
Appendix: Efficient Image Generation with Variadic Attention Heads

A. Appendix
In our Appendix we cover issues of reproducibility and fo-
cus on image analysis which requires visually inspecting
figures. All images are embedded using vector graphics, to
allow the reader to zoom in, but note that the source images
are not vectored. To organize our Appendix we first include
sections to make our work reproducible. Appendix B covers
the model architecture, Appendix C includes important de-
tails about the parameters and throughput measurements, in
Appendix D we have a small discussion on the limitations of
metrics to help clarify the motivation for our visual analysis,
which is coverend in Appendix E. The visual analysis in-
cludes a discussion of the attention maps (Appendix F), in-
cluding maps at multiple resolutions for both StyleNAT and
StyleSwin, and for both FFHQ (Appendices F.1.1 and F.1.2)
and Church (Appendices F.2.1 and F.2.2) datasets.

B. Model Architecture

Level Kernel Size Dilation Dilated Size
4 - - -
8 7 1 7

16 7 2 14
32 7 4 28
64 7 8 56
128 7 16 112
256 7 32 224
512 7 64 448
1024 7 128 896

Table A1. StyleNAT 2-Partition Model Architecture. First level
uses Multi-headed Self Attention and not DiNA. This model is
used for all FFHQ results, at all resolutions.

Figure 4 includes a depiction of the first 2 resolution lev-
els of the StyleNAT architecture. At each resolution we use
N = 2 transformer blocks, but this is configurable for scale
For all experiments the layers have the same attention pa-
rameters, but there is nothing preventing one from making
these distinct. Similarly, we use a constant kernel (window),
k, size of 7. In all experiments we use a combination of no
dilation (1) to create local dense windowing, and larger but
more sparse receptive fields (dilation > 1). There are no re-

Level Kernel Size Dilations
4 - -
8 7 1

16 7 1,2
32 7 1,2,4
64 7 1,2,4,8
128 7 1,2,4,8,16
256 7 1,2,4,8,16,32
512 7 1,2,4,8,16,32,64
1024 7 1,2,4,8,16,32,64,128

Table A2. Example of progressive dilation with 8 heads minimum,
referred to “pyramid dilation.”

strictions in the architecture that require this, but we felt that
these choices would be most clear in demonstrating the ef-
fectiveness of our work, due to the closeness to StyleSwin’s
kernel size of 8.

We include Table A1 and Table A2 which show the pa-
rameters for the “split head” experiments and the progres-
sive, or “pyramid dilation”, used in the ablation study for
LSUN Church experiments (Table 2). For “pyramid dila-
tion” we always use a growth based on powers of 2, but this
is not a requirement of the architecture.

For our Church experiments we found a more progres-
sive dilation solution to work better. We provide an exam-
ple of our “pyramid” style dilation, wherein we continually
grow progression mixing several levels of dilation.

B.1. Hydra-NA Code
We include some PyTorch code for implementing Hydra-

NA in Figure A1. Note that this code is not optimized and
that all the natten operations could be performed in parallel
for increased performance.

B.2. Other Configurations
The configurations are truly variadic, and allows for a large
number of possible combinations. The primary reason for
our parameter choices was to minimize the compounding
factors in our experiments and minimize the influence of
our parameter choices to the results, compared to our near-
est competitor, and while fitting within our computational
budget.
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class HydraNeighborhoodAttention(nn.Module):
def __init__(self, dim : int, kernel_sizes : list[int], num_heads : int,

qkv_bias : bool=True, qk_scale : Optional[float]=None, attn_drop : float=0.,
proj_drop : float=0., dilations : list[int]=[1]) -> None:

super().__init__()
self.num_splits, self.num_heads = len(kernel_sizes), num_heads
self.kernel_sizes, self.dilations = kernel_sizes, dilations
self.head_dim = dim // self.num_heads
self.scale = qk_scale or self.head_dim ** -0.5
self.window_size = []
for i in range(len(dilations)):

