene, al-
lowing it to generate structured object captions, which are in
turn matched with the appropriate user queries. Specifically,
we incorporate 2D images as visual cues, together with 3D
motion and position knowledge through the MLLM prompt,
to generate semantically rich yet spatially aware object cap-
tions. This is critical for handling queries with depth-
dependent constraints, such as ”blue cars that are moving”.

Furthermore, to match the MLLM caption with the user
query, we introduce a matching module that combines se-
mantic understanding through CLIP encoding [17] with de-
terministic data association using fuzzy matching. This al-
lows us to align captions and queries even when they use
semantically related terms, like ”the vehicle in front of our
car” with ”the automobile ahead of us” providing a more
robust matching process. In summary, our contributions are
as follows.
• We introduce ReferGPT, a zero-shot Referring Multi-

Object Tracking framework capable of handling arbitrary
textual queries, without requiring training, for both 2D
and 3D inputs. To the best of our knowledge, this is the
first work on zero-shot RMOT in autonomous driving.

• We demonstrate the effectiveness of Multi-Modal Large
Language Models (MLLMs) in generating spatially
grounded text, which enhances query-based tracking per-
formance.

• We perform extensive evaluations on the Refer-KITTI,
Refer-KITTIv2 and Refer-KITTI+ datasets, demonstrat-
ing that our framework achieves competitive performance
without relying on supervised training, highlighting its
zero-shot capabilities on the autonomous driving setting.

• We conduct multiple ablation studies showing that each
component of our proposed method contributes non-
trivially.

2. Related Work
Multi-Object Tracking: Multi-Object Tracking methods
can be broadly categorized into Joint Detection and Track-

ing (JDT) [25], [26], [36], [29], [16], [43] and Tracking-
by-Detection (TBD) [18], [32], [35], [4], [28] approaches.
JDT methods combine detection and tracking into a uni-
fied framework, jointly optimizing object localization and
association across frames. Some JDT methods operate
in 2D, such as CenterTrack [43], which integrates spatio-
temporal memory for short-term association, and Perma-
Track [25], which maintains object locations under full oc-
clusions. Others extend JDT to 3D, such as MMF-JDT [29],
which integrates object detection and multi-object tracking
into a single model, eliminating the traditional data asso-
ciation step by predicting trajectory states and PC-TCNN
[36] which generates tracklet proposals, refines them, and
associates them to perform multi-object tracking. How-
ever, these approaches demonstrate performance limitations
compared to TBD methods. TBD methods decouple de-
tection from tracking, allowing for independent optimiza-
tion and greater flexibility. Specifically, HybridTrack [7]
combines deep learning with a learnable Kalman Filter to
dynamically adjust motion parameters, MCTrack [39] em-
ploys a two-stage matching process that combines bird’s-
eye view and image-plane matching to improve robust-
ness against depth errors and PC3T [35] uses a confidence
guided data association module for the tracking task. This
motivates our choice of TBD as our tracking paradigm,
which offers greater flexibility and improved performance.

Referring Multi-Object Tracking: The first work
on Referring Multi-Object Tracking (RMOT), TransR-
MOT [34], introduces an end-to-end transformer framework
that uses language expressions as semantic cues to track re-
ferred objects frame by frame. TempRMOT [42] extends
this by adding a temporal enhancement module to better
handle motion across frames, while DeepRMOT [10] in-
corporates deep cross-modal fusion to improve how visual
and linguistic features interact. ROMOT [12] further lever-
ages multi-stage cross-modal attention and vision-language
modeling, enabling the tracking of both known and novel
objects based solely on descriptive attributes. MLS-Track
[15] enhances cross-modal learning by progressively inte-
grating semantic information into visual features at multi-
ple stages of the model. MGLT [5] combines linguistic,
temporal, and tracking cues to generate object queries and
enhance visual-language alignment. All of the above meth-
ods follow an end-to-end approach, integrating tracking and
referring into a unified model to leverage cross-modal inter-
actions, but they often lack flexibility.

iKUN [8] was the first method to deviate from the tradi-
tional RMOT paradigm by introducing a modular approach.
Specifically, iKUN proposed using an existing pre-trained
tracker and combining it with a trainable referring text mod-
ule. MEX [27] later extended this idea and further opti-
mized the cross-modality attention for better computational
efficiency of the framework. However, both approaches
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train the referring module, which limits their adaptability
and requires retraining when faced with out-of-distribution
queries. In contrast, ReferGPT operates in a zero-shot set-
ting and removes the need to train the referring text module.
This allows for more flexible referring, without the need for
task-specific supervision or retraining.

