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Figure 1. Video Token Merging reduces computation of video transformer models by successively merging tokens without re-
training or additional learned parameters. We show how an input video has its tokens merged across different layers.

Abstract

Video transformer models require huge amounts of com-
pute resources due to the spatio-temporal scaling of the
input. Tackling this, recent methods have proposed to
drop or merge tokens for image models, whether ran-
domly or via learned methods. Merging tokens has many
benefits: it can be plugged into any vision transformer,
does not require model re-training, and it propagates in-
formation that would otherwise be dropped through the
model. Before now, video token merging has not been
evaluated on temporally complex datasets for video un-
derstanding. In this work, we explore training-free token
merging for video to provide comprehensive experiments
and find best practices across four video transformers on
three datasets that exhibit coarse and fine-grained action
recognition. Our results showcase the benefits of video
token merging with a speedup of around 2.5X while
maintaining accuracy (avg. −0.55% for ViViT). Code
available at https://github.com/sjpollard/video-how-do-
your-tokens-merge.

1. Introduction
Vision transformers [11] (ViTs) have quickly been estab-
lished as the architecture of choice for solving the major-
ity of computer vision problems. The long range depen-
dencies that are afforded by self-attention significantly
improve the flexibility and reasoning of models, when
supplied with enough training data. This performance

is not free as the quadratic complexity of the attention
mechanism leads to exceedingly poor scaling.

This is especially prevalent in the video domain, in
which the sequence length of tokens increases with both
spatial and temporal dimensions. In the recent push
for long video understanding [6, 13, 29], video vision
transformers are therefore requiring more and more re-
sources for both training and inference. Assuming that a
5 minute video at 224 × 224 pixels consists of the typi-
cal 16 × 16 spatial patches, when sampling 1 frame per
second, the transformer sequence length is 58, 800 to-
kens. With this increase in complexity, it’s simply not
enough to hope that hardware scales up at the same rate:
this requires a huge number of resources per video and is
significantly longer than the sequence lengths that can be
handled in a single window of context for current trans-
formers. It is also worth noting that this sampling rate
may not even be enough for fine-grained action under-
standing, where actions average 2.6s in duration [9].

Recently, token merging of transformers has been
proposed for images [4], as a drop-in method for in-
creasing the throughput of ViT models by reducing the
token sequence length. This has several benefits over
other methods: the method does not require re-training
of a pre-trained model and the metric to merge tokens
is already calculated as part of the forward pass. In this
work, we explore the implementation of token merging
in the video domain without fine-tuning, allowing tokens
to merge freely in and between frames, to showcase its
viability on video models that have been built upon ViT.
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Figure 2. The merging process first separates tokens into two sets. Similarities are calculated and a one-to-many bipartite matching
between tokens in each set is found. Finally, the top r edges are kept and these are merged based on the similarity between tokens.

We evaluate video token merging on Kinetics-400 [16],
Something-Something v2 [12], and EPIC-KITCHENS-
100 [9], which are datasets commonly used for video
understanding, using both third and first person videos
as well as containing actions with differing granularities.

To summarise, our contributions are as follows: (i)
we explore best practices for training-free token merging
for video; (ii) we provide a comprehensive evaluation
of video transformer models on common action recogni-
tion benchmarks, demonstrating a training-free speedup
of 2.5X; and (iii) we provide an in-depth analysis of how
tokens are merged within spatio-temporal models.

2. Related Work

Efficiency of transformers is a popular topic, with a va-
riety of possible approaches. Recent works in natural
language processing (NLP) have focused on the cre-
ation of more computationally efficient attention mod-
ules to reduce the overhead of the quadratic complex-
ity [32], attention modules that make better use of mod-
ern hardware [10], and new architectures that scale lin-
early with input size [14]. Others make use of domain
specific knowledge to reduce the range of tokens that
self-attention is applied to in vision problems [2, 26].
Alternatively, in [31], knowledge distillation is applied
to make transformers more efficient learners at train-
ing time. Transformers are resilient to the dropping (or
pruning) of input tokens, attention heads, and even en-
tire blocks, which [25] has demonstrated. The dropout
of input tokens is of particular interest for vision trans-
formers because it exploits the data redundancy present
in the natural image and video domain. Accordingly, we
now introduce works whose focus is to reduce the token
sequence length, whether by dropping them directly or
merging them into more compact features.