self.window_size.append(self.kernel_sizes[i] * self.dilations[i])
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
if num_heads % len(kernel_sizes) == 0:

self.rpb = nn.ParameterList([nn.Parameter(
torch.zeros(num_heads//self.num_splits, (2*k-1), (2*k-1)))

for k in kernel_sizes])
self.clean_partition = True

else:
diff = num_heads - self.num_splits * (num_heads // self.num_splits)
rpb = [nn.Parameter(torch.zeros(

num_heads//self.num_splits, (2*k-1), (2*k-1)))
for k in kernel_sizes[:-diff]]

for k in kernel_sizes[-diff:]:
rpb.append(nn.Parameter(torch.zeros(

num_heads//self.num_splits + 1, (2*k-1), (2*k-1))
))

self.rpb = nn.ParameterList(rpb)
self.clean_partition = False
self.shapes = [r.shape[0] for r in rpb]

[trunc_normal_(rpb, std=0.02, mean=0.0, a=-2., b=2.) for rpb in self.rpb]
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)

def forward(self, x:torch.Tensor) -> torch.Tensor:
B, H, W, C = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, H, W, 3, self.num_heads, self.head_dim)
q,k, v = qkv.permute(3, 0, 4, 1, 2, 5).chunk(3,dim=0)
q = q.squeeze(0) * self.scale
k,v = k.squeeze(0), v.squeeze(0)
if self.clean_partition:

q = q.chunk(self.num_splits, dim=1)
k = k.chunk(self.num_splits, dim=1)
v = v.chunk(self.num_splits, dim=1)

else:
i, _q, _k, _v = 0, [], [], []
for h in self.shapes:

_q.append(q[:, i:i+h, :, :])
_k.append(k[:, i:i+h, :, :])
_v.append(v[:, i:i+h, :, :])
i = i+h

q, k, v = _q, _k, _v
attention = [natten2dqkrpb(_q, _k, _rpb, _kernel_size, _dilation)

for _q, _k, _rpb, _kernel_size, _dilation in \
zip(q, k, self.rpb, self.kernel_sizes, self.dilations)]

attention = [self.attn_drop(a.softmax(dim=-1)) for a in attention]
x = [natten2dav(_attn, _v, _k, _d) for _attn, _v, _k, _d

in zip(attention, v, self.kernel_sizes, self.dilations)]
x = torch.cat(x, dim=1).permute(0, 2, 3, 1, 4).reshape(B, H, W, C)
return self.proj_drop(self.proj(x))

Figure A1. Full code for StyleNAT’s Hydra-NA module. Type hinting included for added clarity. Requires NATTEN package. Using
NATTEN v0.14.6, subsequent versions may need modifications. Code is unoptimized, intended for research and clarity.



During our exploratory phase, we performed a few
short experiments where we replaced the Swin Attention in
StyleSwin with Hydra-NA. In general we found increased
performance under the conditions that we did not use ker-
nels sized 3 and that we did not use a very large and very
small kernel when replacing the last layer. For example, us-
ing a split head design with one kernel sized 3 and the other
kernel sized 45, both with dilation 1, showed worse perfor-
mance when compared to StyleSwin. But we did find that
there was increased performance if instead we used kernels
size 45 for both partitions. The trade-off is that the larger
kernels requires significantly more GPU memory and com-
putation time. For example, while StyleSwin would utilize
≈ 36 GB of DRAM per GPU, when using a kernel size of
45 we used ≈ 76GB of DRAM per GPU and approximately
6x wall time (measured at a resolution of 1k iterations). Our
final StyleNAT architecture uses slightly less DRAM than
StyleSwin and ≈ 30s more per 1k iterations. Note that these
DRAM requirements are not due exclusively to the model
itself but these also include the EMA model, batch images,
pre-fetches, and other such additional data that may be in-
cluded when training. We show some results in Table A3,
comparing to our training of StyleSwin and include com-
parisons with our final StyleNAT result. These results give
evidence that the model can scale and that its performance
may be proportional to the effective computation. These
runs were never taken to convergence and thus we believe
such experiments would be worthwhile, but are outside the
compute budgets of our lab. We also performed similar re-
placement experiments with other resolution levels, but did
not explore larger kernels. Without dilation we still found
incremental improvements over StyleSwin.