3. Methodology
3.1. Problem Formulation and Method Overview
Given a sequence of K frames I = {It}Kt=1 and a referring
text query Q = [q1, q2, . . . , qm] ∈ Rm where each qi rep-
resents a word in the sequence, our goal is to identify and
track objects that match the given query. Using an off-the-
shelf object detector Fdet(·), we generate a set of Nt candi-
date detections per frame. Our method is designed to work
with any object detector that produces 3D outputs, regard-
less of whether the input data comes from LiDAR or RGB
images. Next, we employ a tracking-by-detection frame-
work Ftrk(·), as shown in Fig.2, which identifies and keeps
track of all true detections. For every identified object, we
use an MLLM agent to generate a textual caption D, lever-
aging 3D motion and position information from the tracker
along with the cropped image Ic of the detected object. The
generated description and the referring query are then pro-
cessed by our matching module, which computes a similar-
ity score ST to determine their alignment. After all frames
have been processed, we filter and associate the set of de-
tected objects to the input query, through clustering, based
on their computed similarity score.

In the following sections, we describe the usage of
Fdet(·) and Ftrk(·) in Sec.3.2. Our MLLM agent is intro-
duced in Sec.3.3. We detail our matching module in Sec.3.4
and we present our filtering process in Sec.3.5.

3.2. 3D Object Detection and Multi-Object Track-
ing

The tracking-by-detection approach tracks objects by as-
sociating detections extracted from a 3D object detector
at each timestep t. Formally, given an input frame It at
timestep t, the detector Fdet(·) produces a set of Nt detec-
tions:

Rt = Fdet(It), Rt = {rit}
Nt
i=1 ∈ RNt×F (1)

where Rt represents the set of detected objects, Nt is the
number of detections at timestep t, and F is the number of
attributes describing each detection. Each detected object
rit ∈ RF corresponds to a 3D bounding box, parameterized
as: rit = [x, y, z, w, l, h, θ] ∈ R7 where (x, y, z) are the
3D centroid coordinates, (w, l, h) are the width, length, and
height, and θ is the heading angle.

These detections serve as the basis for tracking objects
over time. To maintain and update object trajectories, we

employ a Kalman filter-based [31] multi-object tracking
module denoted as Ftrk(·). At each timestep t, Ftrk(·) ini-
tializes new trajectories for objects that have been newly
detected and do not correspond to any existing track. Ad-
ditionally, for objects that are already being tracked, it pre-
dicts their future states X̂t = {x̂i

t}
Mt
i=1 ∈ RMt×F where Mt

is the number of objects currently being tracked at time t.
Each trajectory T i for object i is defined as a sequence of its
estimated states T i =

[
xi
tinit

, . . . ,xi
t

]
where tinit denotes the

timestep when object i was first detected and its trajectory
was initialized.

Next, detections Rt are associated with X̂t using a
confidence-guided association strategy [35], which pri-
oritizes high-confidence matches to improve robustness
against false positives and occlusions. Once detections
are assigned, tracked states, denoted as Xt = {xi

t}
Mt
i=1 ∈

RMt×F , are updated by incorporating the new associated
measurements, refining object localization. Finally, a tra-
jectory management process handles track initiation, termi-
nation, and re-identification to ensure stable tracking, even
in cases of temporary occlusion or missing detections.

