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Supplementary Material

In the supplementary material we provide extra results
for the speedup of different methods in Sec. 6.1, com-
parisons to other token reduction strategies for increas-
ing/decreasing schedules in Sec. 6.2, and confusion ma-
trices for ViViT in Sec. 6.4. We also provide information
on training hyperparameters (for finetuning where it was
required) in Sec. 7 and many more qualitative figures in
Sec. 8 including extra merging examples, visualisations
of layer decisions, and tests of semantic merging.

6. Additional Quantitative Results

In this section, we introduce extra results that we were
not able to include in the main paper. We provide fur-
ther scaling curves, results tables and confusion matrices
on Kinetics-400 (K400) [16], Something-Something v2
(SSv2) [12] and EPIC-KITCHENS-100 (EK-100) [9].

6.1. Throughput Curve

Figure 9. Curve corresponding to image throughput with
ViViT and VideoMAE on K400 when increasing r (the number
of tokens merged) up to its limit. The x-axis is the percentage
(relative to the original total) of tokens dropped per layer.

With Fig. 9, we plot the throughput (in terms of im-
ages per second) of ViViT and VideoMAE on K400
for the constant, decreasing and increasing schedules.
The increasing schedules introduce significantly slower
speedups, showing that even with maximum merging per
layer, it’s only possible to introduce a speedup of roughly
2.5X. At the same proportion of merging, the decreas-
ing and constant schedules meet at the same endpoints,
achieving roughly 7X for VideoMAE and 8X for ViViT.

6.2. Analysis of Increasing/Decreasing Schedules

In Tab. 2, we have a table of results comparing reduction
strategies for the decreasing schedule, using the same
r value as in the main paper. Comparing across re-
duction strategies, we see that biasing merging towards
the earlier layers is resulting in attention based dropout
performing better than token merging for TimeSformer,
Motionformer and VideoMAE. Random merging is es-
sentially unuseable in this scenario, with accuracies ap-
proaching random performance in most metrics. Next,
we directly compare the upper bound accuracy of the
original models to those implementing a decreasing
merging schedule. All models display large drops in
accuracy, with VideoMAE in particular dropping by al-
most 50% on K400, 30% on SSv2 and 45% on EK-
100. We’ve demonstrated that early transformer layers
make merging decisions that do not correspond to vi-
sual segmentations (see Sec. 8 for more examples), sug-
gesting that biasing merging towards earlier layers may
introduce merging that quickly obfuscates visual fea-
tures. ViViT retains more accuracy, especially on EK-
100, where it drops by roughly 5% across the different
label types. Looking to the speedup gained, we see that
the throughput has been increased significantly to a 4X
speedup, from the 2.5X speedup that the constant sched-
ule demonstrates in the main paper. From this table, we
can determine that a lower r value is required for the
decreasing schedule, otherwise merging begins to be es-
pecially detrimental for models other than ViViT.

Table 3 conducts the same experiments for the in-
creasing schedule. Interestingly, across all models and

datasets, token merging is outperforming other reduc-
tion strategies and random merging remains the worst
strategy. The action and noun accuracies on ViViT are
actually improved a small amount by token merging,
which suggests that merging tokens well in the later lay-
ers might refine video features slightly. Comparing the
upper bound model accuracy with the merged counter-
parts, we see smaller drops in accuracy than in Tab. 2.
For the divided space-time models, the accuracy on the
temporally sensitive datasets (SSv2 and EK-100 verb ac-
curacy) still demonstrate significant drops, showing that
even when biasing merging towards the later layers, the
models’ ability to fuse temporal information is being
hindered. ViViT and VideoMAE demonstrate drops in
accuracy of no more than 2% across all datasets, while
gaining a speedup of roughly 1.6X, indicating that an in-
creasing schedule is an extremely “safe” option for these
models, minimising accuracy trade-off. We have demon-



