Dual Precision Quantization for Efficient and Accurate Deep Neural Networks
Inference

Supplementary Material

6. Group Aware Reordering (GAR) - more de-
tails

In this section, we extend the description of the GAR
method. We consider the W4A16 scheme, i.e., when
weights are quantized and stored in 4 bits, and computa-
tion is performed in BF16. The same rationale also applies
to the W4A8 scheme discussed in this paper. We begin by
revisiting the quantization and dequantization process un-
der the GPTQ algorithm when using per-group scaling and
zero-point. We then explain the rationale behind activation
reordering, followed by a discussion on why unconstrained
reordering introduces inference-time overhead. Finally, we
present the proposed GAR method and explain how it im-
proves accuracy without incurring any inference overhead.

6.1. Scales and Zero-Points Computation

We start by describing the computation of per-group scales
and zero-points in the GPTQ quantization algorithm [12].
GPTQ operates iteratively, as described in Sec. 3.1. While
GPTQ is applied independently to all weights in the col-
umn, we describe it for some row ¢ for clarity. The algo-
rithm begins by computing the per-group scale and zero-
point, s! and z%!, for converting weights of the first group
from BF16 to INT4. These values are computed once at the
beginning of the group quantization phase, using Eq. (1).

Once s*! and z"! are computed, the first weight in the
group, wh! is quantized to INT4 and then dequantized to
BF16 using Eq. (14). The quantization error with respect to
the original BF16 weight is then calculated and distributed
to the remaining unprocessed weights in the same row (i.e.,
from left to right), following Eq. (12). This process is then
repeated for the second group, with a new set of parameters
552,252 and so on for each subsequent group. At the end
of the quantization process, each group of weights has its
own scale and zero-point, as shown in Fig. 5, and the tensor
is stored in its 4-bit representation, denoted by Wj.

At inference time, the stored 4-bit integer weights are
loaded, and each group is dequantized to its 16-bit repre-
sentation using the formula:

Wi = (Wy9 —219) . s19. (14)

Since each scale and zero-point corresponds to a group of
consecutive weights in the weight tensor, the dequantiza-
tion for an entire group can be efficiently performed using a
single multiplication and subtraction operation, leveraging
vectorized computation.

51,1’ Zl,l | 51,2’ 21,2 | 51,3‘ Zl,3
W11 Wiz Wiz Wig Wis Wiyg
s21 721 1 522 722 1 523, 723
W21 Wpp | W23 Wy [Wos5 ' Wpg
§31 z31 | §32 732 | §33, 733
lW31 W321 ' W33 " W3y }.3/\/35 W3e }
Y : Y : Y
group 1 group 2 group 3

Figure 5. An illustration of per-group scale and zero-point. In
this example, the weight tensor is divided into three groups, each
containing two weights (i.e., a group size of 2).

6.2. Activation Reordering

We next describe the rationale behind activation reordering,
its effect on the scaling factors and zero-points, and why
this scheme results in inference-time overhead.

The rationale for activation reordering can be explained
as follows. When using an iterative error compensation
method, as described above and implemented in [12] and
in this paper, it is beneficial to begin by quantizing the most
“important” weights. This is because the quantization error
from the weights at the beginning of the row is propagated
to later weights, which reduces the error for the earlier-
positioned weights. Furthermore, the weights that appear
at the end of the row accumulate more error due to previ-
ous updates, resulting in higher quantization error. Thus,
weights that are quantized earlier will typically incur less
quantization error.

To determine which weights are the most “important”,
we consider the diagonal of the Hessian matrix. These di-
agonal elements reflect the relative significance of different
input features, as they correspond to the second-order sen-
sitivity of the loss with respect to each weight, as explained
intuitively next. Recall that for a linear layer with input
X, the Hessian under our objective in Eq. (5) is given by
XTX. In this case, the diagonal elements of the Hessian
reflect the squared magnitudes of the input features. Con-
sequently, weights associated with larger diagonal values
contribute more significantly to the output. Modifying such
weights has a stronger effect on the model’s behavior, mak-
ing them more critical to quantize accurately.