2.1. Token Dropout

A simple method to reduce the sequence length in trans-
formers is to drop tokens, i.e. token dropout. This has
been applied to vision problems in multiple ways: tokens

can be dropped at random [15, 23] or via a learned mod-
ule [7, 27, 34]. In particular, [23] introduces a scheme
whereby image classification training is expedited by
applying random token dropout to vanilla ViTs, how-
ever, at inference time the whole token sequence is used.
Similarly, [15] trains a partial masked auto-encoder for
video understanding by dropping out significant portions
of the input and then partially reconstructing the video.
Dropout is well established in the literature, but empha-
sis has not been placed on the speedup of transformers at
inference time without re-training.

2.2. Token Merging

Tokens have been merged in a variety of ways to re-
duce the information lost by dropout. In [22] innatten-
tive tokens are fused into a single “background” token,
while others exploit semantics to improve features of in-
terest [35, 37]. Other works [20] optimise token merg-
ing through trainable parameters. Most recently, [19]
trains models with an extra stream of compressed to-
kens to reduce attention overhead. Alternatively, there
are many works that make use of token merging, as es-
tablished in [3, 4], where image tokens are merged via
a weighted average by reusing attention keys as a sim-
ilarity metric. The primary motivation of the method
is that it can be applied to ViTs without re-training or
additional learned modules. This has been extended to
VLMs [5, 8, 28, 33, 36], semantic segmentation [17],
and video editing [21]. In [18], the merging method is
improved to bridge the gap between dropout and merg-
ing. We note that prior works have not explored video
token merging on challenging video datasets.

3. Method

Our implementation of spatio-temporal token merging
for video transformers is an extension of image based
token merging [4]. We first explain token merging for
videos in Sec. 3.1 before describing how token merging
can be applied to methods which explicitly incorporate
attention across the temporal dimension in Sec. 3.2.
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3.1. Spatio-Temporal Token Merging
The goal of token merging is to reduce the number of
tokens within the model, which reduces the overhead of
attention calculation between all pairs of tokens, increas-
ing throughput of the method. Tokens are merged in-
stead of dropping them, so that complementary informa-
tion is preserved but redundant information is reduced,
with the aim of preserving accuracy of the model. The
merging process is applied within each layer in the trans-
former successively, to ensure that information is not lost
too quickly. We give an overview of the process in Fig. 2
which is explained in greater depth below.

In detail, at the ith layer of the transformer, we define
the video token sequence as x ∈ RB×SV

i ×D, where B
is the batch size, SV

i is the current number of tokens in
the video sequence for the ith layer, and D is the chan-
nel depth of the features. We first partition the tokens x,
into two sets A and B, both of size SV

i /2. The tokens
are partitioned in an alternating manner, as is established
in [4]. Next, we select the most similar token in B for
every token in A, creating a one-to-many matching be-
tween the two sets as a bipartite graph G. Note that these
connections are drawn across all frames. The similarity
is defined as the cosine distance between the keys (K) of
two tokens from the Query-Key-Value self-attention and
this is used as the edge weighting in G.

We define a hyperparameter for the number of tokens
to merge as ri, where 0 ≤ ri ≤ SV

i /2, which represents
the number of tokens to merge within the ith layer. Ac-
cordingly, ri edges with the highest similarity (the edge
weight) are kept and all other edges are dropped. The
remaining edges denote tokens to be merged and their
features are then averaged, weighted by their size. The
size of each token is tracked as n ∈ RSV

i , a vector where
each value represents the total number of tokens that
have been merged into each location in the sequence.

After the tokens are de-partitioned, each token in the
sequence is now the weighted average of an arbitrary
number of image patches. This has been demonstrated
by [4] to affect the attention output of the next layer;
when tokens with similar keys are merged, they’ll have a
smaller impact on the softmax output. To help alleviate
this problem, proportional attention is introduced:

softmax
(QKT

√
d

+ log n
)

(1)

ViViT [1] and VideoMAE [30] extend the ViT ar-
chitecture [11] to incorporate the temporal dimension
by jointly attending across space and time. There are
few architectural differences between these video mod-
els and image ViTs, with the additional temporal dimen-
sion making them computationally expensive. To reduce
this overhead, the patch embedding is 3D instead of 2D,
meaning each token spans multiple frames.

