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Abstract

Explicit density learners are becoming an increasingly pop-
ular technique for generative models because of their abil-
ity to better model probability distributions. They have
advantages over Generative Adversarial Networks due to
their ability to perform density estimation and having ex-
act latent-variable inference. This has many advantages,
including: being able to simply interpolate, calculate sam-
ple likelihood, and analyze the probability distribution. The
downside of these models is that they are often more difficult
to train and have lower sampling quality.

Normalizing flows are explicit density models, that use
composable bijective functions to turn an intractable proba-
bility function into a tractable one. In this work, we present
novel knowledge distillation techniques to increase sam-
pling quality and density estimation of smaller student nor-
malizing flows. We seek to study the capacity of knowl-
edge distillation in Compositional Normalizing Flows to
understand the benefits and weaknesses provided by these
architectures. Normalizing flows have unique properties
that allow for a non-traditional forms of knowledge trans-
fer, where we can transfer that knowledge within interme-
diate layers. We find that through this distillation, we can
make students significantly smaller while making substan-
tial performance gains over a non-distilled student. With
smaller models there is a proportionally increased through-
put as this is dependent upon the number of bijectors, and
thus parameters, in the network.

1. Introduction
Generative models are a popular form of deep learning, due
to their ability to generate convincing samples from a prob-
ability distribution. The de facto choice for image sampling
are Generative Adversarial Networks (GANs) [7]. While
GANs have been shown to produce high-quality samples
that look similar to the samples from target distribution,
they do not faithfully reproduce the target probability dis-
tribution [23]. Arora et al. [1] demonstrate this by looking
at the Birthday Paradox and analyzing the diversity of im-

ages. Anyone who has used popular “this x does not exist”
websites will quickly notice how similar some images are
to those they were trained on. This is due to that GAN’s
non-exact latent-variable inference, requiring them to have
a smaller latent representation and thus being implicit den-
sity learners. On the other hand, Normalizing Flows have
full latent representations, not using any encoders or de-
coders as are used in GANs or VAEs, and allow them to
learn tractable density functions. Not only may researchers
and practitioners want to produce high quality samples, but
some may also want to perform density estimation and an-
alyze the target distribution. Explicit density learners, such
as Normalizing Flows, are able to accomplish all of these
tasks. The major challenge is that it is substantially more
challenging to learn all this extra information and require
larger latent representations. Variational autoencoders [29]
try to solve this by attempting to learn only a subset of
the latent space, reducing the dimensionality of the prob-
lem to a set of approximated principle components. On the
other hand, there are autoregressive models (AR) [6, 34],
normalizing flows (NFs) [29], and deep energy-based mod-
els (EBMs) [17, 31], which attempt to learn all of the high
dimensional data and likelihood information. While these
models reproduce the target distribution more faithfully,
they are much more difficult to train and require signifi-
cantly more computational resources.

The advantage of NFs over other explicit density mod-
els is that they are simple in structure and fully tractable
throughout the entire model. They accomplish their learn-
ing by composing bijective functions (equations whose
maps are one-to-one and onto). This means that NFs
perform a change of variables operation, changing an in-
tractable probability distribution into a tractable one, typi-
cally Gaussian. NFs do this through the use of a learned
change of variables mapping. The advantage of this is that
once we have found the proper simpler density function, we
can easily analyze it and gain all the statistical advantages
of a tractable probability density function.

Normalizing Flows are particularly difficult to train due
to their invertible nature, requiring diffeomorphic composi-
tions and thus we require a tractable Jacobian determinants
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to preform inference through the backwards pass. While
tractable Jacobian determinants are not required for forward
inference, it is the bidirectional nature that makes NFs par-
ticularly unique. This aspect has been the major challenge
of NFs, as it is difficult to find bijective functions that are
both efficient and highly expressive [15, 26]. Current tech-
niques lead to a high number of parameters, meaning that
they also tend to be inefficient during inference. This work
focuses on using knowledge distillation [9] to train smaller
models through a student-teacher paradigm. While smaller
models are more difficult to train to high accuracy, they per-
form faster inference due to the reduction in the number
of parameters. NFs have unique properties that allow for
unique types of knowledge distillation techniques compared
to other more traditional models. Specifically, since NFs fo-
cus on a change of variables, they learn full latent represen-
tations through intermediate layers accurately, which can be
distilled between models of similar architectures.

