
CleanMAP: Distilling Multimodal LLMs for Confidence-Driven Crowdsourced
HD Map Updates

Supplementary Material

7. Factors Affecting Adaptive Confidence
Score Calculation

While calculating the Adaptive Confidence Score, several
factors must be considered, including key parameters affect-
ing lane line visibility and the importance of these factors.
The final confidence score of an input image is determined
by dynamically assigning weights based on environmental
conditions and their impact on lane visibility.

7.1. Designing Specific Parameters to Calculate
Confidence Score

To ensure the reliability and accuracy of HD map updates,
we define a set of key parameters that impact image quality
and influence the visibility of lane markings. These param-
eters form the basis for the MLLM-based scoring system,
where it assigns an individual score between 0 and 10 to
each parameter based on its impact on lane visibility. The
key parameters includes:

7.1.1. Blur
Image clarity is essential for detecting lane markings and
road features. Different types of blur that affect visibility
include:
• Daytime Blur: Caused by motion or camera focus issues.
• Nighttime Blur: Often due to low light or motion in

poorly illuminated areas.
• Streetlight-Induced Blur: Occurs when lane markings are

obscured by artificial light sources at night.

7.1.2. Illumination
Strong lighting variations can impact image clarity, includ-
ing:
• Strong Sunshine or Shadows: Excessive brightness or

deep shadows obscuring road features.
• Reflections or Glare: From reflective road surfaces or ve-

hicles.
• Darkness: Low-light conditions where lane markings be-

come less visible.

7.1.3. Weather Conditions
Environmental conditions can obscure road markings and
reduce visibility:
• Rain, Snow, and Fog: Adverse weather conditions that

diminish lane visibility.
• Sandstorms: In desert regions, sandstorms can reduce vis-

ibility to near zero, affecting map updates.

7.1.4. Lane Line Degradation
Over time, lane markings may wear out and become unclear
or invisible, making them unreliable for HD map updates.

7.1.5. Obstacles Covering Lane Lines
Vehicles, debris, or objects on the road may obstruct lane
markings, making it difficult to assess road conditions ac-
curately.

7.1.6. Lane Line Visibility
The overall visibility of lane markings in an image directly
impacts its usability for HD map updates.

7.2. Designing Specific Task-Guided Ques-
tions/Prompts

To ensure the model accurately assesses image quality, a
Task-Guided Instruction Prompting system is implemented.
This system guides the model through structured prompts
that focus on critical aspects such as lane line visibility,
weather conditions, obstacles, and different types of blur.
By directing the model’s attention to relevant factors, the
resulting confidence scores remain contextually accurate.

7.2.1. Task-Guided Questions for Image Evaluation
Each prompt is designed to assess a specific aspect of the
image, ensuring structured evaluation:

• Question 1: Detailed Scene Description Prompt ”Provide
a detailed description of the scene in the image, focusing
on lane line visibility, the impact of vehicles or obstacles,
weather conditions, and any other factors affecting clar-
ity.”

• Question 2: Daytime Blur Prompt ”Rating blurred im-
age during daytime: [Score 0-10] - Rate the overall im-
age clarity/sharpness on a scale of 0-10, where 10 is ex-
tremely blurry and 0 is tack sharp.”

• Question 3: Nighttime Blur Prompt ”Rating blurred im-
age during nighttime: [Score 0-10] - Rate the image clar-
ity on a scale of 0-10, considering lane line visibility.”

• Question 4: Streetlight Blur at Night Prompt ”Rating
blurred lane lines due to Street Lights at Night: [Score 0-
10] - Rate the clarity of lane lines, where 10 is extremely
blurred and 0 is perfectly sharp.”

• Question 5: Lane Line Invisibility due to Illumination
Prompt ”Rating Lane Lines Invisibility due to Illumina-
tion (strong sunshine/shadows/darkness): [Score 0-10] -
Rate how invisible lane lines are due to strong illumina-
tion effects.”



• Question 6: Invisibility due to Fog Prompt ”Rating Lane
Lines Invisibility due to Fog: [Score 0-10] - Rate the ex-
tent to which lane lines are obscured by fog.”

• Question 7: Invisibility due to Rain Prompt ”Rating Lane
Lines Invisibility due to Rain: [Score 0-10] - Rate how
blurred lane lines are due to rain.”

• Question 8: Invisibility due to Snow Prompt ”Rating
Lane Lines Invisibility due to Snow: [Score 0-10] - Rate
how snow obscures lane lines.”

• Question 9: Invisibility due to Sandstorm Prompt ”Rating
Lane Lines Invisibility due to Sandstorm: [Score 0-10] -
Rate how blurred lane lines are due to sand.”

• Question 10: Lane Line Degradation Prompt ”Rate the
condition of lane lines on a scale of 0 to 10, where 0 is
completely worn off and 10 is perfectly clear.”

• Question 11: Vehicles Obstructing Lane Lines Prompt
”Rate the visibility of lane lines blocked by vehicles,
where 10 is fully blocked and 0 is fully visible.”

• Question 12: Overall Lane and Lane Marking Visibility
Prompt ”Rate the overall visibility of the lanes and lane
markings in the image on a scale of 0-10, where 10 means
they are clearly visible, and 0 means they are completely
invisible.”

