
Robusto-1 Dataset: Comparing Humans and VLMs on real out-of-distribution
Autonomous Driving VQA from Peru

Supplementary Material

6.1. Human Protocol VQA

A total of nine humans participated in this small pilot ex-
periment as volunteers. A consent digital consent form was
given to the volunteers where they were briefly told about
the goals of the study. Participants were required to per-
form the task on a computer or laptop and were not allowed
to use their phones to ensure a wider field of view, as watch-
ing a video on a phone may result in missing key elements
in such short clips. Responses were recorded digitally and
stored anonymously with encrypted participant IDs. Partic-
ipants provided their digital consent by ticking on a box in a
Google Forms spreadsheet to share their data in anonymized
way for research and commercial purposes.

The participant demographics consisted of nine individ-
uals aged 18 to 35 from Peruvians living in Peru. Sub-
jects were recruited as a mixture of friends and colleagues
of the authors through open advertising in different group
chats. The participants had varying levels of driving ex-
perience and were fluent in English, as the questions were
asked and answered in English. Participants also digitally
confirmed their english fluency, and participants who did
not have such were potentially going to be removed from
the analysis. This was not the case and we analyzed all
9 subjects in the experiment. It is important to note that
the VLMs were also tested using the same questions in En-
glish. All participants were Peruvian. We are aware that the
small study group is interesting because Peruvians gener-
ally speak spanish (not english), and that VLMs have likely
not seen dashcam driving data in Peru (a spanish speaking
country). A future study will include English-speaking par-
ticipants (e.g. Americans) and show them a mixture of data
from both people driving in the United States and Peru to
study the interaction of language fluency and dashcam data
provenance to the study.

Interestingly, some participants at the end of the exper-
iment thought it was a text-base labelling task (given what
they have read in the news about manual bounding-box la-
beling being required to train AI models), as they were un-
familiar with Question-Answering (QA) research. Approx-
imately half of the participants reported via email, Slack or
WhatsApp that many questions seemed subjective – how-
ever, this is not a negative comment, as it verifies the inten-
tion of our experiment to push the boundary of human inter-
pretability through OOD stimuli with questions of varying
level of subjectiveness such as the hypotheticals & counter-
factuals in Block 3.

6.2. Multimodal Input Processing Pipeline

To systematically evaluate the ability of Vision-Language
Models (VLMs) to analyze driving scenes, we implemented
a input processing protocol tailored to the specific require-
ments of each model. The objective was to ensure that
all models received equivalent multimodal input while re-
specting their individual API constraints and format re-
quirements. This protocol enabled us to compare their per-
formance fairly across tasks involving video-based visual
question answering (VQA).

Each model was provided with a series of frames ex-
tracted from driving videos alongside a set of structured
questions. Given the variability in how different VLMs pro-
cess visual inputs, we employed a prompt adaptation mech-
anism that converts video data into a compatible format for
each model.

Below, we describe the input processing strategy for each
VLM tested in our experiments.

CogVLM. For CogVLM, video data were submitted as
complete binary files. The input video was read from a lo-
cal file in binary mode and passed along with an adapted
prompt via the Replicate API. The input dictionary included
keys for the prompt, the binary video file (“input video”),
and generation parameters (“top p” set to 0.9, “tempera-
ture” set to 1, and “max new tokens” of 2000).

Qwen 2. For Qwen2, videos were hosted remotely. Each
video was downloaded using HTTP requests, converted into
an in-memory file using Python’s BytesIO module, and
then combined with the adapted prompt to form the input.
These data were sent to the model via the Replicate API
in a similar structure as for CogVLM, enabling Qwen2 to
process video inputs directly from remote sources.

Pixtral. Pixtral Large model processes video content by
analyzing individual frames rather than receiving a com-
plete video file as a single input. For each video, frames
were extracted at a rate of 1 FPS and converted to Base64-
encoded JPEG strings. The resulting input was constructed
as a message comprising a text component (the adapted
prompt) followed by a series of image components. Each
image was represented by a Base64 string prefixed with
"data:image/jpeg;base64,".

DeepSeekV3. DeepSeek V3 was evaluated by extract-
ing video frames at 10 FPS and converting each frame
into a Base64-encoded string. The adapted prompt was
combined with a list of these image strings (each prefixed
with "data:image/jpeg;base64,") into a message
structure, which was then submitted to the model via its
API.