kernel size 10k 25k 50k
StyleSwin 84.63 29.89 18.85

3/45 85.17 31.95 22.25
7/45 86.32 41.15 25.66

45/45 68.65 28.36 17.95
StyleNAT 145.57 20.10 10.81

Table A3. FID results, showing effects of replacing last resolution
level’s Swin Attention with a split head NA. First column shows
the kernel sizes. No dilation was used. StyleSwin and StyleNAT
included for comparison.

B.3. Potential Configurations
In this section we discuss the potential configurations for
Hydra-NA. We believe this discussion will help others de-
termine how to optimize this architecture and better under-
stand the potential flexibility of the network. Our hyper-
parmeters were fixed in favor of ensuring higher interoper-
ability of results given compute constraints. Optimization

of the network will require further search, but we demon-
strate that these are reasonable choices to start with. This
discussion will also help practitioners optimize not just for
the final fidelity of the images, but for computational con-
straints, noting that smaller kernels will increase inference
speeds and reduce GPU memory.

Our kernels, k, can range from a size of 3 to the nearest
odd integer smaller than the resolution, R. This means that
there will be R

2 − 1 potential kernels. We can also note
that any kernel sized ≥ R

2 cannot have any dilation without
exceeding the image size1. There are R

4 such kernels. The
max dilation size for a given kernel is

⌊R
k

⌋
. Thus the total

number of configurations, per head, is
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R

2i+ 1

⌋
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R
4

+
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R
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This, of course, is assuming that we are using square ker-
nels, square images, and images with an even number of
pixels. None of these are actual constraints to our formula-
tion, so this could actually double2.

For our FFHQ-256 configuration we have 16 heads
for resolutions 4 × 4 to 64 × 64, 8 heads for resolu-
tion 128 × 128, and 4 heads for all other resolutions,
and 2 transformers per resolution, this results in 2 ×
(16× (4 + 14 + 37 + 97) + 8× 237 + 4× 565) = 13176
potential configurations! (≈ 47k for 1024 × 1024 resolu-
tion images) With 8 minimum heads in our LSUN Church
experiments that allows for 17696 potential configurations.
This is an extraordinary number of possible configurations
for our architecture, with allows for potentially high rates
of expressibility. In our experiments we manually selected
parameters to ensure similarity to our best comparator but
these hyper-parameters can be learned.

C. Parameters and Throughputs
We measured all throughputs via the official code bases
and their respective sampling practices. Modifications to
code were only done when necessary for equivalent evalu-
ation and we do not believe these would result in meaning-
ful differences. When checkpoints were provided we used
those and followed the run formulas provided in a project’s
README file. Several models did not provide checkpoints,
so we used the configurations most similar to those that

1It is technically possible to extend NA/DiNA to work for kernels larger
than the image size but we will operate under this condition for practical
purposes.

2For an image with an odd number of pixels there are
⌊
R
2

⌋
kernels,⌈

R
4

⌉
kernels with no potential dilations



would be used during training. For parameter counts we
used the open source tool graftr3, to directly probe check-
points.

Many StyleGAN models provide checkpoints as
pickle files, which we loaded using the official
“legacy. LegacyUnpickler” method and converted to
PyTorch checkpoints. Parameters were based on the
generator’s Exponential Moving Average (EMA) models
if provided, otherwise the generator. We did not count
parameters included in the discriminator or elsewhere,
focusing on what parameters are required for synthesis. For
Unleashing Transformers [5] we include the total counts
for the VQGAN (83.12M) and the Absorbing EMA’s
denoising function (76.84M). For LDM [52] we find 603M
parameters within the state dict, but this includes the
EMA model. The “model” contains 274M parameters,
matching Table 12 in their Appendix E.1, but we include
all non-EMA parameters, believing these are still necessary
for synthesis. We also note that LDM’s training time and
memory load can likely be significantly improved due to
the implementation for loading the EMA model, which
requires more DRAM than necessary.