The study of distillation within Normalizing Flow ar-
chitectures is understudied. In this paper, we explore this
unique property and demonstrate its improvements in stu-
dent models. In this manner we hope to provide a general
framework in which distillation may be applied to these net-
works. We do not seek to find optimal settings or meth-
ods of distillation, but to study the capacity of these models
to distill knowledge. More specifically, to do so by tak-
ing advantage of the unique properties of these architectures
and not found within other architectures, such as GANs or
VAEs. Furthermore, we believe the insights gained from
this work may inspire research for architectures such as dif-
fusion models [10, 32] which share some, but not all, prop-
erties.

Our main contributions in this paper are:
• We propose novel knowledge distillation techniques for

normalizing flows, demonstrating their effectiveness on
smaller flow models.

• We demonstrate the effects of different distillation tech-
niques on these normalizing flows.

• We demonstrate that these methods can be used on vari-
ous datasets, including tabular datasets and common im-
age datasets.

• We provide a foundation for studying distillation methods
applied to Normalizing Flows.

2. Related Work

2.1. Normalizing Flows

Normalizing Flows are a type of explicit density model,
where instead of attempting to just generate samples similar
to our target distribution, the objective is to model the entire
distribution. This can be accomplished through a change
of variables method, where a transformation f is used that
is both invertible, and where f and f−1 are both differen-

tiable, meaning that f is diffeomorphic. This change of vari-
ables can be expressed as

px(x) = pu(u) |detJf (u)|−1 (1)

where u = f−1(x) = g(x). px represents the distribution
being modeled, and pu represents the learned distribution.
In other words, this change of variables is expressed as a
learned distribution times the absolute value of the inverse
of the Jacobin determinant, detJ . This inverse Jacobian de-
terminant is why Normalizing Flows are computationally
expensive.

Because these functions are diffeomorphic, they are also
composable. Therefore, with an arbitrary transformation fi,
a normalizing flow can be created, which is expressed as

f = f1 ◦ f2 ◦ · · · ◦ fk, (2)

We refer to the number of composable functions as the
depth of the flow network, k. The Jacobian determinant of
the entire network can be calculated by the product of the
Jacobian determinant at each layer.

det Jf (x) =

n∏
i=1

det Jf i
(xi) (3)

Triangular decomposition is frequently used to solve the Ja-
cobian determinant, as the determinant of a triangular ma-
trix is trivial to compute.

With this, any sample x, from the intractable distribution,
px, can be fed into the model (function f ), and transformed
to a tractable distribution pu. Then, from the tractable dis-
tribution, pu, new samples can be generated by inverting
the flow. We refer to the inverse, f−1, as g to denote that
this direction is a generator, where one can sample from a
distribution similar to px.

There are several types of normalizing flow architec-
tures: Planar and Radial Flows introduced by Rezende and
Mohamed [29]; Coupling Flows, proposed by Dinh et al.
[5]; Autoregressive Flows, presented by Kingma et al. [14];
Continuous Flows, suggested by Chen et al. [3].

Each of these has different trade-offs between expres-
siveness and simplicity to calculate, with Planar and Radial
Flows being the most computationally complex.

Since Coupling and Autoregressive Flows are the most
common, we focus on the most popular representatives of
each: GLOW (Kingma and Dhariwal [13]) and Masked Au-
toregressive Flow (Papamakarios et al. [25]).

Normalizing flows are also included in the class of
likelihood-based learners, or neural networks that attempt to
solve the maximum likelihood of the distribution. Because
of this, one can use any metric to minimize the discrepancy
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between the target distribution and the learned one. Typi-
cally the Kullback-Leibler (KL) divergence is used, which
uses entropy between the two distributions to determine the
difference. Therefore, the loss for a sample x and parameter
θ can be expressed as:

L(θ) = DKL [px(x)||pu(x;θ)] (4)

=
∑

px(x) log

(
px(x)

pu(x)

)
(5)

While this might not always be possible, there are many
alternative equivalents such as the reverse KL-Divergence
and Evidence Lower Bound (ELBO), which can be used in
cases where sampling from the target distribution may not
be possible.