3.3. Multi-Modal Large Language Agent

We define the Multi-Modal Large Language Agent as
FLLM(Iic,P,Ci

t) as shown in Fig.2, where Iic is the cropped
image of the specific object and P denotes a predefined
prompt provided to the MLLM in the form of a text se-
quence P = [p1, p2, . . . , pn] ∈ Rn with each pi being a
word in the prompt. Ci

t is a compact representation of the i-
th object’s spatial and motion statistics over the most recent
T frames. To ensure spatial consistency, we perform a coor-
dinate transformation that converts tracked object states Xt

from the global (world) coordinate system to an ego-centric
reference frame, aligned with the ego vehicle. Specifically,
the tracked states xi

t ∈ Xt are transformed into relative po-
sitions pi

t ∈ R3.
In this ego-centric coordinate system, Ci

t ∈ R9 con-
sists of the current position p = (x, y, z) at t0, with t0
denoting the current frame, the average heading angle θ̄
of the past T=5 frames, the Euclidean distance between
the current state xt0 and the state at frame t0 − T , the
mean heading angle variation ∆̄θ, and the spatial variations
∆p = (∆x,∆y,∆z) computed across the time window T :

Ci
t =

[
p, θ̄, deuclid,∆p, ∆̄θ

]
, (2)

This compact representation is then flattened into a 1-D text
sequence and provided as input to the MLLM. By summa-
rizing both the object’s current state and its recent motion
over the temporal window T , Ci

t enables the agent to reason
about dynamic behaviors such as being stationary, moving
forward, parking, or turning. The agent, in turn, generates
a descriptive output text sequence Di

t = [d1, d2, . . . , dn]
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Figure 2. Overview of the proposed ReferGPT framework. Given LiDAR It,3D and image It,2D inputs, a 3D object detector extracts
object candidates Rt,3D , which are then tracked using a tracking-by-detection approach with a Kalman filter for trajectory prediction. A
Multi-Modal Large Language Model generates descriptive captions Di

t for each object by leveraging object coordinates Ci and appearance
features Iic. These captions are then matched against the referring query Q using a matching module. The final matched trajectories T i are
filtered and associated with the query to produce the final output.

∈ Rn for each tracked object, where each di represents a
word in the sequence.

In summary, leveraging the LLM’s reasoning and natu-
ral language generation capabilities, we translate the spa-
tial and kinematic properties of each object into a natural
language description. These descriptions capture attributes
such as object color, object type (e.g., car, pedestrian), rel-
ative location with respect to the camera, movement sta-
tus, and directional information. The resulting descriptions
serve as intermediate representations of the scene through
text and are later used during the matching process, where
they are compared with the referring query to identify the
corresponding object.

3.4. Matching
As shown in Fig.3, to compute the similarity between each
detected object’s description generated by the MLLM agent
Di

t and the referring query Q, we employ a hybrid match-
ing approach that combines fuzzy matching with seman-
tic embedding-based similarity. We first apply the Rat-
cliff/Obershelp algorithm [19] to compute a fuzzy matching
score between each word qk in the query Q and each word
dk in the object description Di

t. The algorithm identifies
the longest common contiguous subsequences of characters
between word pairs to determine their similarity score. The
similarity score for a pair of words (qk, dk) is defined as:

Sk =
2 ·Mk

|qk|+ |dk|
, (3)

where Mk represents the total number of matching charac-
ters in the longest common subsequences, and |qk| and |dk|
are the lengths of the query word and the description word,

respectively. Finally, the overall fuzzy matching score SF

between the query Q and the description Di
t is defined as

the sum of all per-word scores: SF =
∑m

k=1 Sk

Figure 3. Our Matching Module. Given an object description Di
t

and a referring query Q, we calculate the total matching score ST

between them.

This technique prioritizes structural similarity by em-
phasizing shared contiguous substrings. However, fuzzy
matching remains limited in handling synonyms and am-
biguous terms, as it relies on direct character sequence com-
parisons rather than true semantic understanding. To ad-
dress this limitation, we leverage the textual encoder of
CLIP to encode both the object description and the refer-
ring query. Specifically, we obtain vector embeddings ED

and EQ for Di
t and Q, respectively, and compute their sim-
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ilarity using the cosine similarity metric:

SC =
ED · EQ

∥ED∥∥EQ∥
, (4)

where SC represents the CLIP similarity score. By incor-
porating CLIP, we enhance the robustness of the matching
process, enabling the model to handle synonyms, contex-
tual variations, and ambiguous phrases that fuzzy matching
alone may struggle to resolve. The final matching score is
computed as ST = SC + SF .

