
A. Appendix

A.1. Frequency Analysis Results

Reduce model size via frequency analysis As shown
in Fig. 3 and Fig. 5, after the modification, the frequency
spectrum is very close to the trained version of ResNet-50.
The effectiveness of our approach is also illustrated in the
comparison between Fig. 5 and Fig. 6, i.e., the frequency
characteristics are almost the same before and after training
for our modified ResNet-50.
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(b) Layer-wise normalized spectrum

Figure 5. Layer-wise frequency spectrum of our modified ResNet-50 before
training. As shown, compared to Fig. 2, many blocks are diverging from
each other; it is very close to the trained ResNet-50 (see Fig. 3). The color-
map, notations, and axes are the same as explained in Fig. 2.
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(b) Layer-wise normalized spectrum

Figure 6. Layer-wise frequency spectrum of our modified ResNet-50 after
training. The color-map, notations, and axes are the same as explained in
Fig. 2.

Why ConvNeXt works well? In our analysis, we observe
that ConvNeXt shows a unique characteristic in its frequency
domain representations, which is notably similar to that of
Vision Transformers (ViTs). This similarity lies in how both
architectures manage to capture a wide range of frequencies
effectively (see Fig. 7 and Fig. 8). ConvNeXt, although fun-
damentally a CNN, incorporates strategies that allow it to
handle global contexts and long-range dependencies, akin
to the mechanisms in ViTs, especially in terms of scale in
the normalized energy of the highest frequency. This is
reflected in the frequency analysis where ConvNeXt demon-
strates enhanced capabilities in processing both high and
low-frequency features compared to traditional CNNs.
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(b) Layer-wise normalized spectrum

Figure 7. Layer-wise frequency spectrum of ConvNeXt-T after training.
The color-map, notations, and axes are the same as explained in Fig. 2.
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(b) Layer-wise normalized spectrum

Figure 8. Layer-wise frequency spectrum of Swin-T after training. The
color-map, notations, and axes are the same as explained in Fig. 2.



A.2. Supplementary Comparison Between Con-
vNeXt And Swin

In this section, we plot the frequency spectrum of ConvNeXt
and Swin Transformer before training. As shown in Fig. 9
and Fig. 10. The frequency property of these two networks
are quite different without training. However, as shown in
the main paper, the frequency property is much more similar
to each other after training (cf. Section A.1), especially in
terms of the scale in the log-amplitude figures. This shows
that these two networks are learning very similar information
in frequency domain since the training dataset and task here
are identical.
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(b) Layer-wise normalized spectrum

Figure 9. Layer-wise frequency spectrum of ConvNeXt-T before
training. As shown, many blocks are overlapping with each other;
this is the reason why we only see four lines on the right figure.
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(b) Layer-wise normalized spectrum

Figure 10. Layer-wise frequency spectrum of Swin-T before train-
ing. As shown, all blocks are almost overlapping with each other.



A.3. How Do CNN-GNN Models Compare?
In this section we examine the layer-wise frequency spec-
trum of a CNN-GNN based model, namely MobileViG-B.
The layer-wise frequency spectrum of MobileViG-B before
and after training is shown in Figures 11 and 12. In the
layer-wise frequency spectrum we can see that after train-
ing, the frequency domain representations of MobileViG
are similar to that of ViTs and ConvNeXt. MobileViG, like
ConvNeXt is able to capture a wide range of frequencies.
Since MobileViG is a CNN-GNN based framework it is able
to handle global object interactions, similar to ViTs. Thus,
MobileViG’s strong performance can be attributed in part to
its ability to process both high and low-frequency features
better than standard CNN based models.
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(b) Layer-wise normalized spectrum

Figure 11. Layer-wise frequency spectrum of MobileViG-B before
training.
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(b) Layer-wise normalized spectrum

Figure 12. Layer-wise frequency spectrum of MobileViG-B after
training.



A.4. Relating SNR to Log Loss
Suppose that z is the set of true labels and ẑ the predicted
probability of the true label being one determined by some
optimized process. We define the Log Loss function as
follows in Equation 20.

Log Loss = − 1

N

N∑
i=1

zilog(ẑi)+(1−zi)log(1− ẑi) (20)

Where zi is the ith image’s true label and ẑi is the ith
image’s predicted probability. Given a single image zi, its
loss can be expressed as a piecewise function.

Log Losszi =

{
−log(1− ẑi) zi = 0

−log(ẑi) zi = 1
(21)

Furthermore, we define the error or noise between the
true label and the predicted probability as follows:

ϵ = |zi − ẑi| (22)

Which can be expanded into Equation 23 as ẑi ∈ [0, 1]

ϵ =

{
ẑi zi = 0

1− ẑi zi = 1
(23)

Then, the SNR of the predicted probability ẑi of a single
image can be expressed in Equation 24.