Additionally, when training on discrete variables, such
as images or text, the dataset typically needs to be dequan-
tized to transform them into continuous distributions. While
there are methods to work on discretized data [11, 19], like
images, the common practice is to first dequantize the data.
For images, the image values can be converted from integers
in [0, 255] to real numbers in [0, 1], noise is added to con-
tinuize (dequantize) the data and transform it into a tractable
density, typically Gaussian. This also means that the de-
quantization process is, approximately, invertible, which
makes this equivalent to another flow step.

2.1.1. GLOW
GLOW is an extension of the RealNVP [5] architecture,
which uses affine coupling layers. Among the innovations
proposed in the original paper were the activation normal-
ization layer (ActNorm) and the 1×1 invertible convolution
layer. ActNorm has the following form:

∀i, j : xi,j = s⊙ zi,j + b (6)

b and s are initialized so that the mean and standard de-
viation, respectively, of the first mini-batch of data is 0 and
1. An invertible 1× 1 convolution is arranged as follows:

∀i, j : xi,j = Wzi,j (7)

where W ∈ Rc×c is initialized as a square orthonormal ma-
trix of the same size as the number of channels, c. With this
setup we can more easily calculate the Jacobian determinant
through LU-decomposition. We can further decompose U
by giving it a unitary diagonal and adding it to a diagonal
matrix where entries are that of the original U matrix:

W = PL(U + diag(s)), (8)

where P is a permutation matrix, L is a lower triangular ma-
trix with unit diagonal, U is an upper triangular matrix.

By pulling the trace of U out, this allows for a simpli-
fied calculation of the log Jacobian determinant, since the
determinant of a diagonal matrix is the sum of its trace.

log(det(J)) = h · w ·
∑

log |s| (9)

where h and w are the height and width (number of pixels)
of the input image. We note that while LU-Decomposition
significantly reduces the computational complexity, that this
function is still rather costly to calculate.

Coupling layers may be expressed in several forms, often
additive or affine. These layers are highly expressive flows
that operate on a disjoint partition.

2.1.2. Masked Autoregressive Flow

(MAF), models each element of the vector x as a condi-
tioned function h(·, θ):

xi = h(zi,Θi(z1:i−1)) (10)

The determinant of the Jacobian for such a transformation
is a lower triangular matrix since xi depends only on z1:i,
thus making it trivial to calculate. The calculation of x can
be performed with a single network pass by masking the Θ
and h network layers.

2.2. Knowledge Transfer and Distillation

With knowledge transfer one can incorporate additional loss
information into a model being trained by using output from
an already pretrained model. Typically we do this from a
model that is larger, called a teacher, that will distill the
information to a smaller model, called a student. This can
help the student model both learn faster and avoid local min-
ima that it might typically get trapped in. There are several
schemes of KD:
• Response-based KD: constraining student to produce out-

puts similar to that of the teacher’s. This method is the
standard for KD of discriminative models and was first
proposed by Hinton et al. [9].

• Feature-based KD: constraining student to have internal
representations similar to the teacher’s. Similar method
was proposed by Romero et al. [30] for general knowl-
edge distillation framework.

• Relation-based KD: training a student to replicate
teacher’s relationships between different layers or differ-
ent data points.
A recent work by Baranchuk et al. [2] proposed using

knowledge distillation from a conditional normalizing flow
to teach a feed-forward based flow like SRFlow and Wave-
GLOW. This work used response-based knowledge distilla-
tion, similar to that presented by Hinton et al. This demon-
strates that conditional flows can be trained with the stan-
dard knowledge distillation techniques, only using the in-
formation from the outputs of the teacher and student, but
does not demonstrate that such distillation techniques can
be used on unconditional flows, invertible flows, nor can
feature-based or relation-based knowledge distillation tech-
niques be used.
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Figure 1. Illustration of different distilling mechanisms using a glow like multi-level architecture. LSKD shows the synthesized knowledge
distillation, LILKD shows the intermediate latent knowledge distillation, used at every squeeze step (same as ours) and LLKD shows the
latent knowledge distillation. Here our teacher has k steps (depth) of flow and our student has j, where j < k. Note that they both have
the same number of levels.

2.3. Probability Density Distillation
Probability Density Distillation, PDD, was first introduced
by van den Oord et al. [24] as a potential solution to
WaveNet’s [33] poor sampling performance, thus it became
the de facto standard in the waveform modulation due to the
significant increase in sampling rates.