3.5. Filtering Optimization
Upon track termination, each associated detection xi

t is
characterized by its coordinates and a similarity score Si

T

inferred during the matching step, indicating whether the
detected object’s description aligns with the given textual
query Q. To mitigate the impact of noisy detections and re-
duce false negatives, we first apply a majority voting strat-
egy: for every tracked object, if the majority of detections
within the object trajectory Ti are classified as matching the
query, the entire trajectory is inferred to correspond to the
query, effectively suppressing false negative matched detec-
tions.

Following this filtering step, a key challenge arises from
the logit-based similarity scores produced by the match-
ing module. Since the similarity score varies across dif-
ferent queries, depending on query length and the response
characteristics of the FLLM, using a fixed threshold for all
queries is suboptimal. An alternative approach could be to
select the top-k tracks with the highest similarity scores.
However, this strategy assumes prior knowledge of how
many detections truly satisfy the query, which is unknown.
To address this, we employ an agglomerative hierarchical
clustering algorithm [3] to dynamically identify the subset
of tracks having the highest similarity scores. This adap-
tive clustering approach ensures that the most relevant tra-
jectories are selected without relying on a rigid threshold,
thereby enhancing the flexibility and generalization of the
matching process.

4. Experimental Setup
Dataset and Evaluation Metrics. We conduct our exper-
iments on three benchmark datasets derived from Refer-
KITTI. First, we evaluate on the Refer-KITTI-v1 public
dataset [34], using its test split, which consists of 3 videos
and 150 diverse natural language queries. Second, we as-
sess our method on Refer-KITTI-v2 [42], an extension of
v1 featuring a more challenging set of queries. We report
results on its pre-defined test split, comprising 4 videos
and 859 queries, to demonstrate our method’s robustness
in more complex settings. Additionally, we evaluate on
Refer-KITTI+ [13], following the same split protocol as
EchoTrack [13], which includes 3 videos and 154 queries.

We primarily focus on the Higher Order Tracking Ac-
curacy (HOTA) metric [14], which provides a balanced
measure of detection, association and localization accu-
racy in multi-object tracking. It is defined as HOTA =√

DetA · AssA. DetA is the Detection Accuracy [14] em-
phasizing the accuracy of object detection, while AssA is
the Association Accuracy [14] explicitly measuring the as-
sociation’s effectiveness in maintaining track consistency.
We also provide the Localization Accuracy (LoCA) which
describes how accurately the objects’ spatial positions are
estimated.
Implementation Details. In our work, we leverage LiDAR
input frames for 3D object detection and employ CasA as
our object detector [37]. We deploy the model-based PC3T
tracker [35] within a tracking-by-detection framework to as-
sociate detections across frames. As our MLLM, we em-
ploy GPT-4o-mini for its enhanced reasoning and caption-
ing capabilities. For textual encoding, we use CLIP ViT-
L/14 [17], which has demonstrated improved representa-
tion capabilities due to its transformer-based architecture
and larger model size.

5. Experiments
Tab. 1 presents a comprehensive comparison of existing
methods on the Refer-KITTI dataset. Our proposed method
demonstrates competitive performance despite operating in
a zero-shot setting. Unlike other models that rely on task-
specific training, ReferGPT generalizes to the referring
multi-object tracking task without any training. Notably,
by using 3D LiDAR data as input, we achieve a HOTA
score of 49.46%. When using 2D as input, our method
scores 46.36% HOTA. We also achieve the highest Associ-
ation Recall (AssRe) scores, highlighting the ability to con-
sistently maintain object identities over time. Despite be-
ing zero-shot, ReferGPT delivers competitive results even
across detection and localization metrics, with strong DetA
and LocA scores.