7.3. Efficient Selection of Parameters Based on Con-
text

Evaluating all parameters in every scenario may lead to hal-
lucination, where the model assigns arbitrary or inaccurate
scores. To mitigate this, parameter selection is dynamically
adjusted based on environmental conditions:
• In clear, sunny weather, irrelevant parameters such as

rain, snow, and fog are omitted to prevent unnecessary
noise in the scoring process.

• In adverse weather conditions such as heavy rain, snow,
or fog, the weights of these factors are increased due to
their significant impact on image clarity. Conversely, pa-
rameters such as illumination and streetlight blur, which
become less relevant, are weighted lower.
This adaptive parameter selection optimizes the model’s

focus on relevant factors, reducing the risk of hallucinations
and ensuring confidence scores remain accurate.

7.4. Importance of Weight Assignment
Each parameter affects image quality differently depending
on environmental conditions. To ensure accurate confidence
score calculations, parameter weights are dynamically ad-
justed:
• In images collected during rain, snow, or fog, higher

weights are assigned to weather-related parameters as
these conditions obscure lane markings.

• In clear conditions, illumination-related factors such as
reflections, shadows, and glare from the sun or streetlights
are weighted more heavily.

• Degradation and obstacle-related parameters are assigned
significant weights in all conditions, as they consistently
affect lane marking detection.

The model dynamically adjusts these weights to main-
tain accuracy by ignoring irrelevant parameters in specific
conditions. For example, fog-related parameters in clear
weather are either assigned low weights or ignored to pre-
vent unnecessary confusion in the model’s reasoning pro-
cess.

Therefore, by integrating adaptive parameter weighting,
task-guided instruction prompting, and context-aware pa-
rameter selection, the confidence scoring model ensures
precise and reliable assessments. This approach enhances
HD map update accuracy by filtering unreliable data while
preserving essential information.

8. Diverse Data Collection and Annotation for
MLLM-Driven Confidence Scoring

8.1. Diverse Data Collection for Training

To ensure that the model can accurately assess data qual-
ity across a wide range of conditions, a small but diverse
dataset was collected, consisting of both real-world and syn-
thetic images, as shown main paper Figure 3. This dataset
includes images captured from connected and automated
vehicles (CAVs) under various environmental conditions, as
well as handcrafted images designed to simulate specific ad-
verse scenarios.

The dataset is composed of two primary sources:
• Online Crowdsourced Data: Real-world images were

gathered from vehicles operating in urban and rural en-
vironments under varying weather conditions. These im-
ages include those captured in daylight and nighttime, as
well as during adverse weather such as rain, snow, fog,
and dust storms. This diverse set ensures that the model
learns to handle a broad range of conditions that may de-
grade data quality.

• Synthetic Images: To supplement real-world data, syn-
thetic images were generated to simulate extreme condi-
tions such as heavy rain, dense fog, and severe illumi-
nation effects, including reflections, shadows, and glare
from headlights and streetlights. These synthetic images
enable the model to generalize to rare but critical condi-
tions that are essential for robust HD map updates.
The dataset comprises approximately 1,000 images, in-

cluding blurred images from both daytime and nighttime
scenarios. This curated dataset enables the model to learn
how different factors, such as blur, lighting, and weather,
affect data quality. By exposing the model to a wide range
of adverse conditions, the training process ensures accu-
rate real-time data quality assessment under real-world con-
straints.
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Figure 7. Scenario 1: Snow Conditions with Minor Blur.
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Figure 8. Scenario 2: Dusk Scene with Poor Illumination. The model evaluates lane line visibility under poor lighting conditions, correctly
filtering out irrelevant factors while highlighting the impact of natural illumination.

8.2. Accurate Annotation of Collected Data

The collected data is meticulously annotated based on pre-
defined parameters that measure image quality. Each image
is manually scored across multiple factors affecting lane
line visibility and overall road conditions. These annota-
tions provide a strong baseline for the model during train-
ing.

Manual annotation enables the model to learn the rela-
tionship between visual cues and external conditions such
as blur, rain, snow, and illumination, which impact road vis-

ibility to varying degrees. For instance, lane markings may
become nearly invisible in dense fog but remain relatively
clear in mild rain. Accurate annotations allow the model
to capture these nuances by assigning well-defined scores
for each factor. Without structured annotations, the model
would struggle to interpret how different conditions influ-
ence lane visibility and image clarity.

For each image, multiple parameters are assessed and
scored to capture how different conditions affect image
quality and lane line visibility:
• Weather Conditions (Fog, Rain, Snow, Sandstorm):



Natural elements significantly impact lane line visibil-
ity. Each weather condition is scored on a scale (e.g.,
0-10) to reflect its severity in the image. Precise anno-
tation ensures the model can appropriately adjust confi-
dence scores for images affected by these conditions.

• Blur (Daytime and Nighttime): Blur can result from
camera motion, poor focus, or adverse lighting. Since its
causes and impacts vary between daytime and nighttime,
separate annotations for each condition are necessary to
ensure proper learning.

• Illumination (Sunshine, Shadows, Darkness): Strong
sunshine, deep shadows, or nighttime darkness can ob-
scure lane markings, making them difficult to detect. Ac-
curate annotation of illumination levels ensures the model
correctly evaluates when lighting conditions affect lane
visibility, adjusting the image’s usability score accord-
ingly.