The original WaveNet (WN) model is autoregressive,
which benefits from the PDD training process, as the model
can efficiently run in parallel due to its convolutional nature.
However, while generating samples, input features for each
layer must be first drawn from the previous feature layer,
making parallel inference impossible.

The PDD method aims to translate learned distribution
from an easy-to-train autoregressive model to the easy-to-
parallelize Inverse Autoregressive Flow (IAF) [14]. Since
both of the described models can do density estimation, the
proposed way to distillate is to constrain the IAF’s output to
match the pre-trained WaveFlow model:

DKL(PIAF∥PWN) = H(PIAF∥PWN) +H(PIAF) (11)

where H(PIAF∥PWN) and H(PIAF) denotes cross-
entropy and entropy respectively.

The PDD method quickly became a baseline solution for
training small flows for waveforms modulation and inspired
a variety [27, 28] of other works. Recent work presented by
Hoogeboom et al. [12] takes a different approach by incor-
porating techniques from diffusion models to also increase
efficiency.

3. Method

Normalizing flows are unique in their structure due to the
composition of composable diffeomorphic functions. This
means that we can transform information in many unique
ways as compared to other types of deep neural networks.
Because normalizing flows operate by a change of variables
transformation, we can assume certain properties at differ-
ent depths of the network. Namely, if we use different lev-
els, in a hierarchical structure, like glow, we may want the
student and teacher to share similar latent distributions at
those points. Similarly, since we are able to model probabil-
ity density functions, we know that we want the student and
teacher to share this same information. We discuss these
techniques in the following subsection. Additionally, we
note that these techniques are not limited to feed-forward
students nor do they require conditional inference. Thus
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these techniques extend the work of Baranchuk et al. [2]

3.1. Latent Knowledge Distillation
A basic version of knowledge transfer for normalizing flows
is to teach the student’s latent distribution to be similar to
the teacher’s. This is known as Latent Knowledge Distil-
lation (LKD). Loss can be calculated between two latent
vector representations, as shown in equation 12. This loss
may be arbitrarily, but we use a L1 loss for our experiments.

LLKD(t, s, x) = Lr(t(x), s(x)) (12)

where t represents the teacher and s represents the student,
and x is a sample (x ∼ x) from the dataset.

While it is a possible approach to do a knowledge dis-
tillation on normalizing flows, it has a number of serious
drawbacks. First of all, distilling in this manner we would
be limited to our dataset, meaning that we can only pass in-
formation to the smaller model on already known locations.
Another issue with this approach is that it is not making use
of flow’s invertible property, effectively treating a very com-
plex model as a simple regression. While this is useful, we
are not transferring as much knowledge as is possible from
the teacher to the student.

3.2. Intermediate Latent Knowledge Distillation
An extension to latent knowledge distillation is to use latent
information from intermediate features of the flow. Similar
to the perceptual knowledge distillation [35], one could link
intermediate layers between the teacher and student flow
blocks. While this approach works just like the previous
one, it has a nice benefit of constraining not only output
but a student flow as a whole, making knowledge distilla-
tion “stronger.” Through this method we are able to pass
significantly more information from the teacher network to
the student. We refer to this type of knowledge transfer as
Intermediate Latent Knowledge Distillation loss, or ILKD.

For an arbitrary flow step we can compare the latent in-
formation between the student and teacher, similar to equa-
tion 12. The difference is that this time we are using an
arbitrary flow step. We will refer to the teacher step as ti
and the student step as si. Similarly the metric may be arbi-
trary, but we use L1.

LILKD(t, s, x) =
∑
i

Lr(ti(x), si(x)) (13)

While many networks have explored the usage of Lp

losses in their networks, Compositional Normalizing Flows
have a unique property that subtly differentiate this formu-
lation. At each layer the network must describe a probabil-
ity distribution and since each transformation is a change of
variables, this results in transformations that do not contain
knots in their trajectories [3, 4, 8]. Lp losses calculate the

differential between individual elements in the latent rep-
resentation, they place pressure on the networks to have the
same geometric representations within the latent space. Due
to the aforementioned properties of compositional Normal-
izing Flows, when the Lp loss is minimized, so will distri-
butional losses like KL-Divergence. We use L1 loss due to
the high dimensional nature of our data and the purpose of
ILKD is to ensure that the trajectories of the teacher and
student models align. The goal is to compress N flow steps
into M , where M < N .