For HiT GAN we were unable to gather throughputs and
relied upon the paper’s numbers. HiT GAN was written in
tensorflow v1 and we were unable to find python wheels
that would satisfy our system’s requirements. In Table 4
of the HiT GAN paper [75], they report that on FFHQ-256
HiT-L has a throughput of 20.67 imgs/s and 97.64M pa-
rameters when run on a single NVIDIA V100 GPU. They
similarly note that StyleGAN2 achieves 95.79 imgs/s using
30.03M parameters. The original StyleGAN2 paper [35] re-
ports only reports results for FFHQ-1024 (Section 6), at 61
imgs/s. Their results were gathered on a NVIDIA DGX-
1 with 8 V100 GPUs and during training. We note that
their throughput measurements for StyleGAN2 are a bit
over 10% higher than our measurements. We experienced
similar issues when attempting to measure performance for
GANformer and their GitHub page was ambiguous as to
corresponding checkpoints. We did not reach out to the
authors but similar questions were raised on their GitHub
issues page, which appears to be inactive.

All measurements were performed on a single NVIDIA
A100 GPU using Python 3.10.13, PyTorch 2.1.0, and
CUDA 12.1 (installed with the official PyTorch instructions.
The system CUDA version was 12.0). All measurements
are normalized to batch size to make them independent of
memory constraints. We utilize 50 rounds of warmup be-
fore sampling 100 rounds, which we average over. For
diffusion models we used the highest batch size we could
fit in memory since this yielded the best results. We took
the highest throughput from multiple measurements, noting
that variance was generally quite low.

3https://github.com/lmnt-com/graftr

For performance we enabled TF32 through torch’s back-
ends and utilized torch’s inference mode as opposed to
no grad. We used no other optimizations and made no at-
tempt to use PyTorch’s compile feature or NVIDIA’s Ten-
sorRT, which should boost performance for all models. Sev-
eral models have cuDNN enabled, and we left this at the
default value.

We also note that variance in Style-based models can
vary greatly due to their dependence on custom CUDA ker-
nels written for the bias activation, conv2d gradient fix and
resampling, fused-multiple-add (FMA), grid sampling gra-
dient fix, and upfirdn2d4 Karras et al. noted that these im-
plementations could account for upwards of 40% improve-
ment in throughputs. For example, ProjectedGAN [54]
makes use of all of these as well as introduces some ad-
ditional CUDA kernels5. Additionally, StyleGAN3 [36]
(and consequently StyleGAN-XL [55]) introduced addi-
tional CUDA kernels. In Appendix D Karras et al. note
that the speedup is ≈ 20 − 40× when comparing against
native PyTorch operations, with an overall training speedup
of ≈ 10× but do not specify if there are any differences
from the StyleGAN2 implementations. On the other hand,
GANformer, StyleSwin, and StyleNAT rely far less upon
these implementations and thus likely results from subopti-
mal throughput performance. Note that StyleNAT also has
a custom CUDA implementation for NA/DiNA, but not the
head splitting parts of the architecture. Please refer to Fig-
ure A1 for more clarity.

For throughput measurements we use the procedure
shown in Figure A2. This code is also available on our
GitHub project.

D. Metrics and Image Quality
As the quality of our synthesized images increases we more
quickly approach the limitations our our metrics. We note
that if one compares the FID of the first 10k images of
FFHQ-256 to the bottom 60k this yields a FID of 2.25.
While this is not a completely fair comparison to how mea-
surements are formed when comparing synthesised images
to training images6, it illustrates limitations in FID and
the natural variance within the data itself. A true metric
measuring the visual fidelity to humans still remains elu-
sive [4, 39, 40, 46, 48, 49, 59, 77].