• Degradation of Lane Lines: Over time, lane markings
degrade, becoming unclear or invisible. Annotating the
condition of lane markings is essential, as it directly im-
pacts the model’s ability to evaluate road geometry and
lane detection reliability.

• Obstacles Covering Lane Lines (Vehicles, Debris): Ve-
hicles, debris, or other objects that obscure lane markings
should be annotated. The extent to which lane lines are
blocked directly affects the accuracy of HD map updates.

• Overall Lane Line Visibility: The overall visibility of
lane markings is the most critical factor in determining
the usability of an image for HD map updates. This pa-
rameter encapsulates how all the aforementioned condi-
tions collectively impact lane detection.
Thus integrating diverse real-world and synthetic data,

along with precise manual annotations, the dataset ensures
that the model learns to assess data quality across a wide
range of challenging conditions. The structured annota-
tion process enables the model to differentiate between vari-
ous environmental factors, ultimately improving confidence
scoring for HD map updates.

9. Additional Qualitative Analysis of MLLM-
driven Confidence Scoring

9.1. Scenario-Based Evaluations
9.1.1. Scenario 1: Snow Conditions with Minor Blur
The scenario in Figure 7 shows a post-snow city scene
where thick snow piles are visible on the sides of the road.
The lane lines are mostly visible, but there is some blur in
the daytime conditions. The MLLM was able to capture the
following aspects correctly:
• Blur Detection: The model rated the image clarity as

2/10, indicating a minor blur that slightly affects lane vis-
ibility.

• Snow Effect: The model correctly identified snow inter-

ference but rated the lane line visibility at 3/10, indicating
the lane lines are mostly visible but slightly obscured by
snow.

• Obstruction by Vehicles: The model recognized that
some vehicles partially obstruct the lane lines ahead, giv-
ing a score of 2/10 for vehicles covering the lane lines.

• Overall Lane Line Visibility: The model rated lane vis-
ibility at 7/10, implying that the image provides sufficient
clarity for most parts of the lane, despite the snow and
slight blur.
The MLLM performed accurately in identifying the key

visibility obstructions, particularly the snow and blurri-
ness. It successfully excluded irrelevant factors like fog and
nighttime blur, making this a strong example of efficient
MLLM application. The confidence score of 7 reflects that
the image is still usable for map updates, although the visi-
bility could be affected by snow.

This section provides additional qualitative analysis of
of the MLLM-driven confidence-scoring model, including
scenario-based evaluations.

We present qualitative assessments across different envi-
ronmental conditions, highlighting CleanMAP’s ability to
accurately identify lane visibility challenges and compute
confidence scores.

9.1.2. Scenario 2: Dusk Scene with Poor Illumination
In this scenario, illustrated in Figure 8, the image was cap-
tured at dusk, where poor illumination significantly affects
lane line visibility. The model identified key factors impact-
ing visibility:
• Illumination Issues: The model rated lane line invisibil-

ity at 6/10, indicating moderate obstruction due to natural
lighting conditions.

• Blur Detection: The daytime blur score was 2/10, sug-
gesting slight distortion in the image.

• Environmental Factors: As no snow, fog, or rain were
present, these parameters were correctly assigned a score
of 0.

• Obstruction: No obstructions from vehicles or objects
were detected, receiving a 0 score.
This scenario highlights MLLM’s capacity to accurately

assess illumination-based visibility challenges while effec-
tively filtering out irrelevant conditions. The confidence
score of 1.8 confirms that the image is of low quality for
map updates.

9.1.3. Scenario 3: Bright Sunlight Causing Glare
This scenario, depicted in Figure 9, captures a high-
illumination road scene where strong sunlight causes glare
and partial obstruction by a truck. The model effectively
recognized:
• Illumination Problems: The model scored lane line in-

visibility at 7/10, attributing poor visibility to intense
glare.
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Figure 9. Scenario 3: Bright Sunlight Causing Glare. The model correctly identifies intense glare and obstruction from a truck, demon-
strating its efficiency in visibility scoring.

Figure 10. Scenario 4: Snow-Covered Lane with Night Illumination.



Figure 11. Scenario 5: Daytime Scene with Glare and Degraded Lane Lines.

• Daytime Blur: A blur score of 2/10 was assigned, indi-
cating slight haziness due to sunlight.

• Obstruction by Vehicles: The truck partially obstructed
lane markings, with a vehicle obstruction score of 4/10.

• Lane Visibility: The lane lines received a low visibility
score of 3/10, confirming the compounded impact of glare
and obstruction.
This scenario illustrates MLLM’s ability to distinguish

between different environmental factors. The confidence
score of 0.4 confirms that the image is unsuitable for HD
map updates due to major glare issues.

9.1.4. Scenario 4: Snow-Covered Lane with Night Illu-
mination

Figure 10 presents a nighttime scenario where lane visibility
is affected by snow accumulation and artificial lighting from
streetlights and vehicles. The model’s assessment includes:
• Nighttime Blur: Moderate blurring due to night condi-

tions was rated at 5/10.
• Streetlight Effects: The model assigned a high score of

7/10 to streetlight-induced visibility degradation.
• Environmental Factors: Fog and snow were correctly

identified with scores of 2/10 each.
• Obstruction by Vehicles: Vehicles partially covering

lane lines were scored at 5/10.
• Lane Visibility: The lane lines received a poor visibility

rating of 2/10, confirming significant degradation.
This scenario demonstrates MLLM’s ability to identify

multiple factors affecting visibility. The confidence score of
1.9 indicates that the image is not ideal for map updates but
confirms the model’s effectiveness in parameter selection.