EK-100 SpeedupModel r Reduction K400 SSv2 Action Verb Noun FPS (X)
0 - 76.63 50.66 31.32 55.48 47.23 117.78 1.00

random drop 28.38 9.80 1.38 18.68 6.12 361.01 3.07
drop 30.41 11.23 1.68 19.45 6.36 359.59 3.05

random merge 3.32 1.72 0.85 17.07 2.76 354.71 3.01
TimeSformer [2] 18 → 8

merge 25.26 9.22 1.39 19.90 5.80 360.33 3.06
0 - 70.50 61.39 35.02 61.09 46.72 99.79 1.00

random drop 46.27 20.68 8.31 31.58 17.10 331.00 3.32
drop 48.53 21.66 10.14 33.70 19.47 329.94 3.31

random merge 17.12 6.24 1.58 22.23 5.35 328.19 3.29
Motionformer [26] 18 → 8

merge 50.64 21.73 8.91 33.18 18.05 334.57 3.35
0 - 62.09 64.58 35.70 61.49 46.89 186.72 1.00

random drop 20.48 24.17 10.24 34.93 17.56 748.05 4.01
drop 23.08 31.30 11.99 37.91 19.86 747.32 4.00

random merge 1.04 2.99 0.57 14.60 2.11 735.87 3.94
VideoMAE [30] 150

merge 20.82 33.34 10.88 36.31 18.06 742.91 3.98
0 - 63.43 50.63 35.82 58.19 51.59 106.00 1.00

random drop 42.71 29.58 13.16 37.33 25.11 436.39 4.12
drop 43.94 32.30 14.92 38.93 28.69 433.73 4.09

random merge 2.67 2.03 0.73 17.64 4.14 432.76 4.08
ViViT [1] 300

merge 57.01 43.80 23.78 48.79 37.55 439.26 4.14

Table 2. Performance of token merging with a decreasing schedule when compared to alternative methods of reducing token
sequence length. Bold indicates the reduction methods that achieve highest accuracy on a given dataset. Grey rows correspond to
the upper bound accuracy of the original model.

EK-100 SpeedupModel r Reduction K400 SSv2 Action Verb Noun FPS (X)
0 - 76.63 50.66 31.32 55.48 47.23 117.78 1.00

random drop 72.36 22.03 19.36 40.29 37.73 163.89 1.39
drop 72.72 27.54 21.98 43.78 39.88 166.17 1.41

random merge 65.96 16.27 14.63 37.46 28.75 163.91 1.39
TimeSformer [2] 18 → 8

merge 74.24 28.91 23.28 45.23 41.56 163.97 1.39
0 - 70.50 61.39 35.02 61.09 46.72 99.79 1.00

random drop 67.79 31.07 20.06 43.29 35.62 142.05 1.42
drop 67.56 31.74 22.60 46.28 38.36 143.44 1.44

random merge 64.86 30.06 18.04 41.54 32.37 142.56 1.43
Motionformer [26] 18 → 8

merge 68.00 32.98 22.91 46.39 38.73 141.77 1.42
0 - 62.09 64.58 35.70 61.49 46.89 186.72 1.00

random drop 60.09 62.53 33.15 59.70 44.41 312.60 1.67
drop 60.44 63.59 34.35 60.56 45.85 319.38 1.71

random merge 48.32 55.00 22.91 50.56 33.15 316.12 1.69
VideoMAE [30] 150

merge 60.43 63.66 34.34 60.28 45.24 311.66 1.67
0 - 63.43 50.63 35.82 58.19 51.59 106.00 1.00

random drop 62.53 49.59 34.15 57.04 49.63 165.18 1.56
drop 60.32 48.11 32.87 55.39 49.61 165.59 1.56

random merge 51.94 37.41 21.25 6.33 36.07 164.64 1.55
ViViT [1] 300

merge 63.18 50.52 35.86 57.99 51.69 164.13 1.55

Table 3. Performance of token merging with an increasing schedule when compared to alternative methods of reducing token
sequence length. Bold indicates the reduction methods that achieve highest accuracy on a given dataset. Grey rows correspond to
the upper bound accuracy of the original model.



EK-100Model r t Reduction K400 SSv2 Action Verb Noun
0 - - 62.09 64.58 35.70 61.49 46.89

- merge 56.10 61.10 31.27 58.00 42.39VideoMAE [30] 150 0.8 hybrid 56.53 61.04 31.62 57.90 42.88

0 - - 63.43 50.63 35.82 58.19 51.59
- merge 63.08 50.15 35.11 57.24 51.33ViViT [1] 300 0.4 hybrid 63.09 50.15 35.21 57.48 51.30

Table 4. Performance of hybrid token merging with an increasing schedule when compared to vanilla token merging. Bold indicates
the reduction methods that achieve highest accuracy on a given dataset. Grey rows correspond to the upper bound accuracy of the
original model.

strated that with an increasing schedule and a reasonable
r value, token merging is the reduction strategy that pre-
serves accuracy the best.