Additionally, to measure the preformance of models we
aggregate over samples, and such results will not convey
the difference between the quality of a single image and
that of the average image. These make truly evaluating the
quality of generative networks difficult and illustrates the
need to further develop metrics and for evaluators to pay
close attention to samples from the networks.

4https://github.com/NVlabs/stylegan2-ada-pytorch/torch utils/ops
5https://github.com/autonomousvision/projected-gan/torch utils/ops
6this is 10k vs 60k which does change results

https://github.com/lmnt-com/graftr
https://github.com/NVlabs/stylegan2-ada-pytorch/tree/main/torch_utils/ops
https://github.com/autonomousvision/projected-gan/tree/main/torch_utils/ops


@torch.inference_mode()
def calculate_throughput(args):

torch.backends.cuda.matmul.allow_tf32 = True
times = torch.empty(rounds)
noise = torch.randn((batch_size, latent_dim),

device="cuda")
for _ in range(warmup):

imgs = generator(noise)
for i in range(rounds):

starter = torch.cuda.Event(
enable_timing=True)

ender = torch.cuda.Event(
enable_timing=True)

starter.record()
imgs = generator(noise)
ender.record()
torch.cuda.synchronize()
times[i] = starter.elapsed_time(ender) \

/ 1000
imgsPerSecond = total_imgs / total_time \

/ batch_size
print(f"{torch.std_mean(imgsPerSecond)}")

Figure A2. Pseudo code for throughput measurements

A recent work by Stein et al. [59] performed on of the, if
not the, largest human study to date, investigating the pre-
dictive power of various metrics when compared to a hu-
man’s ability to distinguish synthesized images from real
images. Their results include StyleNAT, but we note that the
authors of this work have no affiliation with Stein et al. nor
have contacted them in any way. Their results demonstrate
that FID and other metrics are generally unreliable when
predicting the human error rate for distinguishing synthe-
sized images from real ones. We refer to their work for a
full discussion of metrics and for an independent evaluation
of differing metrics. We note that their model selection has
a significant overlap with those in Table 2. Additionally, we
note that StyleNAT is a outlier in their results, and its sam-
ples are the most difficult for humans to distinguish when
compared to other models. While this result correlates with
FID, they show that this is not true for many other models
and datasets.

E. Visual Analysis and Artifacts

Given the limitations to metrics, as discussed in Ap-
pendix D, we investigate the visual quality of synthesized
images and look for different biases that different networks
exhibit. We encourage the reader to not completely rely on
the examples within this work and to generate their own
samples. For this section we embed the highest quality im-
ages that we can, using pdf embeddings, but note that the
source images are in JPEG. This allows readers to zoom
in if using an electronic PDF reader. Note that some ar-

tifacts may not be obvious at the standard resolution, but
if one zooms into 300% or more then these artifacts will
become much more apparent and most readers will still be
able to identify them after returning to their normal reading
settings. We believe that such investigations are essential
for the evaluation of generative models and encourage the
community to perform similar such studies.

E.1. StyleGAN3 vs StyleSwin vs StyleNAT

First we perform a comparison between StyleGAN3,
StyleSwin, and StyleNAT on FFHQ-1024 samples. We use
FFHQ because there is universal familiarity with faces and
humans are biologically primed to recognize faces, mean-
ing that we are more likely to notice subtle details where this
may not be as true for images of other classes of objects. We
believe that this makes it the best choice for identifying gen-
eration errors. We also note that the FIDs of these networks
are 2.79, 5.07, and 4.17, respectively. If we rely exclusively
on FID then we expect StyleGAN3 to be significantly bet-
ter than StyleNAT and StyleSwin, and for StyleNAT to be
moderately better than StyleSwin. This is difficult to truely
measure and would require a costly human study, similar
to Stein et al.’s [59]. Instead we try to focus on the best
possible samples, and investigate the visual artifacts.