Combining the above observations that (1) earlier-
quantized weights incur lower error and (2) the most impor-
tant weights are those associated with the largest Hessian
diagonal entries, it is advantageous to reorder the weights
with respect to the Hessian diagonal before the iterative

W11 Wi : Wiz Wiy : Wis Wie
Wa1 Wpa : Wa3 Wypy : Wys Wpg
W31 W3z 1 W33 Wzyg 1 W3z Wg3g

Figure 6. Computing scales and zero-points under full activation
reordering scheme. As can be seen in this example in the top ma-
trix, the third and sixth columns have been reordered to the first
and second columns. Thus during inference, their scale and zero
point need to be fetched from these groups, which are not consec-
utive in memory, and require indexing.

quantization process. Specifically, this is done by permut-
ing the Hessian in descending order with respect to its di-
agonal elements, and then reordering the weight tensor ac-
cordingly. This is precisely the activation reordering tech-
nique proposed in [12]. Empirically, this technique has been
shown to enhance the accuracy of quantized models and is
widely adopted in practice.

However, despite its accuracy benefits, the reordering
technique introduces additional overhead during inference
(i.e., increased latency) as discussed next.

When applying the activation reordering technique, we
first permute the weight tensor and then run the iterative
algorithm as described at the beginning of this section.
Specifically, the scale factors and zero-points are computed
for groups of the permuted weight tensor. At the end of
the process, the weight tensor is re-permuted to its original
order to ensure correct multiplication during inference.

However, after re-permutation, the scale factors and
zero-points are no longer aligned with the weight groups.
That is, each weight in the tensor may now have a different
scale and zero-point, as illustrated in Fig. 6. As a result, the
dequantization in Eq. (14) can no longer be efficiently ap-
plied using a single scalar subtraction and multiplication per
group. Instead, each weight must be individually processed
with its corresponding zero-point and scale factor, increas-
ing the number of operations required during inference and
thereby increasing latency.

6.3. Group Aware Reordering

The proposed GAR method addresses the issue of inference
overhead while still allowing the weight tensor to be re-
ordered based on weight importance, subject to certain con-

Wip Wiz | Wiz Wig | Wis Wie
Wa1 Wp2 : W23 Wpy : Was Wpe
W31 W3zp 1 W33 Wzs | W35 Wgg
\ Y) L Y)

st zi s?, z? s3,23
Wie 14
W26 W24
W36 W34
512,21 51,211
Wi1 " Wiz | Wiz Wig | Wis Wie
Wa1 Woa | Wa3 Wps | Wy Wpg
W31 Wszp : W33 Wazy : W35 Wj3g

Figure 7. Computing scales and zero-points under GAR method.

straints. Specifically, as described in Sec. 3.2, GAR allows
permutations in two ways: (i) within a group, and/or (ii) by
rearranging entire groups, as illustrated in the top panel of
Fig. 7.

This constrained permutation ensures that, after comput-
ing the scales and zero-points for the permuted tensor, each
original group of weights shares the same scale and zero-
point, as shown in the middle panel of Fig. 7. As a result,
when the weight tensor is re-permuted back to its origi-
nal order, the associated scales and zero-points can be re-
permuted accordingly (see the bottom panel of Fig. 7). This
guarantees that each group of weights retains its own scale
and zero-point, allowing Eq. (14) to be efficiently imple-
mented during inference, as in the original scheme without
activation reordering.

Although our method imposes constraints on the acti-
vation order, prior studies have shown that most layers are
dominated by a small number of highly important output ac-
tivations [24, 41]. Therefore, even though our scheme only
allows a partial ordering of activations, it effectively pre-
serves the most significant weights. As a result, we expect
only a small accuracy gap compared to the full reordering
scheme. This hypothesis is supported by our results in Ta-
ble 4. Under both W4A16 and W4AS8 quantization settings,
the GAR method delivers a significant accuracy improve-
ment over the baseline without reordering, while incurring
only a minor accuracy drop relative to the full reordering
approach.

Finally, we note that GAR requires a ranking criterion

to determine which group should be quantized first. In
our experiments, we ranked groups based on the maximum
value of the Hessian diagonal within each group, that is,
we compared the maximum diagonal entry of each group
of weights. Alternative criteria are possible, for example,
ranking groups by the average of the top 10% largest el-
ements before sorting. We leave the exploration of other
ranking strategies for future work.