9.1.5. Scenario 5: Daytime Scene with Glare and De-
graded Lane Lines.

This scenario, as depicted in Figure 11, shows a road during
the daytime with strong sunlight affecting the visibility of
lane lines:

• Daytime Blur: The model assigns a blur score of 2/10,
indicating slight blur and haziness, which is accurate
given the strong sunlight affecting the scene’s sharpness.

• Illumination Problems: Lane line invisibility due to illu-
mination was rated at 6/10, suggesting that bright sunlight
significantly affected lane line clarity.

• Degradation of Lane Lines: The model identified sig-
nificant wear and tear on the lane lines, assigning a score
of 7/10 for lane degradation.

• Lane Visibility: Lane lines are rated poorly for visibility,
receiving a score of 1/10, as they are barely discernible
due to both degradation and bright sunlight.

This scenario highlights the model’s ability to correctly
assess both glare and lane line degradation. The assessment
of blur, lane visibility, and the impact of sunlight is accu-
rate, as is the degradation score. The model appropriately
ignores irrelevant factors such as rain and fog, which are not
present in the image. The low confidence score of 2 reflects
the poor overall quality of the image for mapping purposes.

9.2. Optimal Data Selection for HD Map Updates
To ensure optimal data selection for HD map updates, the
confidence-driven fusion strategy prioritizes high-quality
local maps. The selection process follows these principles:
• High-confidence images are prioritized for inclusion in

HD map updates.
• Dynamic confidence thresholds are used to avoid exces-

sive filtering and ensure data sufficiency.
• Environmental adaptability ensures that the model dy-

namically adjusts scoring weights based on real-world
conditions.
This systematic approach significantly improves the ac-

curacy and reliability of HD maps while maintaining ef-
ficient data processing. The supplementary qualitative re-
sults confirm CleanMAP’s capability to robustly assess and
score lane visibility across diverse environmental condi-
tions. The model demonstrates strong adaptability by cor-



rectly identifying glare, poor illumination, and snow-related
obstructions while filtering out irrelevant conditions. The
confidence-driven scoring and data fusion approach ensures
that only high-quality images contribute to HD map up-
dates, enhancing reliability in autonomous navigation.

10. Systematic Workflow of MLLM-Driven
Confidence-Based HD Map Updates

In HD map updates, integrating local map data from crowd-
sourced vehicles presents both opportunities and chal-
lenges. The objective is to generate a reliable global HD
map by fusing individual local maps while ensuring geo-
metric consistency, feature alignment, and positional accu-
racy.

Let Mglobal represent the global HD map, constructed as
the union of multiple local maps Mlocali contributed by in-
dividual vehicles:

Mglobal =

n⋃
i=1

Mlocali (19)

where Mlocali consists of spatial data points (xi, yi, zi),
representing key road features such as lane lines and road
boundaries. To fuse these maps, geometric alignment is
performed to bring all local maps into a common coordi-
nate system by minimizing deviations in overlapping data
points and compensating for sensor inaccuracies and trajec-
tory differences.

Once aligned, the final fusion step involves clustering al-
gorithms to group closely related data points while filtering
noise. This structured approach ensures an accurate, up-to-
date global HD map that reflects real-time road conditions.
By integrating geometric alignment and confidence-driven
fusion, the model enhances HD map precision and reliabil-
ity, making it highly effective for autonomous navigation.

10.1. Optimal Local Maps Selection

The model calculates an average confidence score for each
local map, reconstructed from a sequence of timestamped
images. Each image is assigned an individual confidence
score by the MLLM-based Scoring model, evaluated based
on environmental conditions and lane line visibility. These
confidence scores are used to rank and organize local maps
within specific map links, ensuring that only the most reli-
able data is utilized for further processing. Local maps with
higher confidence scores are given preference for associa-
tion. This selection process enhances the accuracy and con-
sistency of HD map updates by prioritizing high-confidence
local maps while filtering out unreliable data.

10.2. Introducing Changes in Prior Local Maps for
Future Lane Line Updates

In real-world scenarios, local map data evolves due to road
construction, lane shifts, or infrastructure modifications. To
evaluate the effectiveness of the map update process, inten-
tional modifications are introduced in prior local maps, en-
abling a realistic assessment of how new information is in-
tegrated into the existing HD map.

Modifications are performed through three primary
tasks:
• Shifting: Existing lane lines are shifted in the X and Y

directions to simulate lane position changes due to main-
tenance or expansion. The original lane line is replaced
by the shifted one.

• Deleting: An entire lane line is removed from the map,
representing real-world lane closures or removals.

• Adding: New lane lines are introduced between exist-
ing ones to simulate road expansion or newly constructed
lanes. A new lane is created by calculating the midpoint
between two existing lanes with a slight offset to prevent
overlap.
Once modifications are applied, the updated local map is

saved and compared with the ground truth map to evaluate
update accuracy.

Table 8. Definition of HD Map Element Update

Update Task Prior Map Fused Local Map Updated Map

Shifting Existent Existent Existent
Deleting Existent Non-existent Non-existent
Adding Non-existent Existent Existent

Table 8 summarizes how each modification task is per-
formed. Before the update, tasks such as shifting and delet-
ing apply to existing HD map elements. After the update,
shifted elements retain their presence with altered positions,
deleted elements are removed, and newly added elements
are introduced into the HD map from the fused local map.