6.3. Hybrid Merging

The final merged tokens are typically visually distinct
clusters of image patches, a characteristic that can be
observed in many qualitative examples in Sec. 8. One
obvious limitation of the token merging [4] scheme is
that it isn’t adaptive in the sense that tokens are forced to
merge if their pairwise similarity is one of the r largest.
Towards the tail end of the merging process, different
tokens become more visually dissimilar, as the clusters
become saturated. We assume that merging these dis-
similar tokens is destructive for performance, which we
derive from the fact that random dropout is much prefer-
able to random merging in Sec. 4.3.

To determine whether this phenomenon presents it-
self in vanilla token merging and attempt to alleviate
it, we experiment with a hybrid scheme of dropout and
merging. We a define a threshold t, where a token in
the top r pairs is dropped instead of merged if the sim-
ilarity is lower than t. Using this strategy, the model
can adaptively merge/drop tokens, ensuring that merg-
ing only happens when token pairs are similar past a
set threshold. In Tab. 4, we have the results of an ex-
periment applying hybrid merging to ViViT and Video-
MAE, after ablating the threshold against EK-100 to find
an optimal value. Generally, these results highlight very
similar performance to vanilla token merging, with the
models showing consistent but small improvements on
K400 and EK-100. Though marginal, these results in-
dicate that it may be possible to develop stronger rep-
resentations of token sequences with a combination of
both dropout and merging.

6.4. ViViT Confusion Matrices

To investigate the errors introduced by merging with
ViViT, we plot confusion matrices for the most frequent
10 verb and noun classes in EK-100. In Fig. 10 we
have the difference in performance between a model

with and a model without token merging. We can see
a somewhat similar trend to the same figure produced
for VideoMAE, with less predictions being introduced
in the diagonal and more predictions elsewhere, though
the model is clearly more resilient to confusion. For the
verbs in Fig. 10 (left), we see that the model does not
collapse towards the “take” and “put” classes. In fact,
the largest change in performance sees “turn-off” being
misclassified as “turn-on”. These verbs are essentially
the same action with slightly different context, suggest-
ing that merging causes confusion among visually sim-
ilar actions. Most of the nouns in Fig. 10 (right) do not
shift significantly, however small objects like “spoon”,
“knife” and “sponge” are increasingly misclassified. As
well as this, “sponge” is confused with “tap” particularly
often. This again suggests that the features of small ob-
jects are the first to be lost by merging tokens.

7. Training Hyperparameters

As we’ve mentioned in the main paper, due to the fact
that TimeSformer, VideoMAE and ViViT did not have
freely available checkpoints for EK-100 online, we were
required to finetune our own checkpoints for evaluation.
In Tab. 5, we have an overview of the hyperparame-
ters we used. These have been adapted (with as few
changes as possible) from [1, 2, 30]. For TimeSformer,
the learning rate is multiplied by 1, 0.1 and 0.01, at the
first, twelfth and last epochs respectively. We do not use
Mixup [36] when finetuning.

8. Qualitative Examples

Here we collect a range of qualitative examples that fur-
ther our claims made in the main paper. To gather these,
we generated visualisations at random and then kept a
mixture of simple cases where (video subjects can be
easily tracked across all frames) and more complex cases
(where motion blur, occlusions or totally new subjects
are introduced mid video).

First, we include a visualisation of tokens merging
through a K400 clip in Fig. 11, where tokens of interest



Figure 10. Impact on confusion matrices from Token Merging a ViViT model. The first 10 verb and noun classes are displayed left
and right respectively from ViViT on EK-100. Red indicates less predictions and blue indicates more predictions.