3.2. Divided Space-Time Token Merging
The works of TimeSformer [2] and Motionformer [26]
forgo joint space-time attention and instead experiment
with methods to fuse information in a more efficient
manner. However, this requires the token sequence to
have temporal structure, as the temporal attentions are
calculated through frames, using the spatial position as
an anchor point. Because of this, merging tokens be-
tween frames causes temporal relationships to be broken
and so we apply the token merging operation to each
frame independently, as if they are unrelated images.
Note, that these tokens still encode temporal information
through the attention process. Accordingly, the hidden
states are x ∈ RBF×SI

i ×D, where B is the batch size,
F is the number of frames in the video, SI

i is the cur-
rent number of tokens in the image sequence for the ith

layer. To the best of our knowledge, we are the first work
to implement token merging in this manner with divided
space-time transformers.

4. Results
Within this section we present comprehensive experi-
ments of video token merging on different video trans-
former methods across different datasets. We aim to pro-
vide a consistent view of these methods and how the ac-
curacy/speedup trade-off of each method can vary de-
pending on the granularity of actions within each dataset.

4.1. Implementation Details
We test token merging in video across a selection of
four different transformer models. The models are as
follows: TimeSformer with 8 frames, Motionformer
with 16 frames, VideoMAE with 16 frames and ViViT
(“Model 1” from [1]) with 32 frames. In all of our ex-
periments we use the base size models with default num-
ber of frames. This has the benefit of being a fair testbed
whilst also evaluating token merging performance across
a variable number of frames. Where existing check-
points were not available online (EK-100 on TimeS-
former, ViViT, and VideoMAE and SSv2 on ViViT),
we finetune our own from existing K400 checkpoints on
four H100 GPUs [24]. Proportional attention is used in
all models except VideoMAE, due to the model being a
masked autoencoder derivative [4]. For fair comparison,
we use the same data loading/data augmentation tech-
niques across all methods and each clip is only used for
one view, in contrast with the multiple views often used
in the original papers.
Merging Schedule. In practice, when r is mentioned in
this section, we are referring to setting ri for each layer,
according to one of the following schedules: Constant:
fixed r per layer, denoted as ViViT. Decreasing: 2r → 0
per layer, denoted as ViViT↓. Increasing: 0 → 2r per
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Figure 3. (Left) curves corresponds to accuracy with ViViT and VideoMAE on K400 when increasing r (the number of tokens
merged) up to its limit. The x-axis is the percentage (relative to the original total) of tokens dropped per layer. (Right) figure
displays the accuracy against speedup gained for these r values.

layer, denoted as ViViT↑. For the decreasing and in-
creasing schedules, values are linearly interpolated be-
tween the two listed numbers. For the divided space-
time models, the r value is a tuple of the r value for each
frame and the effective number of frames in each clip.

Baselines. We re-implement previous methods for to-
ken merging and dropout with our combination of mod-
els and datasets as baselines to compare with spatio-
temporal token merging. Random dropout [23]: Ran-
domly drop tokens (instead of merging). Dropout [4]:
Use attention metric to choose which tokens to drop (in-
stead of merging). Finally, we also introduce a naive
baseline to determine how important the attention metric
is when merging: Random merge: Randomly merge
tokens instead of using attention to choose.

4.2. Dataset Details

We evaluate on three action recognition datasets:
Kinetics-400 (K400) [16], Something-Something v2
(SSv2) [12] and EPIC-KITCHENS-100 (EK-100) [9].
K400 is a coarse-grained action recognition dataset col-
lected from YouTube, focusing on a large range of gen-
eral human actions, typically from a third-person per-
spective. Comparatively, SSv2 is more fine-grained and
studies interactions between hands and objects. Most no-
tably, the action classes are object agnostic, to encourage
understanding of temporal cues. Lastly, EK-100 con-
sists of unscripted egocentric footage gathered in partic-
ipants’ kitchens, which introduces increased visual noise
in the form of motion blur and occlusions. Actions are
annotated with a “verb” and “noun” class, making the
dataset considerably more fine-grained.

4.3. Quantitative Results

Scaling with r. We first investigate the trade-off be-
tween accuracy and throughput from token merging by
varying r. The results can be seen in Fig. 3, which com-
pares the Kinetics-400 accuracy and speedup gained for
these schedules on ViViT and VideoMAE. Note that we
plot r as a percentage of tokens dropped for easy com-
parison between the two models.