10.3. Association of Modified and Reconstructed
Local Map Data

After selecting the sequences with the highest confidence
scores, the model aligns them with the modified local
map data using the Iterative Closest Point (ICP) algorithm.
This step ensures that the reconstructed local map data
points, derived from crowdsourced vehicle-collected image
keyframes, are accurately aligned with the modified map
data. This alignment facilitates an effective association be-
tween the two, ensuring consistency in the HD map update
process.

The map association process using the Iterative Clos-
est Point (ICP) algorithm is formulated as an optimization
problem to find the optimal transformation that aligns the



points in a local map Mlocali with those in a subsequent
modified map Mlocali+1 . This transformation is represented
as the matrix T , which minimizes the alignment error be-
tween corresponding points in the two maps:

T = argmin
T

N∑
i=1

∥Mlocali − TMlocali+1
∥2 (20)

where:
• Mlocali and Mlocali+1

represent the sets of points in the
local maps before and after modification, respectively.

• T is the transformation matrix, consisting of a rotation
matrix R and a translation vector t, which aligns the two
maps by minimizing positional error.
The transformation matrix T is expressed as:

T =

[
R t
0 1

]
(21)

where:
• R is the rotation matrix.
• t is the translation vector.

The alignment process determines the optimal R and t by
minimizing the discrepancy between corresponding points
in the two maps. This ensures that changes in local map
data are accurately aligned with the confidence score-based
map, maintaining consistency and accuracy in the HD map
update. By integrating this association process, the system
incorporates the most reliable and up-to-date information
into the HD map, ensuring a highly precise representation
of the environment.

10.4. Data Fusion for Map Update
The final stage of the HD map update process involves fus-
ing the aligned sequences with the modified local map data
points. Clustering algorithms such as DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) are
employed to fuse the data, ensuring that new and validated
information is integrated into the HD map. This step accu-
rately reflects changes in road features, lane lines, and other
elements.

Map data collected from crowdsourced vehicles can vary
in quality and may include noise or irrelevant information.
To address this, DBSCAN is applied to cluster data points
from both the associated local maps and the confidence
score-based selected map. DBSCAN is particularly effec-
tive as it identifies valid clusters (e.g., lane lines and bound-
aries) while filtering out noise caused by sensor inaccura-
cies or environmental variations. The fusion of selected
maps ensures that the HD map remains up-to-date and ac-
curate.

DBSCAN is defined by two key parameters:
• Epsilon (ϵ): The maximum distance between two points

for them to be considered part of the same cluster.

• Min Samples: The minimum number of points required
to form a dense region (cluster).
Let:

• Mlocal represent the local map points, where each point
has coordinates (xi, yi).

• Mcs represent the confidence score-based selected map
points with coordinates (xj , yj).
DBSCAN is applied to the combined dataset:

Mcombined = {Mlocal,Mcs} (22)

The clustering process is formulated as:

C = DBSCAN(Mcombined, ϵ,min samples) (23)

where:
• ϵ is the neighborhood distance parameter that determines

the density threshold.
• min samples is the minimum number of points required

to form a cluster.
• C is the set of clusters generated by DBSCAN, with noise

points labeled as outliers.
Therefore, by clustering valid map features and filter-

ing out noise, DBSCAN enables the fusion of reliable map
data points while discarding outliers. Unique clusters are
assigned specific colors, while noise points (if any) are
marked in black. This ensures that only the most accu-
rate and up-to-date information is used in HD map updates,
maintaining the integrity and precision of the map for au-
tonomous navigation.

11. Additional Information About Real Vehicle
Crowdsourced Evaluation Data

11.1. Experiment Setup and Crowdsourced Data
Collection

Figure 12. Real time Crowdsourced Data collection Vehicle.



Table 9. Sensors equipped on the Xiaopeng G3 vehicle.

Sensor Type Model Parameter

Camera LI-AR0231-AP0200-GMSL2 1920×1080 @28fps
Lidar RS-Lidar-32 360°HFOV and 40° VFOV

RTK-GNSS/IMU NovAtel PP7D-E1 10cm
GNSS Ublox F9P 10m

Computer Nuvo-6108GC Intel i7 + Nvidia 1080

This experiment utilized a real-world vehicle test plat-
form based on the Xiaopeng G3 vehicle, as shown in Figure
12. The vehicle was equipped with multiple sensors, in-
cluding cameras, commercial-grade GNSS systems, and in-
tegrated inertial navigation devices. An onboard industrial-
grade computer served as the central processing unit for
real-time computations. A detailed list of the sensors and
computing platforms used in the Xiaopeng G3 is provided
in Table 9.

Figure 13. Global Map Representation Composed of Link Areas
with Lane Line Coverage.

The testing was conducted in an urban environment
along roads in the Economic and Technological Develop-
ment Zone, Daxing District, Beijing. The test area covered
approximately 20 kilometers and included diverse urban
road structures such as dual lanes, four-lane and six-lane
dual carriageways, and multiple intersections with complex
lane markings, including solid yellow and white lines, as
well as merging and diverging lanes. Figure 13 illustrates
the global map of the test area, which was divided into mul-
tiple Link Areas, each with specific lane line coverage.