Tab. 2 and Tab. 3 present the performance of our
proposed method on the Refer-KITTIv2 [42] and Refer-
KITTI+ [13] datasets, respectively. These datasets in-
troduce additional, more complex queries, posing sig-
nificant challenges for models not explicitly trained on
them. Despite this, ReferGPT demonstrates strong gen-
eralization capabilities in handling such open-set referring
queries. Specifically, we achieve a competitive HOTA score
of 30.12%, closely matching supervised end-to-end ap-
proaches such as TransRMOT [34] 31.00%. Notably, Refer-
GPT scores the highest association accuracy (AssA) of
59.02%, significantly surpassing both TempRMOT [42] and
TransRMOT [34]. For the Refer-KITTI+ dataset, ReferGPT
sets a new benchmark in HOTA 43.44%, in DetA 29.89%
and AssA 63.60%, reaffirming our method’s potential in
open-set query tracking.
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Table 1. Comparison of existing methods on Refer-KITTI dataset [34]. The best is marked in bold, and the second-best in underline. ’E’
indicates End-to-End methods. The results are reported in %. ReferGPT3D uses LiDAR as input, ReferGPT2D uses Image as input.

Detection Association
Method E HOTA ↑ DetA ↑ DetRe ↑ DetPr ↑ AssA ↑ AssRe ↑ AssPr ↑ LocA

Traditional Methods
FairMOT [40] × 22.78 14.43 16.44 45.48 39.11 43.05 71.65 74.77
DeepSORT [33] × 25.59 19.76 26.38 36.93 34.31 39.55 61.05 71.34
ByteTrack [41] × 24.95 15.50 18.25 43.48 43.11 48.64 70.72 73.90
TransTrack [23] × 32.77 23.31 32.33 42.23 45.71 49.99 78.74 79.48

Supervised Learning Methods
iKUN [8] × 48.84 35.74 51.97 52.26 66.80 72.95 87.09 -
MEX [27] × 45.07 32.81 62.52 41.65 - 71.09 - -
TransRMOT [34] ✓ 46.56 37.97 49.69 60.10 57.33 60.02 89.67 90.33
EchoTrack [13] ✓ 48.86 41.26 53.42 62.83 57.59 61.61 89.33 90.74
DeepRMOT [10] ✓ 39.55 30.12 41.91 47.47 53.23 58.47 82.16 80.49
TempRMOT [42] ✓ 52.21 43.73 55.65 59.25 66.75 71.82 87.76 90.40
ROMOT [12] ✓ 35.5 28.30 - - 46.2 - - -
MGLT [5] ✓ 49.25 37.09 - - 65.50 - - -

Zero-Shot Learning Methods
Baseline∗ × 21.42 9.48 16.10 18.20 48.82 57.86 72.57 80.72
ReferGPT2D (Ours) × 46.36 36.58 51.40 52.16 59.00 73.16 69.31 83.26
ReferGPT3D (Ours) × 49.46 39.43 50.21 58.91 62.57 73.74 72.78 81.85

∗ Baseline uses only CLIP-Image encoder for similarity evaluation, without the MLLM-Agent.

Table 2. Comparison of existing methods on Refer-KITTIv2 dataset [42]. The best is marked in bold, and the second-best in underline.
’E’ indicates End-to-End methods. The results are reported in %.

Detection Association
Method E HOTA ↑ DetA ↑ DetRe ↑ DetPr ↑ AssA ↑ AssRe ↑ AssPr ↑ LocA

Traditional Methods
FairMOT [40] × 22.53 15.80 20.60 37.03 32.82 36.21 71.94 78.28
ByteTrack [41] × 24.59 16.78 22.60 36.18 36.63 41.00 69.63 78.00

Supervised Learning Methods
iKUN [8] × 10.32 2.17 2.36 19.75 49.77 58.48 68.64 74.56
TransRMOT [34] ✓ 31.00 19.40 36.41 28.97 49.68 54.59 82.29 89.82
TempRMOT [42] ✓ 35.04 22.97 34.23 40.41 53.58 59.50 81.29 90.07

Zero-Shot Learning Methods
ReferGPT (Ours) × 30.12 15.69 21.55 34.41 59.02 74.59 68.20 79.76

Table 3. Comparison of existing methods on Refer-KITTI+ dataset [13]. The best is marked in bold, and the second-best in underline. ’E’
indicates End-to-End methods. The results are reported in %.