SNRẑi =


E[(1−zi)

2]
E[ϵ2] zi = 0

E[z2
i ]

E[ϵ2] zi = 1

(24)

Which can be simplified as

SNRẑi =
1

E[ϵ2]
(25)

Therefore, when ϵ is large, SNR is small and vice versa.
Next, we substitute ϵ from Equation 23 into Equation 21 to
demonstrate the relationship between SNR and Log Loss.
Note that, for both cases zi = 0, 1 the equation is identical.

Log Losszi = −log(1− ϵ) (26)

When ϵ is large, the log loss diverges toward infinity.
Conversely, when ϵ is 0, the log loss is zero.

From Equation 25, 26 it is clear that SNR and Log Loss
are inversely, but not directly, correlated. That is, a high
SNR indicates a low Log Loss and vice versa. While we
only prove the relationship between SNR and Binary Log
Loss, these steps can be easily used to generalize on multi-
class log loss models with N > 2 number of classes.



A.5. Cifar-100 Image Classification Results
We conduct image classification experiments on the Cifar-
100 [19] dataset, training from scratch for 200 epochs. We
report the top-1 accuracy on the test set. We implement
all models using PyTorch [39] and the Timm library [53].
We use the AdamW [28] optimizer with a cosine annealing
schedule.

When testing on Cifar-100 (Table 3), ConvNeXt-T modi-
fied sees a gain of 0.9% in accuracy when the channel width
is cut and the depth is increased to maintain a similar number
of parameters. For Swin-T [26], we only see an increase
in accuracy of 0.1% when cutting the channel width and
increasing the depth to maintain a similar number of parame-
ters. For MobileViG-Ti, when we cut the channel width and
increase the depth, we see an increase in accuracy of 0.8%
on the Cifar-100 dataset as well.



Table 3. Results of ConvNeXt, Swin Transformer, ResNet-50, and MobileViG on Cifar-100 image classification task. Type indicates whether
the model is CNN-based, ViT-based, or CNN-GNN-based. Params lists the number of model parameters in millions. Note that the number
of parameters are slightly different for Cifar-100 as the classification head is for 100 classes, not 1000 classes like in ImageNet-1k.

Model Modifications Type Params Top-1 (%)
ResNet-50 [13] None CNN 23.7 80.9

ResNet-50 Modified [13] Channel Width Decreased CNN 21.6 80.8
ConvNeXt-T [27] None CNN 28 82.5

ConvNeXt-T Modified Small [27] Channel Width Decreased CNN 12.5 81.8
ConvNeXt-T Modified [27] Width Decreased, Depth Increased CNN 28 83.4

MobileViG-Ti [32] None CNN-GNN 4.3 80.2
MobileViG-Ti Modified [32] Width Decreased, Depth Increased CNN-GNN 4.6 81.0

GreedyViG-S [33] None CNN-GNN 10.5 83.8
GreedyViG-S Modified [33] Width Decreased, Depth Increased CNN-GNN 11.1 84.2

Swin-T [26] None ViT 28 74.9
Swin-T Modified Small [26] Channel Width Decreased ViT 12.3 72.1

Swin-T Modified [26] Width Decreased, Depth Increased ViT 28 75.0



A.6. Cifar-10 Image Classification Results
We conduct image classification experiments on the Cifar-10
[19] dataset, training from scratch for 200 epochs. The Cifar-
10 dataset consists of 10 object classes with 50K training
images and 10K test images. We report the top-1 accuracy on
the test set. We implement all of the models using PyTorch
[39] and the Timm library [53]. We use the AdamW [28]
optimizer with a cosine annealing schedule.

When testing on Cifar-10 in Table 4, we see an improve-
ment in accuracy of 0.6% on MobileViG-Ti [32] when de-
creasing the channel width and increasing the depth of the
network. When we decrease the channel width of ConvNeXt-
T [27], we see a significant decrease in parameters from 28
million to 12.5 million, but a much smaller decrease in accu-
racy of only 0.3%. For the modified Swin-T [26], we also
see a large decrease in parameters, but a small decrease in
accuracy of 0.5%. Overall the results on Cifar-10 also show
we can decrease model size while maintaining accuracy or
improve accuracy while maintaining a similar number of
parameters.

Table 4. Results of ConvNeXt, Swin Transformer, ResNet-50, and
MobileViG on Cifar-10 image classification task. Type indicates
whether the model is CNN-based, ViT-based, or CNN-GNN-based.
Params lists the number of model parameters in millions. Note that
parameter counts are slightly different for Cifar-10 as the classifica-
tion head is for 10 classes, not 1000 classes like in ImageNet-1k.

