
Explaining 3D Point Cloud Semantic Segmentation Models
Through Adversarial Attacks

Supplementary Material

7. Algorithm
In our implementation, we address the restrictions of the
CTA-seg algorithm mentioned in Sec. 3.1 as follows. We
ensure that constraint 1 is achieved by passing only the ini-
tial probabilities for the target class to the loss function cal-
culation. We then mask the obtained loss values before the
backpropagation step by setting to zero the values for points
not originally in the target class. This ensures that only such
values are considered for the gradient computation. For
constraint 2, we mask the obtained gradient values, setting
to zero all gradient values that do not belong to the criti-
cal points and the target feature(s) currently being shifted.
Algorithm 1 shows the in-detail algorithm for CTA-seg.

8. Visualizations
Fig. 8 and Fig. 9 show sample successful adversarial attacks
for the spatial and color features, respectively, across all ar-
chitectures for the Chair class. In both cases, the degree of
change needed for PointNet++ is so small as to be imper-
ceptible.



Algorithm 1: CTA-seg
Data: Input point cloud P with shape N ×D, deep learning model M , IG saliency map IG(P ) with shape N ×D,

optimization rate α, distance-penalizing weight β, spatial distance function Ds, color distance function Dc,
target class, target features list, local max iterations, global max iterations, iou threshold below
which we consider the attack successful

Result: Adversarial example Padv with shape N ×D
attributions← flatten(sum of IG(P ) across target features);
attr indexes← indices of attributions elements sorted in descending order;
max points← count(attributions > 0);
global iter count← 0;
first it← True;
for n points from 1 to max points with step = 50 do

activation track ← list() ; /* Initializing activation track for local stopping */
updated point cloud← deepcopy(P );
target idxs← attr indexes[0 : n points];
for local iteration from 0 to local max iterations do

predictions← softmax(M(updated point cloud));
predicted classes← argmax(predictions, dim = 1);
optimizer ← newly initialized Adam optimizer;
if first it then

original target class idxs← flatten(argwhere(predicted classes = target class));
first it← False;

end
updated target class idxs← flatten(argwhere(predicted classes = target class));
local iou← IoU(original target class idxs, updated target class idxs);
if local iou < iou threshold then

return updated point cloud ; /* Successful attack */
end
activation← mean(predictions[:, target class]);
activation track.append(activation);
loss← α ∗ log(predictions[:
, target class]) + β ∗ [Ds(P, updated point cloud) +Dc(P, updated point cloud)] ; /* We are
only interested in decreasing the prediction of the target class */
loss mask ← zero-mask of the same shape as loss;
loss mask[original target class idxs]← 1 ; /* Mask the loss values to only consider
the points belonging to the target class for the gradient computation */
loss← loss ∗ loss mask;
loss.backward();
grad mask ← zero-mask of the same shape as updated point cloud;
grad mask[target idxs, target features]← 1 ; /* Mask the gradients to only optimize
for the points to be shifted across the target feature(s) */
updated point cloud.grad← updated point cloud.grad ∗ grad mask;
optimizer.step() ; /* Updating the adversarial example updated point cloud */
if mean increase in activation track then

break ; /* Local stopping criterion */
end

end
global iter count← global iter count+ 1;
if global iter count > global max iterations then

break ; /* Global stopping criterion */
end

end
return Failed ; /* Unsuccessful attack */



(a) Original input (b) Adversarial example (c) Original labels (d) Adversarial labels

Figure 8. Sample CTA-seg outputs for attacks on spatial features for the Chair class (purple labels). From top to bottom, PTv3, KP-
FCNN, and PointNet++.

(a) Original input (b) Adversarial example (c) Original labels (d) Adversarial labels

Figure 9. Sample CTA-seg outputs for attacks on color features for the Chair class (purple labels). From top to bottom, PTv3, KP-FCNN,
and PointNet++.


	Algorithm
	Visualizations