TimeSformer VideoMAE ViViT
Batch size 128 128 64

Gradient accumulation steps 1 1 1
Base learning rate 5e-3 1e-3 1e-2

Learning rate policy Step with relative LRs Cosine with cosine warmup Cosine with cosine warmup
Warmup learning rate - 0 0

Warmup epochs - 5.0 2.5
Epochs 15 50 50

Optimiser SGD AdamW SGD
Momentum 0.9 0.9 0.9

Table 5. Hyperparameters used to train TimeSformer, VideoMAE and ViViT checkpoints with four H100 GPUs [24], used to
evaluate merging on EK-100. Where possible we tried to reproduce the setup used in the original works.

have been numbered like in the main paper. In Fig. 11b,
we have the final merged tokens for an example of “con-
tact juggling”. The bright blue ball is well captured
across the entire clip by token 1, with the darker blue ball
being captured by token 2. Notably, token 2 is tracked
rotating clockwise around token 1. Tokens 3 and 4 rep-
resent the wall behind the right of the person, though
the left side of the wall is not well merged, likely due
to there being no common texture. In this case, video
token merging is capable of tracking visually similar ob-
jects through all frames of the clip.

Next, we explore merging visualisations generated
by both VideoMAE and ViViT. Firstly, from Fig. 12
to Fig. 16 we present visualisations of final merged to-
kens for K400, SSv2 and EK-100 respectively. Inter-
estingly, in EK-100 examples exhibiting lots of head
movement and motion blur, VideoMAE appears to han-
dle these cases better by producing clearer segmenta-
tions of the clip. When hands are present near the centre

of the frame, both models are capable of differentiating
this from the objects the participant is interacting with.

Secondly, in Fig. 17 and Fig. 18 we collect more ex-
amples of the differences in merging outcomes for the
first and last layers of the models. We note differences
between how ViViT and VideoMAE merge tokens in the
first layers, with VideoMAE creating large clusters with
little consideration across frames, suggesting a spatial
focus. Notably, the tokens tend to be divided into an
upper and lower half, which could possibly be due to
the distribution of foreground and background in EK-
100, where the top of the frame will usually portray
kitchen background and the bottom of the frame will
typically contain interacting objects. On the other hand,
ViViT tends to merge tokens across many frames within
the first layer, yet these do not tend to occur around
objects/distinguishable parts of the frame(s). Compar-
atively, the behaviour for the final layers (across both
models) displays the merging of tokens around objects



(a) Original clip.

(b) Merged clip.

Figure 11. Visualisation of the final merged tokens for a K400 clip of “contact juggling”, produced with VideoMAE. Token 1 tracks
the bright blue ball, while token 2 tracks the darker ball rotating it.

in the scene and background.
Finally, in Fig. 19 and Fig. 20 we generate more ex-

amples of clips where frames from the most “similar”
clip in EK-100 have been spliced in, to demonstrate the
lack of semantic merging. In these cases, we have given
the model the fairest chance by picking examples that
also appear similar to the human eye. Much of the exam-
ples appear to demonstrate that the model is only merg-
ing within either the original clip or the spliced in clip,
not between them. There appear to be some examples
for which the participants’ hands are merged between
the spliced frames, likely due to the fact that there are
few possible visual differences for these tokens. As dis-
cussed in the main paper, there is little to no evidence of
the token merging process occurring between semanti-
cally relevant tokens, instead the token merging process
is predominantly visual.



Figure 12. Visualisations of the final merged tokens for K400 clips, produced with VideoMAE.



Figure 13. Visualisations of the final merged tokens for K400 clips, produced with ViViT.



Figure 14. Visualisations of the final merged tokens for SSv2 clips, produced with ViViT.



Figure 15. Visualisations of the final merged tokens for EK-100 clips, produced with VideoMAE.



Figure 16. Visualisations of the final merged tokens for EK-100 clips, produced with ViViT.



Figure 17. Visualisations of the difference in merging decisions made in layer 1 versus layer 12, produced with VideoMAE.



Figure 18. Visualisations of the difference in merging decisions made in layer 1 versus layer 12, produced with ViViT.



Figure 19. Merging outcomes for clips that have had half their frames from the most “similar” clip in the same noun class spliced
in, produced with VideoMAE.



Figure 20. Merging outcomes for clips that have had half their frames from the most “similar” clip in the same noun class spliced
in, produced with ViViT.
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