We remind the reader that common locations for visual
artifacts can be found when looking at ears, eyes (including
eyebrows, eyelashes, and pupils), the neck, and hair. In par-
ticular one can often quickly identify synthetic images by
closely looking at eyes. We believe that all networks always
produce artifacts that humans can easily identify given suf-
ficient training, but leave the subjective conclusions to the
reader. We note that we find a strong bias for high fidelity
images to have simple backgrounds with a Bokeh effect.
That is, where the image subject is sharp and in focus while
the background is out of focus. This is achieved by using a
high f-stop or large aperture size when taking a photo. We
believe this is likely a dataset bias as this aesthetic is com-
mon for professional portraits. We will not focus on the
background as when images like these are used for creat-
ing deep fakes it is not uncommon for these to be replaced.
They are also a common source of errors, which the Bokeh
style often makes harder to identify.

E.1.1. StyleGAN3
Karras et al. [36] has made public a set of curated images7,
which we searched through. We searched for the best qual-
ity image we could find and provide the link for independent
analysis. The authors note that a significant part of their
work was in removing aliasing from images. Aliasing be-
ing defined as overlapping frequency components that lead
to distortion and other potential spatial artifacts.

7https://nvlabs-fi-cdn.nvidia.com/stylegan3

https://nvlabs-fi-cdn.nvidia.com/stylegan3


(a) 1024 FFHQ Sample from StyleGAN3

(b) Forehead bead pattern.
Two bands at top and bottom
third.

(c) Glasses with hexagonal arti-
facts around edges. Upper right of
glasses.

Figure A3. Artifacts from StyleGAN3 FFHQ 1024 samples (sam-
ple 0068 from link). We show the banding effect that is common
in StyleGAN3 photos, especially on foreheads, as well as hexago-
nal patterns that happen in glasses.

In Figure A3 we show our best found sample and in sub-
figures Figure A3b and Figure A3c we provide zoomed in
sections where we identify frequency based artifacts. The
most obvious artifact is the banding, which we show a
zoomed in section in Figure A3b, but this appears through-
out the face. Another horizontal band can be easily iden-
tified by the eye on the right side, near the glasses (under
the disappearing Temple) as well as vertical banding across
the neck. In Figure A3c we show a zoomed in section of
the right glasses, where there are clear hexagonal patterns.
Similar patterns can be found on the other side. By care-
ful inspection of the eyes we can notice that the pupils are
irregular and that neither the iris nor pupil is not circular,
being more pronounced in the eye on the left side.

While these were not obvious at first glance to many
some of our colleagues, all were able to see if they zoomed
in, and would continue to see them after returning to their
normal level of zoom. We were unable to identify a sin-
gle image within the curated collection that did not exhibit
similar artifacts. We were able to identify similar artifacts
for all images we looked at, irrespective of the resolution
or dataset, including non-human images. Thus we believe
that this can serve as a reliable “fingerprint” for identifying
StyleGAN3 based models.

E.1.2. StyleSwin
For StyleSwin [71] we generated 50 samples from their of-
ficial checkpoint and picked the best sample, discarding any
samples where there were obvious large scale artifacts (col-
loquially refereed to as “GAN monsters”). These samples
can be generated from our codebase using the StyleSwin
checkpoints. Our selection is show in Figure A4, where
artifacts are more apparent than in StyleGAN3. We notice
clear “block” like shapes throughout the face, as seen in Fig-
ure A4b. These are significantly different from those noted
by Zhang et al. [71], which are more similar to pixelization.
Interestingly we do not observe the same pixelization visi-
ble in the samples shown in Figures 3 and 5 of their paper,
but ours look more similar to those shown in their header or
in Figures 7, 10, 11, or 12.