Detection Association
Method E HOTA ↑ DetA ↑ DetRe ↑ DetPr ↑ AssA ↑ AssRe ↑ AssPr ↑ LocA

Supervised Learning Methods
TransRMOT [34] ✓ 35.32 25.61 40.05 38.45 50.33 55.40 81.23 79.44
EchoTrack [13] ✓ 37.46 28.83 39.83 46.70 50.39 54.14 82.57 79.97

Zero-Shot Learning Methods
ReferGPT (Ours) × 43.44 29.89 36.59 56.98 63.60 75.20 73.27 82.23
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Query: Car in black

Query: Car in front

Query: Car on the left

Query: A woman carrying a bag

Figure 4. Qualitative results of our proposed ReferGPT on refer-KITTIv1 [34]. Each row presents example frames tracked according to
the given text query.

5.1. Qualitative Results

In figure 4, we illustrate qualitative examples of our pro-
posed ReferGPT on the Refer-KITTIv1 dataset [34]. Each
row presents frames from different video sequences where
ReferGPT successfully tracks objects based on the input
query. We accurately distinguish between similar objects
in complex urban and highway scenes, maintaining robust
tracking across frames, even under challenging occlusion
cases.

5.2. Ablation Study

Text Encoder Ablation. We experiment with different dis-
tilled versions of text encoders to evaluate the trade-off be-
tween efficiency and performance in our matching module.
As shown in Tab.4, DistilBERT-L6 achieved a HOTA of
38.26% while DistilBERT-L12 significantly improves the
results, reaching 49.26% HOTA, showing that increasing
model depth enhances the embedding quality of the descrip-
tions and queries. The CLIP encoder achieves the best per-
formance of 49.46% HOTA. These results suggest that dis-
tilled models can offer a promising balance between com-
putational efficiency and accuracy.

Table 4. Ablation Study on distilled text encoders. DistilBert-L6
[20] refers to a distilled version of Bert [6] with 6 layers, while
Distil-L12 is the 12-layer model. The results are reported in %.

Encoder HOTA DetA AssA

DistilBert-L6 [20] 38.26 24.81 59.50
DistilBert-L12 [20] 49.26 39.35 62.21

CLIP [17] 49.46 39.43 62.57

Matching Module Ablation. We compare different match-
ing module configurations in Tab. 5 to assess their contribu-
tions. The results show that using CLIP alone is insufficient
achieving 31.13% HOTA. Specifically, the CLIP Image en-
coder contributes the least, as it must encode a cropped de-
tected object, which provides limited visual context. Addi-
tionally, the queries and descriptions often contain complex
spatial and motion cues, making it difficult for the image
encoder to establish strong similarities between the text and
the image. Furthermore, since CLIP is trained on shorter
image-caption pairs, the CLIP Text encoder struggles with
long descriptions, as they contain words with high semantic
weight such as the color, movement, or direction of the ob-
ject. The best performance is achieved by combining CLIP
Text with fuzzy matching, as this balances semantic under-
standing with token-level precision.

Table 5. Ablation Study on matching components. ’Clip Im’ refers
to the CLIP image encoder. ’Clip Text’ denotes the CLIP text
encoder, and ’Fuzzy’ indicates the Fuzzy matching module. The
results are reported in %.

Clip Im Clip Text Fuzzy HOTA DetA AssA

✓ - - 21.42 9.48 48.82
- ✓ - 30.04 15.51 58.36
✓ ✓ - 31.13 15.98 61.00
- - ✓ 47.48 35.94 62.97
✓ - ✓ 48.96 38.24 63.00
✓ ✓ ✓ 49.34 39.41 62.25
- ✓ ✓ 49.46 39.43 62.57
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Filtering Components Ablation. We conduct experiments
with different filtering strategies to evaluate their impact on
performance. Applying a fixed similarity threshold, which
renders our method online, achieves 36.61% HOTA. Per-
forming post-processing by clustering alone, increases our
results to 46.5%. By combining majority voting and clus-
tering we achieve our best result.

Table 6. Ablation Study on filtering components. MV refers to the
majority voting process and C to the clustering. With T, we refer
to a fixed threshold filtering. The results are reported in %.