While we could use any arbitrary flow step to distill
knowledge to, there are more optimal steps to transfer to.
We choose to use flow steps that logically correspond to the
progressive change of variables. One simple example of
this may be to have a student model have half the depth of
the teacher and then every student flow step learns from ev-
ery other teacher flow step. This example would be akin to
trying to having two flow steps in a teacher model distilled
into a single flow step in the student model, thus halving
the number of flow steps. This ensures alignment within
the trajectories and reduces potential complications due to
the biases of different flow step formulations. Within our
work we choose to distill this knowledge at each split level,
finding that this leads to a balance of computation and com-
plexity that each flow can learn. Additionally, this allows
for more flexibility, as it is reasonable that the flow steps
will need different operations to reach the same latent rep-
resentation in a different number of steps. Distilling at too
frequent of intervals may over constrain the student model,
making it inflexible to more complex distributions.

3.3. Synthesized Knowledge Distillation
Another method to transfer knowledge is to look at the syn-
thesized information from each network. Not only do we
want the latent information from the flows to be similar,
but we also want the generated samples to be similar. To
accomplish this simply by using random samples from the
learned distribution and then comparing their synthesized
results. That is

LSKD(t, s, z) = Lr(t
−1(z), s−1(z)) (14)

here we let z represent the generated sample. Additionally,
we use t−1 and s−1 to represent the inverse flows, which
are the generators as described in section 2.1. Unlike a cy-
cle loss [36] we do not need to know the original image
that was generated, just that we constrain the student’s gen-
eration (backwards inference) path to be similar to that of
the teacher’s. Additionally, unlike Baranchuk et al. s dis-
tillation technique, we do not require that the generator be
conditional.

Since we cannot count on the whole latent space to be
as equally covered by the flow mapping, the stability of this
method requires that the latent spaces of the student and
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Table 1. Averaged test log-likelihood (in nats) for unconditional density estimation (higher is better) across multiple runs.

Architecture Model POWER GAS HEPMASS MINIBOONE BSDS300

GLOW

Student −0.228 5.967 −22.668 −17.251 147.298
LKD Student −0.132 6.008 −22.332 −17.136 162.103
ILKD Student −0.133 6.191 −22.187 −17.008 163.148
SKD Student −0.078 6.515 −21.852 −16.130 163.953

GLOW Teacher 0.143 6.604 −19.938 −13.597 165.702

MAF

Student −0.152 4.385 −21.904 −15.314 155.463
LKD Student −0.149 4.473 −21.389 −15.217 155.629
ILKD Student −0.145 4.502 −21.223 −15.184 155.785
SKD Student - - - - -

MAF Teacher 0.133 5.887 −20.662 −13.488 159.442

Table 2. Time consumption for a single batch inference averaged across multiple batches and the number of parameters (in thousands).
Average time (ms) and number of parameters (in thousands) are reported.

Arch Model Metric POWER GAS HEPMASS MINIBOONE BSDS300

GLOW
Student Time (ms) 2.32± 0.16 2.46± 0.1 2.55± 0.35 2.47± 0.07 2.45± 0.07

Params (K) 13.8 14.2 17.4 24.9 34.4

Teacher Time (ms) 3.65± 0.26 3.88± 0.09 4.41± 0.28 3.95± 0.11 3.89± 0.14
Params (K) 86.7 87.8 96.3 114.2 134.7

MAF
Student Time (ms) 2.0± 0.21 1.98± 0.19 1.82± 0.05 1.82± 0.05 1.91± 0.22

Params (K) 5.0 5.6 9.4 15.9 21.8

Teacher Time (ms) 3.34± 0.22 3.22± 0.18 3.34± 0.23 3.36± 0.26 3.45± 0.2
Params (K) 10.1 11.2 18.9 31.8 43.6

teacher are similar to each other. In other words, we should
distill the teacher’s latent space into the student’s one be-
fore we start the procedure. We note that we found that this
method is often unstable. We believe that this is due to NFs
difficulty in backwards inference, notably in that they tend
to have poorer sampling quality. We believe that this is still
a useful notion and will become more stable as the quality
of flow’s image generation increases.