In Fig. 3a, looking at the constant schedule, we see
that both ViViT and VideoMAE are resilient to merging
up to 10% of their original tokens per layer, as after this
point the accuracy (especially for VideoMAE) begins to
decrease significantly. Nevertheless, this still represents
dropping a total of 60% tokens throughout the entire net-
work. At the other extreme, when r is 20% of the origi-
nal tokens, VideoMAE sinks to almost random accuracy,
while ViViT retains much more of its original perfor-
mance. The increasing schedule displays a significantly
slower drop in accuracy, while the decreasing schedule
drops significantly faster becaused merging is loaded to-
wards the front of the model. However, when using the
decreasing schedule, there is still a period before r hits
10% of the tokens where the accuracy matches that of
the more conservative schedules.

We compare model accuracy to the corresponding
speedup gained via merging in Fig. 3b, where we see
an elbow for each curve, indicating the points at which
merging stops being economical in terms of throughput.
The increasing schedules with loosely dashed lines are
gathered together, showing little gain in speedup, while
the tightly dashed lines for the decreasing schedule show
quicker gains in speedup. The constant schedule is a
middle-ground between the two, reaching the same end-

3350



EK-100 SpeedupModel r Reduction K400 SSv2 Action Verb Noun FPS (X)
0 - 76.63 50.66 31.32 55.48 47.23 117.78 1.00

random drop 65.58 17.18 12.78 34.03 28.31 240.13 2.04
drop 68.30 22.97 16.09 38.24 33.02 240.13 2.04

random merge 38.41 5.46 2.82 21.47 8.57 234.58 1.99
TimeSformer [2] 18 × 8

merge 71.14 25.11 18.59 40.47 35.73 240.16 2.04
0 - 70.50 61.39 35.02 61.09 46.72 99.79 1.00

random drop 63.80 24.50 14.27 37.38 27.57 218.40 2.19
drop 63.41 22.46 15.92 39.54 30.60 216.73 2.17

random merge 49.30 17.76 7.88 31.56 16.77 210.30 2.11
Motionformer [26] 18 × 8

merge 65.05 24.10 15.60 38.20 30.15 218.11 2.19
0 - 62.09 64.58 35.70 61.49 46.89 186.72 1.00

random drop 55.02 57.29 28.53 55.45 39.45 481.45 2.58
drop 56.65 60.33 31.02 57.70 42.43 483.04 2.59

random merge 20.64 22.89 5.44 26.86 10.07 471.74 2.53
VideoMAE [30] 150

merge 56.10 61.10 31.27 58.00 42.39 476.28 2.55
0 - 63.43 50.63 35.82 58.19 51.59 106.00 1.00

random drop 59.95 46.71 30.36 54.24 45.51 262.04 2.47
drop 58.00 45.36 30.12 53.20 46.90 262.34 2.47

random merge 28.88 19.15 5.78 28.88 14.82 259.92 2.45
ViViT [1] 300

merge 63.08 50.15 35.11 57.24 51.33 260.72 2.46

Table 1. Performance of token merging with a constant schedule when compared to alternative methods of reducing token sequence
length. Bold indicates the reduction methods that achieve highest accuracy on a given dataset. Grey rows correspond to the upper
bound accuracy of the original model.

point as the decreasing schedule at a slower rate. Finally,
in terms of picking optimal r and schedule, the point at
each elbow indicates that for the constant and decreas-
ing schedules, merging 10% of the original tokens can
produce speedups of roughly 2.5X and 4X respectively.

From inspection of these results, we select r for all
other experiments such that 10% of tokens are dropped
per layer, equating to 60% of all tokens across all lay-
ers in the network being merged. This value gives a
good trade-off between retaining accuracy but increas-
ing throughput of the methods.

Comparison with token reduction methods. In Tab. 1,
we show results across all models without any reduction
and with reduction at a specified r value, when using a
constant schedule. We compare upper bound accuracy
(in grey) with four reduction methods which don’t re-
quire re-training, including our spatio-temporal merging.

Firstly, we investigate the importance of the merging
aspect by comparing between reduction methods. For
all methods but Motionformer, token merging remains
able to produce the highest accuracies when reducing
token sequences. On all datasets tested, ViViT gains at
least 4% over dropout that uses the same attention met-
ric. For VideoMAE, the gains are less significant, yet
consistently outperform other methods on SSv2 and EK-
100. An interesting result is that randomly merging to-

kens is significantly destructive to performance, being
noticeably worse than random dropout. In particular,
on EK-100, the verb accuracy tends to halve, while the
noun accuracy roughly quarters. The poor performance
can be explained by the fact that potentially dissimilar
tokens are having their features averaged together, creat-
ing a more negative effect than averaging the features of
tokens that the model already determines to be similar—
in this case dropping the tokens altogether is preferable.
We note that there are not significant differences between
the throughputs of these variations.