Gemini. Gemini processes video inputs by first com-
bining the system prompt with a marker that denotes
the start of the visual sequence. Each video frame is
then converted into an image component via the API’s
Part.from image method, and a text component con-
taining the user prompt is appended. Gemini 2.0 was de-
ployed on Google Cloud Platform (GCP) through Vertex
AI, utilizing the checkpoint “gemini-2.0-flash-exp” in ac-
cordance with the guidelines provided in the Vertex AI Gen-
erative Models documentation. The LLM generation pa-
rameters were set to a maximum of 100 tokens, a tempera-
ture of 1.0, and a top-p of 0.9.

Llama. For Llama-based models, our protocol transforms
each video frame into a Base64-encoded JPEG string that
is then integrated with the system instructions and user
prompt into a single text block. This combined input is
submitted to the model via its API. In our experiments,
Llama 3.2 was deployed in GCP using Vertex AI, employ-
ing the checkpoint “Llama-3.2-11B-Vision-Instruct-meta.”
The LLM generation parameters were set to a maximum of
100 tokens, a temperature of 1.0, and a top-p of 0.9.

6.3. MetaData & Tags

The distribution of driving scenarios suggested that we cre-
ate a pre-fixed list of 16 meta-tags from which we manually
annotate certain properties from a video clip. Sample meta-
data attributes are: 1. Vehicle Action, 2. Driving Action
Reasoning, 3. Vehicle Motion Behavior, 4. Traffic Signs,
5.Traffic Lights, 6. Weather Conditions, 7. Road Surface
Conditions, 8. Road Structures, 9. Static Objects, 10. Other
Vehicle Behaviors, 11. Pedestrian Behaviour, 12. Unex-
pected Obstacles, 13. Emergency Situations, 14. Lighting
Conditions, 15. Traffic Conditions, 16. Driving Environ-
ment. The full list of information of the labels derived from
the meta-data attributes can be seen in the Table 4. These
meta-tags are available for all 200 videos, and the 7 exter-
nal ones used in the study of our paper, and were used as the
basis for prompting the Oracle LLM the variable questions.

6.4. Question Generation Details with LLMs

To assess the current gap in the ability of Language Mod-
els to understand driving scenes, we designed a process for
generating context-specific questions for each video. This

process focuses on the first block of queries, termed “Vari-
able”, one of three blocks used in our experiments (the other
two being “Multiple Choice” and “Counterfactual & Hypo-
thetical”). In this block, each video is associated with a set
of five targeted questions, along with concise answers, that
are derived solely from the metadata manually curated for
the corresponding driving scene.

Initially, we compiled a database containing key meta-
data for each video. This metadata includes general infor-
mation such as the sample identifier, scene location, ego
vehicle details (e.g., vehicle actions, motion behavior), and
external factors (e.g., traffic signs, weather conditions, road
surface conditions).

For each video, the curated metadata is stored in a JSON
file that is subsequently processed using GPT-based mod-
els accessed through the ChatGPT platform (specifically,
through https://chatgpt.com/gpts). Our ap-
proach leverages customizable GPTs, which are configured
through two primary components: detailed system instruc-
tions and an initial conversation starter phrase. The system
instructions explicitly guide the model to generate five rele-
vant questions based exclusively on the provided metadata,
while the starter phrase establishes the context for the con-
versation, ensuring consistency and clarity throughout the
exchange.

The instructions provided to the GPT are as follows:

You are an AI assistant specialized in analyzing
driving scenarios. You will receive a list of
JSON objects, each containing partial metadata
about different driving scenes. Be aware that
the provided data is incomplete, and important
elements of the scenes may be missing.

For each JSON sample, your task is to:
1. Read the JSON object.
2. Include the "#" and "Name" from the JSON
object at the beginning to indicate which sample
you are analyzing.
3. Generate **five** relevant and contextually
appropriate questions based solely on the
information available in the JSON object.
4. Provide short and direct answers to each
question.

Focus on what is observed in the scene according
to the metadata, and consider that there might
be elements not explicitly mentioned.