In this area, a high-definition map was generated as
the ground truth to evaluate the accuracy of the collected
data. The process began with a professional survey vehi-
cle equipped with LiDAR sensors, capturing precise point
cloud data of the environment. This data formed the foun-
dation of a high-resolution point cloud map, as illustrated in
Figure 14.

Subsequently, essential map features relevant to au-
tonomous driving, such as lane markings, were manually
annotated onto the point cloud map. The annotated map
provided ground truth data containing road surface ele-

Figure 14. Generation of Groudtruth Map data.

Table 10. Annotated map features in the experimental data.

Map Elements Total Number Annotation Format

Road Lines 1536 3D Line

ments, ensuring a reliable reference for comparison. Ta-
ble 10 outlines the specific map features, including the total
number of road lines represented as 3D line annotations.

To simulate real-world conditions, data collection was
conducted using a crowdsourced approach, leveraging ob-
servations from multiple vehicles at various times and an-
gles. Crowdsourced data provides a diverse range of per-
spectives, capturing dynamic changes in road conditions.
The data collection process spanned eleven months, from
October 2022 to September 2023, with data gathered daily
between 9 AM and 5 PM to ensure broad temporal diver-
sity. Randomized routes were selected to maximize cover-
age across the mapped area, allowing the system to capture
multiple perspectives of the same location under different
conditions.

This approach ensures a comprehensive dataset that ac-



curately reflects variations in road structures, lane visibility,
and environmental conditions, contributing to a more reli-
able and up-to-date HD map.

11.2. Significance of Confidence Score
The confidence score is crucial for determining which data
can be reliably integrated into the map update process.
Scores range from 0 to 10, with higher scores indicating
better data quality. The classification of confidence scores
is as follows:
• Confidence Score ∼2: These images are of very low

quality, often affected by extreme lighting, severe weather
conditions such as rain or fog, or obstructions. Such im-
ages contribute little to accurate mapping and are gener-
ally deemed unreliable.

• Confidence Score ∼5: Images in this range are of mod-
erate quality. While they may capture some useful in-
formation, they often contain partial obstructions, uneven
lighting, or slightly blurred lane markings, limiting their
reliability for precise mapping.

• Confidence Score ∼9: Images in this range are consid-
ered high quality. Captured under ideal environmental
conditions, they provide clear visibility of lane markings,
traffic signs, and other essential map elements, making
them highly reliable for HD map updates.

Table 11. Visual Explanation of what each Score signifies in terms
of Image Quality

Images

Parameters MLLM MLLM MLLM

Blur (Daytime) 1 0 0

Illumination 5 2 1

Degradation 0 0 0

Object 0 1 1

Visibility 3 6 10

Confidence Score 1.8 6 9.6

The table 11 illustrates examples of images correspond-
ing to confidence scores of 1.8, 6, and 9.6, providing a vi-
sual explanation of what each score signifies in terms of
image quality.

11.3. Key Parameters Selection
Since the crowdsourced data is collected during the daytime
under clear weather conditions, i.e., without rain, snow, fog,
or sand, the primary quality check parameters used in the
evaluation are:
• Blur (Daytime)

• Illumination
• Lane Line Degradation
• Presence of Objects on the Lanes
• Visibility of Lane Lines

12. Detailed Discussion on Results of Real
Crowdsourced Vehicle Collected Data

12.1. Analysis of Confidence Scores for Local Maps
The MLLM-driven confidence scoring model plays a cru-
cial role in filtering out low-quality image sequences, di-
rectly impacting the accuracy of HD maps. Table 5 provides
insights into the quality of image sequences captured across
different link areas in multiple local maps, as determined by
the average confidence score.

• High Confidence Scores for Local Maps 1–3: The first
three local maps in each link area consistently exhibit
high confidence scores, ranging between an average of
7.62 and 8.30. These results suggest that images in these
maps were captured under favorable conditions, where
key parameters such as lane line visibility, illumination,
and the absence of blur were optimal. This indicates clear
lane markings and suitable weather and road conditions,
making this data highly reliable for HD map updates.
– In Link Area 6, Local Map 1 has a high score of 8.80,

Local Map 2 scores 8.46, and Local Map 3 scores 7.82,
indicating optimal data quality.

– Similarly, Link Area 73 shows a strong confidence
score of 8.57 for Local Map 1, followed by 7.82 and
7.75 for Local Maps 2 and 3, confirming good lane vis-
ibility and image clarity.

• Confidence Scores in Local Maps 4 and 5: A decline in
confidence scores for Local Maps 4 and 5 across most link
areas suggests challenges in the data collection process.
The scores for these maps range between 5.38 and 6.87,
indicating image quality degradation, likely due to high
illumination, glare, or lane degradation.
– In Link Area 6, the confidence score drops from 7.82

in Local Map 3 to 5.38 in Local Map 5. This reduction
could be attributed to excessive glare, blurred imagery,
or obscured lane lines, making the data less reliable for
HD map updates.

– Similarly, Link Area 67 experiences a decline from
7.25 in Local Map 3 to 5.96 in Local Map 5, suggesting
deteriorating conditions such as blurred images, poor
lane visibility, or traffic obstructions.