Secondly, we directly compare the upper bound
model performance to our merged implementations. For
the divided space-time models, accuracy on K400 drops
by roughly 5%, while performance on SSv2 and EK-100
drops by much larger margins. In particular, the accu-
racies on SSv2 are roughly half what the vanilla model
can achieve even with a speedup of just over 2X. Both
EK-100 and SSv2 are more fine-grained and reliant on
temporal reasoning, token merging is impairing the mod-
els’ ability to fuse information across frames, while high
accuracy can be attained on K400 with spatial reasoning.

We find that spatio-temporal models are much more
resilient to merging. VideoMAE sees losses of around
4% across all datasets, though it retains strong accu-
racy on SSv2 and EK-100, either outperforming or being
comparable to r = 0 TimeSformer and Motionformer.
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Figure 4. Impact on confusion matrices from Token Merging a VideoMAE model. The first 10 verb and noun classes are displayed
left and right respectively from VideoMAE on EK-100. Red indicates less predictions and blue indicates more predictions.

(a) Original clip.

(b) Merged clip.

Figure 5. Visualisation of the final merged tokens for an SSv2 clip of “covering salt shaker with a towel”, produced with VideoMAE.
Tokens 1 and 2 capture the white salt shaker. The model struggles more with the blue towel, with it splitting into tokens 3 – 8.

ViViT with token merging performs extremely well on
all datasets, never dropping by more than 1%. Both
models see speedups of around 2.5X, with ViViT reach-
ing comparable performance, increasing the inference
throughput for free. While ViViT and VideoMAE have
a similar structure, there are a few differences that could
account for the disparity: ViViT uses twice as many in-
put frames whereas VideoMAE does not use a class to-
ken and is pretrained on masked input.
Comparison of class confusion. We investigate the er-
rors introduced from merging VideoMAE and produce
confusion matrices for the most frequent 10 verb and
noun classes in EK-100. Figure 4 shows the difference in
performance between a model with and a model without
token merging. In Fig. 4 (left) we can see that when a
high r value is used, the merged model becomes more
likely to predict the highly common “take” and “put”

classes, exacerbating the errors of the original model.
The nouns in Fig. 4 (right) are more resilient to this

collapse into the most common classes. However, we
can see that certain related nouns are increasingly be-
ing misclassified, particularly those that relate to smaller
objects. For example, “spoon” and “knife” are more
frequently misclassified as the wrong piece of cutlery,
or the action-related “plate”. Similarly, “bowl” is mis-
taken for “plate” and “sponge” is mistaken for “tap”.
Larger objects like “drawer”, “tap”, and “cupboard”—
which occupy portions of the background—are broadly
unaffected by the merging, suggesting that the features
of smaller objects are more likely to be lost by merging.

4.4. Qualitative Results
In this section, we explore the token merging from a vi-
sual standpoint, answering the following questions: i)
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(a) Original clip.

(b) Merged clip.

Figure 6. Visualisation of the final merged tokens for an EK-100 clip of “take plate”, produced with VideoMAE. The first 4 frames,
merge the plate into token 1, even with motion blur whereas in the last 3 frames it splits into tokens 2 and 3.

(a) Original clip.

(b) Merged clip when duplicating layer 1.

(c) Merged clip when duplicating layer 12.

Figure 7. Visualisations of the difference in merging decisions made in layer 1 versus layer 12, produced with VideoMAE. We find
that the final layer merges the tokens in a more object focused manner vs. the first layer.

How are tokens merged in video?; ii) How do different
layers merge tokens?; and iii) Are tokens being merged
semantically or visually? For the visualisations, we ex-
tended the implementation in [4] for video—tokens with
the same background and edge colour are the same. We
number the first and last appearance in each visualisation
where specific tokens are referred to in text.