Example format:

Sample #: 1
Name: 2023_01_10_153834_044_clip_00_16_100

Q1: [Question 1]
A1: [Answer 1]

Q2: [Question 2]
A2: [Answer 2]

Q3: [Question 3]

https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models
https://chatgpt.com/gpts

A3: [Answer 3]

Q4: [Question 4]
A4: [Answer 4]

Q5: [Question 5]
A5: [Answer 5]

The conversation begins with the following starter
prompt, which underscores the need to analyze each JSON
sample individually:

Below is a list of JSON samples, each containing
partial information about different driving
scenes. Please analyze each sample individually.
For each one:

- Generate five relevant questions based on the
metadata.
- Provide short and direct answers to each
question.

Remember that the metadata may be incomplete,
and consider the possibility that there are
other elements not mentioned in the file.
[Insert the list of JSON samples here]

6.5. Testing Frame Processing Capacity

We conducted a synthetic experiment to evaluate whether
each LLM could correctly interpret the temporal sequence
of frames and detect objects introduced at specific moments.
A series of frames was generated depicting a red ball on a
white background moving diagonally from the bottom-left
to the top-right corner. The objective was to verify whether
the models could infer the ball’s direction by processing the
frames in the correct temporal order.

Additionally, we introduced a green star in one frame at
a time to assess whether the models were capable of exam-
ining all frames throughout the sequence. In each iteration
of the experiment, the green star was inserted into a differ-
ent frame. If a model accurately recognized the presence
of the green star, it suggested that the model had success-
fully processed that particular frame rather than skipping or
averaging across the sequence.

The questions posed to the models focused on identify-
ing the direction of the movement of the red ball and spec-
ifying if other objects were present in the frames. The fol-
lowing prompt was used in each iteration:

Task: Answer the following questions based
solely on the sequence of images provided. The
images represent frames from a short video
sequence.

Questions:
1. In which direction is the red ball moving?
2. Do you see any other objects besides the red
ball? If so, please describe the object(s) and
their color(s).

Instructions:

- Carefully analyze each image frame by frame.
- Base your answers only on what is visibly
present in the images.
- Do not assume any information that is not
directly observable.
- Provide a concise answer, and explain your
reasoning if necessary.

By repeating this process for multiple iterations (placing
the green star in different frames each time) and examin-
ing the models’ responses, we assessed whether they could
track the trajectory of the red ball and the newly introduced
object without overlooking any part of the video.

Figure 7. Images used to analyze the model’s temporal under-
standing.

6.5.1 Results

The results confirmed that Pixtral supports a maximum of
six frames per input, which means it did not successfully
process the test at a frame rate of 10 fps. However, when
tested at 1 fps, it demonstrated accurate frame sequence
recognition, including the detection of the green star in the
final frame.

On the other hand, Deepseek was tested at 10 fps and ex-
hibited performance comparable to other models in terms of
general response. However, a key limitation was identified:
Deepseek only supports OCR (Optical Character Recogni-
tion), meaning its analysis is restricted solely to textual con-
tent present in the images. Since the model does not pro-
cess visual information beyond text, we infer that its perfor-
mance was influenced by the filenames and image descrip-
tions, which contained hints about the video content. In
fact, when the file names were changed, the model com-
pletely lost its accuracy in responses, confirming that its
performance relied on external textual information rather
than a genuine understanding of the visual content. We
highlighted this limitation in the results (Table 1), where
Deepseek appears with a dagger symbol (†), indicating that
while it accepts image inputs, it only processes them for
OCR purposes rather than for “true” visual scene under-
standing.

Additionally, we evaluated Qwen2 and CogVLM using
the Replicate platform, setting the frame rate to 10 fps. Ac-
cording to available benchmarks, these models can process
longer videos at higher frame rates. However, we stan-
dardized the input to 10 fps to ensure a consistent compari-
son across models, providing each Vision-Language Model
(VLM) with an equivalent amount of temporal information.
While both models successfully passed the test, there is

evidence of internal processing mechanisms that influence
how frames are interpreted. Due to this additional process-
ing, these models are marked with an asterisk (*) in the re-
sults table to indicate potential differences in frame han-
dling compared to other models.

Models Name Test Passed?
10fps 1fps 0.5fps

DeepSeek V3 ”deepseek-chat” ✓ † - -
Pixtral ”pixtral-large-latest” ✗ ✓ -
*Qwen ”Qwen2-VL-7B” ✓ - -
*CogVLM ”cogvlm2-video” ✓ - -
Gemini ”Gemini-2.0-flash-exp” ✓ - -
Llama ”Llama-3.2-11B-Vision-Instruct” - - ✓

Table 1. Comparison of vision-language models, including test
results. Models marked with * were run through the Replicate
platform. Models marked with † have pseudo multi-modal capa-
bilities (see Section 6.5).