3.4. Flow Distillation

we can combine all these types of distillations together and
create a much stronger from of distillation that each pro-
vides independently. The hyperparameters λi, representing
the weight of the distillation, the resulting loss can be writ-
ten as follows:

L(t, s, x, z) = λ0 log ps(x)

+ λ1L(I)LKD(t, s, x)

+ λ2LSKD(t, s, z)

(15)

here we use l(i)LKD to denote both the intermediate and
standard latent knowledge distillation, noting that the final
latent step is just another “intermediate” step. We show an
example of the full distillation in figure 1.

4. Experiments
All calculations were performed on a single GPU Tesla
V100.

4.1. Models
To demonstrate that this method is model agnostic we
demonstrate by using Masked Autoregressive Flow [25] and
GLOW [13], as previously discussed in Section 2. In all
experiments the teacher and students share the same basic
model but differ in the number of flow steps, with the stu-
dent model being smaller than the teacher. For example, in
the GLOW model both student and teacher share the num-
ber of levels (splits) but have a differing number of flow
steps between them. These models have differing architec-
tures but also form the basis of many other types of flow
models and thus we believe stand as good proxies.

4.2. Tabular data
We perform density estimation experiments on five standard
tabular datasets that include four datasets from the UCI ma-
chine learning repository [18] and on a dataset of natu-
ral image patches BSDS300 [22]. In Table 1, we report
the average log-likelihood on held-out test sets. For each
model, we also provide the statistics for time and memory
consumption in table 2.
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(a) Teacher (b) With KD (c) Without KD

Figure 2. CelebA samples from teacher model (2a), student model (2b), and student model with no knowledge distillation (2c). All images
are generated at 64×64 resolution and with temperature=0.7.

(a) Teacher (b) With KD (c) Without KD

Figure 3. CIFAR-10 samples from teacher model (3a), student model (3b), and student model with no knowledge distillation (3c). All
images are generated at 32× 32 resolution and with a temperature of 0.7.

As can be seen in table 2, the proposed LKD and the im-
proved ILKD methods both allows for a significant reduc-
tion in time and memory consumption. The SKD method
not only improves student flow performance on all datasets
but also has better quality than other distillation methods
for the GLOW teacher and student. However, its numeri-
cal instability leads to a discrepancy in the MAF student’s
training with SKD. We believe that this is due to MAF’s
weaker modeling power, noting that this model is substan-
tially smaller and significantly under performs compared to
the GLOW based models.

We train each flow for 1×104 iterations with a batch size
of 65,536 elements and a learning rate of 5×10−5 on tabular
data and AdamW [21] as an optimizer. In Table 2 the rows
labeled with LKD we use λ0 = 1 (λ1 = λ2 = 0), for ILKD
we use λ0 = 0.9 and λ1 = 0.1 (λ2 = 0), and for our SKD
we use λ0 = 0.85 and λ1 = λ2 = 0.075, as described in
Equation 15. We found that these combinations of weights
are stable and improve the quality of distilled models for all
datasets. We also note that as with most NFs, training and
stability are significantly affected by batch sizes. Addition-
ally, Flow based networks tend to learn best when gradients

are not rapidly changed, often requiring longer warmups
and gradient clipping. We note here that this is likely a rea-
son that the optimal distillation weights are small for ILKD
and SKD experiments. Small perturbations in flow train-
ing can often lead to compounding downstream changes. A
detailed overview of network parameters can be found in
table 3.

Table 3. Model configurations for generation of tabular data. Pro-
vided for GLOW and MAF architectures. Number of levels (L) is
equal to 1. Notation is taken from the original paper [13].

GLOW Level (L) Hidden
Student 3 32
Teacher 3 64
MAF Depth (K) Hidden
Student 3 32
Teacher 6 32

4.3. Image data
To demonstrate our method’s performance for convolution-
based normalizing flows, we used CelebA [20] and CIFAR-
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10 [16] image datasets. In the following experiments, we
used GLOW [13] for the unconditional image generation.
Both of these experiments use the affine coupling layer as
discussed in the GLOW paper. Here we use the same train-
ing parameters as the tabular data but with a batch size of
32.

We found that the SKD increased the quality of the stu-
dent models, but also found that this method was unstable.
We, again, believe that this is due to the low sampling qual-
ity of these networks. Because of this we focus on just using
ILKD, as this is both stable and consistently increases the
quality of generated samples.