In addition we notice more continuous patterns most eas-
ily seen by the ear, Figure A4c, but also observable in the
chin and near the eyes (not to be confused with “crow’s
feet”). We also notice a large discrepancy between the eyes.
The image exhibits clear heterochromia (the iris are differ-
ent colors), as well as significantly different sizes. Upon
close inspection, it can be seen that the reflection within the
eyes would suggest the person is looking at two different
scenes, with different lighting conditions. Additionally, we
notice a high rate of speckling in faces, with the easiest to
view one being the light yellow spot on the cheek. Such ar-
tifacts are less obvious and may be confused with common
skin blemishes (e.g. sun spots).

These artifacts show a clear demonstration where the
transformer does not provide long-range coherence. We
also observe these patterns within the images shown in the
paper, including the aforementioned figures. We provide
further explination of these artifacts in Appendix F.

E.1.3. StyleNAT
For our image selection we follow the same procedure as
with StyleSwin Appendix E.1.2. Our selection is shown
in Figure A5, and other examples can be seen by zooming
in on our header (Figure 1) or in Figure 5 for samples from
the lower resolution network. Similar artifacts are visible
within these images and some maybe more easily seen in
those examples. For example, the subject’s iris color is dark
and may make investigation of the iris and pupils more dif-



(a) 1024 FFHQ Sample from StyleSwin

(b) Forehead squares (c) Right ear texture

Figure A4. Artifacts from StyleSwin FFHQ 1024. (We generated
these.)

ficult for some. We find heterochromia and distorted pupils
less common among our samples but observe that when
it happens it is more likely to be Sectoral Heterochromia,
where the iris has multiple colors (as is referenced by the
popular YouTuber 3Blue1Brown). This can be seen in the
central image of the header, in the eyes if the blond hair girl.
Her eyes are predominantly blue, but show bits of brown,
and there is an unrealistic color closer to cerulean blue in
the bottom corners, similar to those of the fictional Fremen
in Dune. We find full heterochromia is quite rare, but an
instance can be observed in the header in the right most col-
umn of the FFHQ-256 samples. Several other images have
slightly distorted pupils. Despite these artifacts, we believe
that our samples perform better than others within these ar-
eas and demonstrates our model’s ability to learn long range
coherence.

We do identify other artifacts, which we believe can be

(a) 1024 FFHQ Sample from StyleNAT

(b) Forehead lines (c) Right eye spotting

Figure A5. Artifacts from StyleNAT FFHQ 1024. (We generated
these.)

used to visually fingerprint our model. We also observe a
banding like pattern, but that these are smoother lines and
may be easily confused with strands of hair or indentations
of the skin. We show a zoomed in section of the forehead
in Figure A5b. Similar artifacts are more apparent on the
left eye and near the smile lines of the cheek (clearer on the
right side). We also observe some spotting artifacts, that
are predominantly blue in color. We illustrate this in Fig-
ure A5c, showing the right eye, but this is also visible be-
tween the eyebrows. Similar artifacts appear in the man’s
beard, but may be easily confused with gray hairs. We also
notice this chromatic aberrations within the strands of hair
in the forehead. This can also be seen a bit in Figure A5b but
may require zooming in depending on the screen used for
viewing. The speckling artifacts being similar to StyleSwin
may be a result of the underlying architecture, but further
investigation is necessary.



We believe that these artifacts can serve as means to vi-
sually fingerprint our model and distinguish it from others.
Notably, are lines appear to be an artifact of the method,
and we are able to view these within the attention maps Ap-
pendix F.

F. Attention Maps
To help explain the observations we see throughout this
work, we visualized the attention maps for both StyleSwin
and StyleNAT. We note that neither of these networks can
have attention maps generated in the usual manner. Our
code for this analysis will also be included in our GitHub.
For both versions we can’t extract the attention map from
the forward network, as would be usually done, but instead
extract both the query and key values. Exact methods are
explained in the respective FFHQ sections. We believe that
these maps demonstrate the inherent biases of the network
and specifically demonstrate why StyleNAT, and critically
the Hydra attention, result in superior performance. Swin’s
shifted windows demonstrate a clear pooling, which may be
beneficial in classification tasks, but not as much for gener-
ative tasks, which are more sensitive and unstable. They
also provide explanations upon where both networks may
be improved within future works and we believe this tool
will be valuable to other researchers in other domains.