6.6. Running Visual-Language Models

We conducted our experiments using six publicly avail-
able Vision-Language Models (VLMs): Deepseek, Pixtral,
Qwen2, CogVLM, Gemini, and Llama. These models were
developed by organizations from three different countries:
the United States of America (Gemini and Llama), France
(Pixtral), and China (DeepSeek, CogVLM, and Qwen). Be-
low, we describe the key aspects of how each model was
accessed, configured, and tested.

Qwen2 and CogVLM2. The Qwen2 [69] and
CogVLM2 [24] models were accessed through the
Replicate platform, which offers a straightforward interface
for evaluating AI models. Despite their fee-based model
usage, the cost per query proved minimal relative to other
platforms and was justified given our limited set of video
prompts.

Setting up and running the models was a straightfor-
ward process, as it did not require the installation of ad-
ditional tools or the implementation of advanced configu-
rations. However, the example Python script provided by
Replicate per model was modified to enable its use through
the API. The modifications were primarily aimed at ensur-
ing that the input consisted of the trial dataset videos and
the prompt which had already been processed as previously
detailed. These queries were directly loaded into the sys-
tem, allowing for the efficient generation of results in a
near-instantaneous manner. In terms of performance, the
response time for each model was approximately 9-16 sec-
onds, ensuring a rapid turnaround for queries. Addition-
ally, the estimated cost per query to CogVLM model was
$0.000725 and to Qwen2 model was $0.000975 providing

a reference for computational efficiency and resource allo-
cation.

Both models demonstrated fast and consistent perfor-
mance on basic visual and textual analysis tasks. How-
ever, certain limitations were observed when interpreting
images repetitively, evidencing a low variability in their re-
sponses, since they responded exactly the same to the same
image and text input. Despite this limitation, the accessibil-
ity and ease of use of Replicate was a valuable tool to run
and test models without requiring significant computational
resources.

Pixtral. We evaluated the “Pixtral Large” model using its
official API, which offers complimentary and direct access
to its functionalities. Following the official documentation,
we integrated the Pixtral model through JSON-based re-
quests to transmit images and prompts. On average, Pix-
tral required 1.5–2.8 seconds per query when the input con-
sisted of five images plus a question. However, processing
times increased for more complex images, such as those
containing multiple overlapping objects or environments
with variable lighting. In these cases, response times ex-
tended due to challenges in classifying secondary or out-of-
distribution (OOD) objects.

In one specific test case, involving a counterfactual &
hypothetical question and an urban scene with traffic and
various unidentified objects on the street, Pixtral required
approximately 9 to 16 seconds to generate a response, likely
due to the complexity in the image.

The experiment with the 7 videos ended with a 99 %
success rate in executing requests without errors (only one
error was obtained during the experiment). Overall, Pix-
tral showed strong performance on tasks such as generating
textual descriptions and variability in its responses without
going out of context. In conclusion, the Pixtral API proved
to be robust, user-friendly, and highly effective, making it a
valuable tool for the development and evaluation of Vision-
Language tasks.

DeepSeek-V3. DeepSeek V3 [40] was evaluated through
its official API to assess its capability in visual and tex-
tual analysis tasks. The integration was carried out through
JSON-based requests, achieving an average response time
of 0.9 seconds per query, highlighting its speed compared
to other models tested. The experiment used a frame rate of
10 images per second. For each query, 10 repetitions were
performed to ensure consistency of the results.

Regarding token management, DeepSeek models use to-
kens as basic units to process text and as a basis for billing.
A token can represent a character, word, number, or symbol.
Approximately, the cost per query for us was 1200-1500 to-
kens. A query consists of a processed message/prompt and
a set of 50 images. The prompt contains approximately 913

https://replicate.com/
https://mistral.ai/en
https://docs.mistral.ai/getting-started/quickstart/

characters, and the images are in HD, with a resolution of
1920× 1080 pixels. The exact number of tokens processed
per query is determined based on the model’s response.

A publicly available tokenizer facilitated offline estima-
tion of token usage, allowing for more efficient planning
of model queries. DeepSeek’s source code is available in
its official GitHub repository, further enabling transparency
and reproducibility.