How are tokens merged in video? The action “cov-
ering salt shaker with a towel” from SSv2 is depicted
in Fig. 5. While it is visible, the white salt shaker is
captured well by token 1 and 2, likely split due to the
shadow of the towel covering the salt shaker. However,
the model struggles with the blue towel, leaving tokens
3–8 unmerged. Tokens 4 and 5 are significantly darker as
the towel’s underside is not hit by a light source, increas-
ing the visual differences between the tokens, suggesting

that tokens are not merged semantically and visual dif-
ferences will prevent merging across frames.

Next, we show an example from EK-100 of “take
plate” in Fig. 6. In the first four frames, the plate is
merged to token 1, even with the rapid motion blur.
However, when it’s back in view in the last three frames
it splits into tokens 2 and 3. Additionally, the table and a
glass are clearly grouped separately into tokens 4 and 5
respectively. The background is surprisingly well dis-
tinguished from the foreground in token 6, even with
the unusual head pose, likely because the floor has one
common texture. Interestingly, the t-shirt of the par-
ticipant is visibly grouped into token 7. These exam-
ples showcase how tokens are merged effectively spatio-
temporally without any learned parameters/fine-tuning.

How do different layers merge tokens? Because the
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(a) Spliced clip.

(b) Merged clip.

Figure 8. Merging outcome for a clip that has had half its frames from the most “similar” clip in the same noun class spliced in,
produced with VideoMAE. The plates are merged consistently together within each clip but are not merged across the clips.

merging method happens iteratively as the token se-
quence passes through transformer layers, the outcome
is cumulative and biased towards earlier layers. To de-
termine how different transformer layers merge tokens,
we conduct experiments where layer i of the model is du-
plicated 12 times (stripping out everything but the merg-
ing modules) and tokens are only merged by instances
of layer i. Figure 7 visualises an example from EK-100.
In Fig. 7b we see that duplicating the first layer pro-
duces merged results that are drastically different com-
pared to earlier examples. We speculate that this layer
is merging based on rudimentary shape or basic fore-
ground/background colours. In Fig. 7c, we can see that
duplicating the final layer produces similar output to a
visual segementation of the clip. The food, tray, bowl,
and background are clearly separated consistently across
frames. Due to the cumulative nature of the layer based
merging, there is currently no simple method to balance
the impact that different layers have. However, biasing
merging towards the later layers significantly decreases
the gains in throughput of the model.
Are tokens being merged semantically or visually?
Finally, we test whether the models are merged seman-
tically, as much of what we have demonstrated is possi-
ble with visual similarity. We do this by taking a video
and inserting clips from a different video from the same
class, i.e. a clip with the same semantic meaning and ob-
jects and check how the tokens are merged spatially and
temporally. We find videos that the model believes to be
semantically similar by comparing the noun logits of all
clips in the EK-100 test set using the Kullback–Leibler
(KL) divergence between all possible pairs, and select
the nearest video. Figure 8 shows an example of the most
“similar” corresponding clip in the same noun class, ran-
domly splicing frames into the source video. From the
example, we can see that the model merges the original
clip’s plate into a single token, which notably does not
overlap with any of the second clip’s corresponding plate

tokens. Even though the objects are in the same class, the
difference in lighting and texture is enough to stop their
tokens from merging, suggesting that the merging pro-
cess is almost entirely visual. We show more examples
within the supplementary material, but only a tiny por-
tion of examples suggest that tokens are being merged
with any semantic reasoning. We also find that the back-
ground is only merged between the original and spliced
frames if the kitchen is visually similar enough or the
light levels are similar, indicating that the merging is not
explicitly considering foreground and background.

5. Conclusion

The efficiency of transformer models remains an on-
going cornerstone of research in deep learning. In
this work, we implemented video token merging for
two spatio-temporal vision transformers and two di-
vided space-time transformers to see how effectively the
method can be dropped into existing models without re-
training. As well as this, we created a testbed to compare
token merging across video transformer models.

Using this testbed, we collate various quantitative and
qualitative findings, with the aim of exploring how and
why tokens are merged in the temporal dimension, as
well as the effect that this has on action recognition with
fine-grained video datasets. We have determined the
margin by which attention driven merging beats dropout
alternatives. Furthermore, we have demonstrated that
this method of merging has little consideration for the
semantics in the inputs that it merges and that the merg-
ing decisions made by different layers can vary wildly.
The token merging methodology remains a convenient
drop-in for vision transformers to increase throughput
with a small drop in performance based on the ratio of
dropped tokens. We hope that with these results pave the
way for token merging to be directly incorporated into
future video transformer models.
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