Model Type Params (M) Top-1 Acc (%)

ConvNeXt-T [27] CNN 28 97.1
ConvNeXt-T Modified [27] CNN 12.5 96.8

MobileViG-Ti [32] CNN-GNN 4.3 95.6
MobileViG-Ti Modified [32] CNN-GNN 4.6 96.2

GreedyViG-S [33] CNN-GNN 10.5 96.7
GreedyViG-S Modified [33] CNN-GNN 11.0 96.9

Swin-T [26] ViT 28 91.1
Swin-T Modified [26] ViT 12.3 90.6



A.7. Medical Image Classification Results
We perform experiments in medical image classification on
two datasets, OrganSMNIST and DermaMNIST, which are
part of the MedMNIST benchmark [55]. OrganSMNIST
consists of 11 organs with 13,932 training and 2,452 val-
idation abdominal CT images. DermaMNIST consists of
7 skin lesion classes with 7,007 training and 1,003 valida-
tion Dermatoscope images. We implement all of the models
using Pytorch and Timm library. We train all the models
from scratch for 200 epochs using AdamW optimizer with
a cosine annealing schedule. We report the average top-1
accuracy on validation images.

When testing on medical image classification on Or-
ganSMNIST [55] in Table 5, we see an improvement in
accuracy of 0.4% when we modify the channel width of
ResNet-50. When we modify ConvNeXt-T [27], we see a
significant decrease in parameters from 28 million to 12.5
million and an accuracy increase of 0.6%. For Swin-T [26],
we also see a large decrease in parameters and an increase
in accuracy of 0.5%. Overall the results on OrganSMNIST
also show we can decrease model size while maintaining
accuracy or improve accuracy while maintaining a similar
number of parameters.

Table 5. Results of ConvNeXt, Swin Transformer, MobileViG, and
ResNet-50 on OrganSMNIST [55] medical image classification
task. Type indicates whether the model is CNN-based, ViT-based,
or CNN-GNN-based. Params lists the number of model parameters
in millions. Note that parameter counts are slightly different for
OrganSMNIST as the classification head is for 11 classes, not 1000
classes like in ImageNet-1k.

Model Type Params (M) Top-1 Acc (%)

ResNet-50 [13] CNN 23.7 92.6
ResNet-50 Modified [13] CNN 21.6 93.0

ConvNeXt-T [27] CNN 28 91.6
ConvNeXt-T Modified [27] CNN 12.5 92.2

MobileViG-Ti [32] CNN-GNN 4.3 90.7
MobileViG-Ti Modified [32] CNN-GNN 4.6 91.4

GreedyViG-S [33] CNN-GNN 10.5 91.6
GreedyViG-S Modified [33] CNN-GNN 11.0 92.4

Swin-T [26] ViT 28 91.7
Swin-T Modified [26] ViT 12.3 92.2

When testing on medical image classification on Der-
maMNIST [55] in Table 6, we see an improvement in accu-
racy of 1.0% when we modify the channel width of ResNet-
50. When we modify ConvNeXt-T [27], we see a significant
decrease in parameters from 28 million to 12.5 million and
an accuracy increase of 1.1%. For Swin-T [26], we also see
a large decrease in the number of parameters by 15.7 million,
but a decrease in accuracy of 0.7%. Overall the results on
DermaMNIST show we can decrease model size while main-

taining accuracy or improve accuracy while maintaining a
similar number of parameters. The results on DermaMNIST,
like OrganSMNIST, further exemplify that some of the larger
networks overfit compared to the networks with their channel
width reduced. The results on OrganSMNIST and DermaM-
NIST further demonstrate the benefits of altering network
width and depth based on frequency analysis.

Table 6. Results of ConvNeXt, Swin Transformer, MobileViG,
and ResNet-50 on DermaMNIST [55] medical image classification
task. Type indicates whether the model is CNN-based, ViT-based,
or CNN-GNN-based. Params lists the number of model parameters
in millions. Note that parameter counts are slightly different for
DermaMNIST as the classification head is for 7 classes, not 1000
classes like in ImageNet-1k.

Model Type Params (M) Top-1 Acc (%)

ResNet-50 [13] CNN 23.7 76.1
ResNet-50 Modified [13] CNN 21.6 77.1

ConvNeXt-T [27] CNN 28 78.1
ConvNeXt-T Modified [27] CNN 12.5 79.2

MobileViG-Ti [32] CNN-GNN 4.3 75.4
MobileViG-Ti Modified [32] CNN-GNN 4.6 75.9

GreedyViG-S [33] CNN-GNN 10.5 76.0
GreedyViG-S Modified [33] CNN-GNN 11 76.3

Swin-T [26] ViT 28 80.0
Swin-T Modified [26] ViT 12.3 79.3