Gemini. Gemini 2.0 was deployed on Google Cloud
Platform (GCP) via Vertex AI, utilizing the checkpoint
“gemini-2.0-flash-exp” to ensure seamless integration into
our experimental pipeline. Our implementation followed
the guidelines provided in the Vertex AI Generative
Models documentation available at https://cloud.
google . com / vertex - ai / generative - ai /
docs/reference/python/latest/vertexai.
generative_models. We tested this model with videos
recorded at 1920 × 1080 resolution and 10 frames per sec-
ond, encoding each frame prior to submission through the
Vertex AI API. For each question on every video, the exper-
iment was repeated 20 times to capture the variability in the
LLM responses.

Llama. Llama 3.2 was deployed on Google Cloud Plat-
form (GCP) via Vertex AI following the recommended
guidelines for uploading pre-built models to the Model
Registry and deploying them to a Vertex AI Endpoint.
In our experiments, we used the checkpoint ”Llama-3.2-
11B-Vision-Instruct-meta.” The model was deployed on an
a2-highgpu-1g machine equipped with one NVIDIA
Tesla A100 GPU. Video frames, provided in JPEG format,
were used as inputs. Notably, this model exhibited a limita-
tion in its processing capacity, as it was able to process only
up to three frames per video. To capture the variability in
the responses, each question for every video was repeated
20 times.

6.7. Sentence Embedding

To represent textual data in a high-dimensional vector
space, we used a sentence embedding model that en-
coded semantic information while preserving contextual
dependencies. The primary sentence embedding used
for the plots presented in the main body of this pa-
per was all-mpnet-base-v2, a transformer-based ar-
chitecture pre-trained on large-scale corpora and opti-
mized for semantic similarity tasks available in https:
//huggingface.co/sentence-transformers/
all-mpnet-base-v2. To generalize our results,
we re-ran our analysis using two other sentence em-
beddings such as paraphrase-mpnet-base-v2 and
e5-large-v2 to illustrate the effects of different em-
beddings on the final pattern of results. These re-

sults for RSA can be seen in Figure 9. Both of
these sentence embeddings are available in https:
//huggingface.co/sentence-transformers/
paraphrase- mpnet- base- v2 and https://
huggingface.co/intfloat/e5-large-v2 re-
spectively.

6.8. Data Curation and Additional Analysis

There were certain cases for the multiple choice ques-
tions where the VLMs did not correctly answer one
of the main responses, or answered with a small vari-
ant. For example, in some cases there are answers that
only had Yes/No, that were responded with similar but
no exact answers like “Option: ‘Yes’”, “Option:
[‘No’]”, “Answer: Option: No” or “[No]”,
etc. These variants of Yes/No were cured to be the same
as Yes or No respectively.

For other multiple-choice questions, there were exam-
ples such as those for the clutter rating where the VLM
responded to some false interval that was not in the op-
tions. For example, “Option: 2 to 4”, “Option:
1 to 5”, “Option: More than 10”, “Option:
10 or more” or just “Option: 9”. To curate the
data, the solution was to review and contrast the original
intervals we proposed as multiple-choice responses (Ta-
ble 3) and verify whether the answers fit within the provided
ranges. For example, “Option: 1 to 5”, “Option:
More than 10”, or “Option: 2 to 4” did not fit
into any of the established ranges. In such cases, the re-
sponse was discarded and not considered for analysis. On
the other hand, there were cases where the response did
fit within one of the ranges, such as “Option: 9” or
“Option: 11-15.” In this data curation process, we
were strict in ensuring that the responses matched correctly.

As final results, we find a total of 1734/5460
(31.75%) modifications in all Vision-Language Models
(VLMs). On the other hand, responses that could not be in-
cluded in the analysis were ignored and discarded. Ignored
responses include, for example, those that did not fit within
any of the predefined multiple-choice ranges. There were a
total of 79/5460 (1.44%) of ignored responses. Next,
we will provide a detailed breakdown of the modifications
and ignored responses for each VLM. Processed Data:

Llama-3.2 - Modifications: 350, Ignored: 2,
Total responses: 1050
cogvlm2 - Modifications: 22, Ignored: 0, Total
responses: 105
deepseek_v2 - Modifications: 327, Ignored: 44,
Total responses: 1050
gemini-2.0 - Modifications: 667, Ignored: 33,
Total responses: 2100
pixtral- Modifications: 350, Ignored: 0, Total
responses: 1050
qwen2 - Modifications: 18, Ignored: 0, Total
responses: 105

https://api-docs.deepseek.com/quick_start/token_usage
https://github.com/deepseek-ai
https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models
https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models
https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models
https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/intfloat/e5-large-v2
https://huggingface.co/intfloat/e5-large-v2

All results in the main body of this paper were done with
the curated responses. However, we also re-did our anal-
ysis with the uncurated (raw) responses, and also using a
single answer instead of the average (pooled) answer per
query per VLM. Indeed, as can be seen in our raw data
repository: Robusto-1, there are cases where some VLMs
produce highly varying responses to the same questions. To
address this variablilty (given that the embedding of sev-
eral ”Yes’s and No’s” can be ”Maybe”, and similarly for
open response questions, we also re-did our analysis with a
single responses, and found no large variation to the same
pattern of results as using the pooled answer per VLM. We
have added these main results in the supplementary plots.

https://huggingface.co/datasets/Artificio/robusto-1

Models Name API Access Input Modality Frame Rate (fps)
DeepSeek V3 deepseek-chat Direct Images & Text 10
Pixtral pixtral-large-latest Direct Images & Text 1
Qwen2 Qwen2-VL-7B Replicate Video & Text 10
CogVLM cogvlm2-video Replicate Video & Text 10
Gemini Gemini-2.0-flash-exp Direct Images & Text 10
Llama Llama-3.2-11B-Vision-Instruct Vertex AI Images & Text 0.5

Table 2. Summary of parameters and input modalities for evaluated Vision-Language Models. “API Access” indicates the method through
which each model is accessed: Direct access via a dedicated API, or indirectly via external platforms such as Replicate or a custom
deployment on Vertex AI.

Questions
Question 1 Open-ended text response
Question 2 Open-ended text response
Question 3 Open-ended text response
Question 4 Open-ended text response
Question 5 Open-ended text response
Q6: Please rate the level of clutter from 1 to 10. Consider 10 as the highest level
of clutter and 1 as the lowest.

1-10

Q7: Is this a recurrent driving scenario for you? yes/no
Q8: Estimate how many pedestrians are there in the scene? 0,1, 2-3,4-6,7-10,11-20, 21+
Q9: Is this situation hazardous for the driver? yes/no
Q10: On a scale of 1-10, how well do you think an autonomous vehicle would
drive in this scene? Consider 10 as perfect driving and 1 as terrible driving.

1-10

Q11: What would have had to happen in this video for a crash to have occured
involving the driver?

Open-ended text response

Q12: What would have had to happen in this video for an external crash to have
occured not involving the driver?

Open-ended text response

Q13: Imagine if you had taken the opposite action in this scene (for example,
braking instead of accelerating, or accelerating instead of braking). What do
you think would have happened?

Open-ended text response

Q14: What would be the next action to perform a U-turn in the next frames if
the driver was driving an ambulance instead?

Open-ended text response

Q15: What would be the next action to perform a U-turn in the next frames if
the driver was driving a motorcycle instead?

Open-ended text response

Table 3. Overview of the questions and expected response formats, grouped into three categories: Variable (Questions 1–5), Multi-
ple Choice (Questions 6–10), and Counterfactual & Hypothetical (Questions 11–15), as administered to human participants and Vision-
Language Models.

Ego Vehicle
Vehicle Actions Single-Label Describes the physical actions performed by the vehicle, such as turns, accel-

eration, braking, lane changes, etc. Its purpose is to capture the observable
behavior of the vehicle in the scene.

Driving Action Reason-
ing

Multi-Label & Open-
Ended

Explains the reasoning behind the vehicle’s actions (e.g., stopping due to a
pedestrian or changing lanes to avoid an obstacle). Its purpose is to provide
the necessary context to understand why the observed actions were taken.

Vehicle Motion Behav-
ior

Multi-Label Describes the observable motion of the vehicle, such as steady driving, accel-
eration, or braking, based on the visual cues in the segment. Its purpose is to
capture how the vehicle moves during the segment in a qualitative way, without
requiring precise numerical values.

External Factors
Traffic Signs Multi-Label Identifies and categorizes the traffic signs visible in the scene (e.g., stop signs,

yield signs, speed limits). Its purpose is to evaluate how traffic signs influence
the decisions of the driver and the vehicle.