• Filtering Data Using Confidence Scores: The confi-
dence scores generated by the Data Cleansing Model help
identify local maps with valid and high-quality image se-
quences suitable for HD map updates. By selecting an
appropriate threshold, unreliable maps can be filtered out.
For instance, setting a threshold confidence score of 7.0



ensures that any local map below this value is excluded
from the HD map update process.
This approach demonstrates that:
– Only the highest-quality data is used for map updates,

increasing the overall accuracy and reliability of the
HD map.

– Maps with confidence scores above the threshold are
captured under favorable conditions, ensuring good
lane visibility, minimal blur, and optimal illumination.

12.2. Integration of Detected Changes into the HD
Map

The next phase of the HD map update process focuses on
incorporating detected changes into the existing map for
several link areas, as illustrated in Figures 15, 16, and 17.
Three link areas were selected where specific modifications
were identified and then fused with local maps containing
high-confidence image sequences to generate an updated
map. These changes primarily involve shifting lane lines,
which includes the removal of outdated lane markings and
the addition of new ones.

The ICP-based association ensures that shifted lanes are
accurately aligned with the original map, while DBSCAN
handles fusion by incorporating new lanes and removing
obsolete ones. Such updates are crucial for maintaining ac-
curate and safe navigation, particularly in dynamic environ-
ments where road conditions frequently change.

In Figures 15, 16, and 17, the left side represents the
Changed/Modified New Map, while the right side displays
the Fused Map, highlighting the differences. The yellow
color in the modified map signifies lane shifts, while green
indicates newly added lanes. In the fused map, green rep-
resents lane shifts, and blue represents newly added lanes.
The selected link areas, each exhibiting unique structural
characteristics and modifications, emphasize the impor-
tance of these updates.

Figure 15. Visualisation of Changed New Map and Fused Map in
Link Area 21.

The fused map integrates the high-confidence local map
with detected changes, ensuring an accurate representation
of the current road layout.

• Link Area 21: As shown in Figure 15, Link Area 21 ex-
hibits a pattern of shifted and newly added lanes. The

Figure 16. Visualisation of Changed New Map and Fused Map in
Link Area 47.

Figure 17. Visualisation of Changed New Map and Fused Map in
Link Area 67.

detected changes (left) indicate that several lane lines in
the upper-left quadrant required shifting, while new lanes
were added toward the center. The fused updated map
(right) demonstrates the successful integration of these
modifications. Since Link Area 21 includes high-traffic
areas, confidence score-based data selection played a cru-
cial role in selecting optimal sequences, minimizing dis-
crepancies with the ground truth map, and ensuring pre-
cise lane alignment.

• Link Area 47: As shown in Figure 16, Link Area 47
demonstrates more extensive modifications. The detected
changes (left) indicate multiple shifted lanes, particularly
in the bottom-right region. The fused map (right) illus-
trates how these updates were integrated, with new lane
lines reflecting the current road layout. Accurate local
map sequences were essential in ensuring that the modi-
fications aligned correctly with the updated lane configu-
rations.

• Link Area 67: As shown in Figure 17, Link Area 67
has a complex structure with multiple intersections and
branching lane lines. The detected changes (left) reveal
multiple shifted lane lines, particularly near intersections,
which required precise alignment. The fused map (right)
integrates these changes smoothly, accurately reflecting
the new configurations and enhancing routing informa-
tion for navigation. In such complex environments, con-
fidence score-based map selection is vital to capturing in-
tricate details like lane transitions and merges with high
precision.



12.3. Physical Meaning of the terms Seq1, Seq3 and
Seq5

In the evaluation presented in Table 6, a sequence Seqk
refers to the fusion of top k local maps ranked based on their
average confidence scores while performing map update:
• Baseline: Updates are performed by fusing all available

local maps, irrespective of their confidence scores. This
approach includes both high and low-quality data, maxi-
mizing the number of data points but potentially reducing
overall map reliability.

• Seq1: Updates are made using only the local map with
the highest confidence score, ensuring that only the most
reliable data is used. This sequence involves the mini-
mum number of data points but maintains the highest data
quality.

• Seq3: The map is updated by fusing top 3 local maps
i.e. first using the local map with the highest confidence
score, then incorporating fusion of the second- and third-
best ranked maps respectively. This sequence increases
the number of data points while maintaining relatively
high data quality.

• Seq5: The map is updated by fusing top 5 local maps i.e.,
from top 1 till top 5 highest scoring local maps. While this
increases the data points further, the inclusion of lower-
confidence maps introduces lower-quality data into the
update process.

• MiniGPT: Updates are performed by retaining all im-
ages and their corresponding lane line data points with
confidence scores of 7 or higher. This ensures that only
data from local maps containing images above the confi-
dence threshold (considered to represent good quality) is
used. The confidence scores are calculated by MiniGPT-
v2, which follows predefined rules emphasizing image
clarity.

12.4. Optimal Sequence for HD Map Update
Based on the evaluation results in Table 6, 7 and Figure
6, Seq3 is identified as the most optimal sequence for up-
dating the HD map. It balances data quality and quantity,
ensuring that the updated map remains accurate while in-
corporating sufficient data points to handle complex road
configurations. This sequence offers several advantages:
• Higher Data Quality: Seq3 maintains a high average

confidence score of 7.6, which is close to the best pos-
sible score of 8.3.