MV C T HOTA DetA AssA

- - ✓ 36.61 23.17 58.23
- ✓ - 46.50 36.92 59.10
✓ ✓ - 49.46 39.43 62.57

Object Detector Ablation. We experiment with different
object detectors, all pre-trained on KITTI, to evaluate their
impact on RMOT performance. Our method is designed
to be detector-agnostic and works effectively with both 2D
and 3D detectors. While CasA achieves the highest 3D de-
tection performance on KITTI among the tested detectors,
leading to the best overall results in RMOT, the referring
performance gap between CasA and lighter detectors such
as QT-3DT (2D input) remains relatively narrow. This sug-
gests that our referring text module is robust enough to com-
pensate for lower-quality object detections.

Table 7. Ablation Study on different 3D Object Detectors. The
results are reported in %.

Object Detector Input HOTA DetA AssA

QT-3DT [11] 2D 46.36 36.58 59.00
PV-RCNN [22] 3D 44.93 34.07 59.86

Second-IOU [38] 3D 45.01 33.97 60.14
Point-RCNN [21] 3D 47.14 36.04 61.92

CasA [37] 3D 49.46 39.43 62.57

Distilled MLLM Ablation. Table 8 shows the impact of
different distilled MLLMs on RMOT performance. GPT-
4o-mini achieves the highest HOTA, demonstrating its
strong prompt-following and spatial reasoning capabilities.
While smaller models like Qwen2 [2] and Phi-4 [1] perform
worse in detection, their association accuracy remains rela-
tively stable. However, the matching module alone does not
suffice. For example, Qwen2 produces suboptimal detected
object descriptions (Confusing object colors or pedestri-
ans’ genders), showcasing that the quality of the MLLM’s
descriptive output remains essential for maximizing detec-
tion and overall tracking performance. This highlights the
potential for even greater performance gains through fine-
tuning.

Table 8. Ablation Study on different distilled MLLMs. The results
are reported in %.

MLLM Size HOTA DetA AssA

Qwen2-VL-Instruct [2] 2B 19.97 6.50 61.66
Phi4-Multimodal-Instruct [1] 5B 36.56 21.49 62.56

GPT-4o-mini∗ 8B* 49.46 39.43 62.57
∗ The exact model size has not been officially disclosed. The reported
parameter count is based on publicly available information and third-party
sources.

5.3. Limitations

While our method eliminates the need for retraining, the
inference pipeline remains computationally expensive. The
process of generating natural language descriptions for each
detected object, computing similarity scores and perform-
ing query matching introduces additional latency. This
computational overhead arises from the repeated use of
the multimodal large language model, which is resource-
intensive both in terms of processing time and memory con-
sumption. However, our work can benefit from advance-
ments in efficient or distilled MLLMs, which promise to
reduce inference time and resource demands without sacri-
ficing performance.

Another limitation is that, despite our results demon-
strating a flexible vocabulary of referring expressions, our
framework is still not fully open-vocabulary. Indeed, the
MLLM-generated captions follow the structure and speci-
ficity of their prompting. The captions often contain infor-
mation that may not always align with the level of abstrac-
tion required by a given query. As a result, if a user query
refers to an aspect that is absent from the generated descrip-
tion, our method may struggle to establish a correct match.
Achieving true open-vocabulary refer tracking requires ex-
ploring further zero-shot generalization, as it is infeasible to
train a model on every possible user query.

6. Conclusion

In this work, we present ReferGPT, a novel framework
that performs zero-shot Referring Multi-Object Tracking in
3D. We overcome the limitations of current supervised ap-
proaches, that struggle with novel and ambiguous queries,
showcasing the scalability and adaptability of our method.
We leverage our 3D tracker and feed an MLLM 3D spa-
tial information, enhancing its ability to generate struc-
tured, spatially aware descriptions within the tracking-by-
detection paradigm. Our extensive evaluations on three
different referring datasets based on KITTI traffic scenes,
demonstrate that ReferGPT can generalize across diverse
and open-set queries, highlighting its potential for tracking
in complex, open-world scenarios.
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