Traffic Lights Single-Label Captures the state of the traffic light in the scene (red, green, yellow, off). Its
purpose is to determine how the traffic light signals influence the vehicle’s be-
havior.

Weather Conditions Multi-Label Describes the weather conditions during the driving event (e.g., fog, rain,
sunny). Its purpose is to evaluate how weather conditions affect driving de-
cisions and visibility.

Road Surface Condi-
tions

Multi-Label Describes the physical condition of the road, including potholes, poor mainte-
nance, slippery surfaces, and temporary roadworks or debris. Its purpose is to
evaluate how the road surface affects vehicle control and driving safety.

Road Structures Multi-Label Describes the physical infrastructure elements present on or alongside the road,
such as islands, tunnels, and pedestrian crossings. Its purpose is to capture how
these structures influence the driving behavior of the vehicle.

Static objects Multi-Label & Open-
Ended

Identifies buildings, poles, trees, and other static objects in the environment. Its
purpose is to describe the urban or rural context surrounding the road.

Other Vehicle Behav-
iors

Multi-Label Describes the interactions and maneuvers of external vehicles, including public
transport, taxis, motorbikes, and private vehicles, and how they affect the driv-
ing decisions of the ego vehicle (e.g., lane invasion, sudden stops, overtaking).
Its purpose is to capture the influence of other vehicles on the behavior of the
ego vehicle.

Pedestrian Behavior Multi-Label Observes the behavior of pedestrians in the scene (crossing, waiting on the side-
walk, walking on the road). Its purpose is to capture how pedestrians interact
with the vehicle and how they influence driving decisions.

Unexpected Obstacles Multi-Label & Open-
Ended

Describes any unexpected object or situation on the road, such as improperly
parked vehicles, street vendors, or animals. Its purpose is to identify uncommon
events that may affect driving.

Emergency Situations Single-Label Describes emergency situations or rare events that require a rapid response (ac-
cidents, roadblocks, roadworks). Its purpose is to identify incidents that alter
the normal flow of traffic and require immediate attention.

Lighting Conditions Single-Label Describes the lighting conditions in the scene, such as natural lighting, street
lighting, poorly lit areas. Its purpose is to evaluate how visibility affects driving
decisions.

Traffic Conditions Single-Label Describes the state of traffic on the road, such as free-flowing, congested,
stopped. Its purpose is to evaluate how traffic density affects driving decisions.

Driving Environment Single-Label Describes the environment in which the driving takes place, including areas that
may affect vehicle behavior, such as school zones, markets, construction sites,
or rural areas. Its purpose is to capture how the driving environment influences
driving decisions.

Table 4. Driving scene attributes used as meta-data for LLM Q&A formulation. The table lists attributes grouped under Ego Vehicle
and External Factors, indicating the label type (Single-Label or Multi-Label, with some requiring open-ended responses) and providing a
description of each attribute’s purpose in capturing different aspects of the driving scenario.

Figure 8. A collection of sample frames from 7 held-out videos used in our experiments form the Robusto-1 dataset. There is a combination
of rural and urban scenes that humans and VLMs view. This preliminary study focused only on showing humans and machines 7 videos, but
the dataset is composed of 200 additional videos (See Supplement) that we are releasing to the public for further research and experiments.

Figure 9. A collection of all the RSA plots for the 3 different types of embeddings used in the paper (all-mpnet, paraphrase-mpnet, e5-
large). We observe that the pattern of results stays of our initial analysis stays the same with different levels of intensity.

Figure 10. In this graph however we show how the RSA results would have looked like if we had just used one response rather than pooled
(averaged) several observations per answer (also for all embeddings: all-mpnet, paraphrase-mpnet, e5-large). We find a very similar trend
to the pooled responses for the VLMs. Though it would appear that pooling answers shows greater level of convergence across VLMs.

Figure 11. The Distance to the Median comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for all-mpnet.

Figure 12. The Distance to the Median comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for paraphrase-mpnet.

Figure 13. The Distance to the Median comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for e5-net.

Figure 14. The PCA visualization of a comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for all-mpnet.

Figure 15. The PCA visualization of a comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for paraphrase-mpnet.

Figure 16. The PCA visualization of a comparison of using a pooled vs single embedding is used across all systems (in particular the
VLM). The same pattern of results holds for e5-net.