• Sufficient Data Points: By incorporating three local
maps, Seq3 ensures that enough data points are included
to accurately model the map without introducing exces-
sive noise.

• Low Error: The average mean error across all link areas
for Seq3 is 0.28 meters, significantly lower than the base-
line as well as other methods’ average mean error of 0.37
meters, demonstrating that the system maintains accuracy

even with increased data points. Furthermore, the error
for Seq3 falls well below the minimum accuracy require-
ment for lane lines in HD maps, which is less than equal
to 0.32 meters, as established by Křehlı́k et al. (2023)
[49]

12.5. Trade-off Between Confidence Score and Data
Points

One of the key insights from the evaluation results is the
trade-off between confidence scores and the number of data
points. Confidence scores indicate the quality of an im-
age sequence, where higher scores correspond to optimal
conditions such as clear lane visibility, minimal blur, and
proper illumination. However, increasing the number of
data points often requires incorporating local maps with
lower confidence scores, introducing noise and reducing
overall accuracy.

This trade-off is evident in the performance of different
sequences:
• Seq1: Utilizes only the local map with the highest confi-

dence score, ensuring minimal error (0.30 meters on av-
erage). Although it limits the number of data points, the
high data quality results in accurate map updates.

• Seq3: Expands on Seq1 by incorporating the second and
third best-scoring local maps. This increases the num-
ber of data points while maintaining a low error rate of
0.28 meters, making Seq3 the most optimal configura-
tion. It effectively balances data quality with sufficient
data points for accurate map updates.

• Seq5: Adds lower-confidence local maps (fourth and
fifth), leading to an increase in error to 0.34 meters. While
it introduces more data points, the inclusion of lower-
quality maps degrades overall accuracy.
The trade-off demonstrates that while adding more data

points can improve map coverage, incorporating lower-
confidence maps introduces errors. Managing this balance
is crucial for maintaining both accuracy and coverage in HD
map updates.

12.6. Optimal Confidence Score Threshold for HD
Map Updates

Another critical observation from the results is the impor-
tance of setting an appropriate confidence score threshold
for selecting data in HD map updates. As shown in Table 5,
the first three local maps in each link area have high confi-
dence scores ranging from 7.6 to 8.8, correlating with lower
error rates in Seq1 and Seq3. In contrast, local maps 4 and
5, with confidence scores between 5.8 and 6.6, introduce
greater errors in Seq5.

Based on these findings, it is recommended to set a con-
fidence score threshold of 7.0 or higher for HD map up-
dates. This threshold ensures that only high-quality data is
used, reducing the likelihood of introducing errors due to



lower-quality data. A threshold of 7.0 effectively balances
data quality with the number of data points, as evidenced by
Seq3, which achieves an optimal configuration.

12.7. Reliability of the MLLM-Driven Confidence
Score-Based HD Map Update

The results demonstrate that the confidence score-based HD
map update system is highly reliable. The system consis-
tently outperforms the baseline in all cases, with Seq1 and
Seq3 achieving significantly lower errors. Even Seq5, de-
spite incorporating lower-confidence data, performs better
than the baseline, proving that the confidence score-based
approach effectively filters poor-quality data while utilizing
high-quality inputs.

The robustness of this approach lies in its ability to min-
imize noise by prioritizing high-confidence local maps, en-
suring highly accurate updated maps. The error values ob-
tained from Seq1 and Seq3 meet the minimum accuracy re-
quirements for HD maps, further affirming the reliability of
this approach for real-world applications in autonomous ve-
hicle navigation.

The confidence score-based HD map update system ef-
fectively maintains the accuracy and reliability of HD maps.
The trade-off between confidence score and the number of
data points is a crucial factor in the update process, and the
results indicate that Seq3 provides the best balance between
these two elements. By using the top three local maps with
the highest confidence scores, Seq3 ensures both high data
quality and sufficient data points, leading to accurate map
updates.

Furthermore, the analysis supports setting a confidence
score threshold of 7.0 to ensure that only high-quality
data contributes to map updates. This threshold minimizes
the introduction of errors while maintaining comprehen-
sive map coverage. The results confirm that Seq3 provides
the optimal configuration for HD map updates, achieving a
mean error significantly lower than the baseline and meet-
ing the accuracy requirements for autonomous navigation
systems.

The confidence score-based approach not only enhances
accuracy but also ensures the reliability of HD maps, mak-
ing it an ideal solution for large-scale HD map updates.
This system strengthens the ability of autonomous vehicles
to navigate complex road environments with precision and
safety.

13. Supplementary Conclusion
The evaluation of the confidence score-based HD map up-
date system has provided several key insights into optimiz-
ing map accuracy using quality-assessed data. The exper-
iments demonstrated that the proposed approach consis-
tently outperforms the baseline, showing a significant re-
duction in mean errors across different sequences. No-

tably, Seq3 was identified as the most optimal configura-
tion, achieving a mean error of 0.28 meters, compared to
the baseline of 0.37 meters. By using the top three local
maps based on their confidence scores, Seq3 managed to
strike a balance between data quality and quantity, ensuring
comprehensive coverage while maintaining high precision.

These findings confirm the efficacy of confidence score-
driven methodology for large-scale HD map update sys-
tems, supporting safer and more precise autonomous vehi-
cle navigation. This framework sets a strong foundation for
improving autonomous vehicle navigation through more ac-
curate and adaptive map updates.
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