Configurations of trained models are provided in ta-
ble 5. Additionally, Figures 2 and 3 show random sam-
ples from the teacher models as well as students with and
without knowledge distillation. We can see that the stu-
dents with knowledge distillation significantly outperform
students without knowledge distillation. This reflects the re-
sults we saw in the table 4. Here we note, as seen in Table 5
that the CIFAR student is a quarter the size of the teacher yet
has a < 2% difference in sampling quality, an improvement
of 3% over the non-distilled student’s FID. Similarly, the
CelebA’s student is approximately one eighth of the teacher
model and over 35% improvement over the baseline stu-
dent. This directly demonstrates that these distillation tech-
niques have a powerful effect on student models.

Table 4. Metrics for the image generation task for the GLOW
architecture using ILKD on the test set: bits per dimension and
FID (lower is better).

CIFAR-10 CelebA
bpd FID bpd FID

Student 3.498 71.177 2.479 68.127
ILKD Student 3.481 69.371 2.475 54.480
Teacher 3.423 68.503 2.474 37.460

Table 5. Model configurations for CIFAR-10 image generation
tasks (GLOW). Notation is taken from the original paper [13].

Levels (L) Depth (K) Hidden Params
CIFAR-10
Student 8 3 512 11M
Teacher 32 3 512 44.2M
CelebA
Student 16 3 256 7.9M
Teacher 32 3 512 61.2M

4.4. Latent Space Corruption
To ensure the knowledge distillation does not corrupt the
hidden space, we need to ensure that random samples from
the students still maintain similar quality images. With

high dimensional information, it is possible for Normalizing
Flows, and other models, to have a small KL-Divergence
but also have poor sampling quality. However, high qual-
ity samples can only happen if there is a sufficiently good
enough cover within the learned latent space. Thus, we pro-
pose to measure the quality of the inferred samples for ran-
domly chosen images u,v and an α ∈ [0, 1]. The preserved
norm of the latent vector can be defined as:

f(u, v, α) = ((1− α)f(u)+ αf(v))

· (1− α)||f(u)||+ α||f(v)||
||(1− α)f(u)+ αf(v)||

(16)

The results of this method are provided for CelebA
dataset in Table 6. In this table we can see that the ILKD
Student performs significantly better than the student with-
out knowledge distillation. This is especially true for a tem-
perature of 0.7, which generates better samples on all mod-
els. A similar temperature was found to have better perfor-
mance in the original GLOW paper. In Figures 2 and 3 we
can also see that the distilled models produce significantly
higher quality samples than the non-distilled student mod-
els. We show the resultant FID scores for these different
temperatures in Table 6. We note here the significant im-
provements

Table 6. CelebA FID values of images obtained by interpolation
in the latent space of trained models.

FID
temp 1.0 temp 0.7

Student 40.159 28.432
ILKD Student 28.413 19.688
Teacher 19.062 16.382

5. Conclusion

In this work, we demonstrated a novel methods for normal-
izing flow knowledge distillation, taking advantage of their
unique properties. We demonstrated that on a variety of dif-
ferent types of datasets that the methods significantly im-
prove the performance of every flow, greatly decreasing the
sampling quality gap between teacher and student flows.

Compared to other distillation methods, ours utilize the
unique properties of the normalizing flows’ invertibility for
better quality and performance. This allows for high qual-
ity students to be trained in a simple and efficient manner
with minimal loss to sampling performance. Additionally,
the resulting probability properties of a distilled flow are
kept, making our method a straightforward application to
normalizing flow distillation.
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[34] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew W. Senior, and Koray Kavukcuoglu. Wavenet: A gen-

3345



erative model for raw audio. CoRR, abs/1609.03499, 2016.
1

[35] Lucas D. Young, Fitsum A. Reda, Rakesh Ranjan, Jon Mor-
ton, Jun Hu, Yazhu Ling, Xiaoyu Xiang, David Liu, and
Vikas Chandra. Feature-align network with knowledge dis-
tillation for efficient denoising, 2021. 5

[36] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017. 5

3346


	Introduction
	Related Work
	Normalizing Flows
	GLOW
	Masked Autoregressive Flow

	Knowledge Transfer and Distillation
	Probability Density Distillation

	Method
	Latent Knowledge Distillation
	Intermediate Latent Knowledge Distillation
	Synthesized Knowledge Distillation
	Flow Distillation

	Experiments
	Models
	Tabular data
	Image data
	Latent Space Corruption

	Conclusion