We will look at both FFHQ and LSUN Church to try to
determine the differences and biases of the networks and
attention mechanisms. For all of these we will generate a
random 50 samples and select by hand representative im-
ages for the give tasks. It is important to take care that there
is a lot of subjectivity here and that these maps should only
be used as guides into understanding our networks rather
than explicit interpretations. Regardless, the attention maps
are still a helpful tool in determining features and artifacts
in generation, as we will see below. The patterns discussed
were generally seen when looking at each of the sampled
images during our curation.

Our attention maps suggest that these networks follow a
fairly straight forward and logical method in building im-
ages. In general we see that lower resolutions focus on lo-
cating the region of the main objects within the scene while
the higher resolutions have more focus on the details of the
images. We see progressive generation of the images, that
each resolution implicitly learns the final image in progres-
sively detail. This suggests that the progressive training
seen in StyleGAN-XL may also benefit both of these net-
works. The Style-based networks generally have two main
feature layers (or blocks) per resolution level, which we
similarly follow. Our maps also suggest that a logical gen-
eration method is performed at the resolution level. Where
the first layer generating the structure, realigning the im-
age after the previous up-sampling layer. The second layer
generates more details at the resolution level. This may sug-

gest that a simple means to increasing fidelity would be to
make each resolution level deeper, which is also seen in
StyleGAN-XL. In other words, fidelity directly correlates
to the number of parameters, and thus it is necessary to in-
corporate that within our evaluation. The goals of this work
is on architecture and the changes that they make, rather
than overall fidelity. We leave that to larger labs with larger
compute budgets.

To make reading easier we have placed all maps at the
end of the document and provide detailed descriptions in
each caption.

F.1. FFHQ
For FFHQ we will look at specifically the 1024 dataset and
we will select our best sample. We are doing this to help
determine the differences in artifacts that we saw in Ap-
pendix B. Since many of these features are fine points we
will want to see the high resolution attention maps to under-
stand what the transformers are concentrating on and how
the finer details are generated. Specifically, we use the same
images that were used within the previous section to help us
identify the specific issues we discussed.

F.1.1. (FFHQ) StyleSwin
For StyleSwin we extract the query and key values from
each forward layer (note that there are two attentions
per resolution level for StyleGAN based networks). We
perform this for each split window which has shape
[B H

ws

W
ws

, nh, w
2
s , C

′], where B is the batch, W,H are the
height and width, ws is the window size, nh is the number
of heads, and C ′ is the number of channels. We concatenate
along the split heads and then reverse the windowing op-
eration by re-associating the windows with the height and
width. Once this is done we can mean the pixel dimen-
sions for the query and flatten them for the key (q is un-
squeezed for proper shaping). We then can obtain a normal
attention map where we have an image of dimensionality
B,nh, H,W .

We will look at this attention map for the same sam-
ple as in Figure A4. We break these into multiple figures
so that they fit properly with Figure A13 representing the
1024 × 1024 resolution, Figure A14 the 512 × 512, Fig-
ure A15 representing both the 256 × 256 and 128 × 128,
Figure A16 the 64×64 and 32×32, and finally Figure A17
representing the 16×16 and 8×8 resolutions. Note that the
second half of the heads represents a shifted window, per the
design specified in their paper. In these feature maps we see
consistent blocking happening, which is indicative of the is-
sues with the Swin Transformer [41]. This also confirms the
artifacts and texture issues we saw in the previous section.
These artifacts can even be traced down to the 64 resolution
level, Figure A16. We believe that this is a particularly dif-
ficult resolution for this network as it has more blocking in
the second layer than others.



We also notice that in the earlier feature maps that
StyleSwin has difficulties in picking up long range features,
such as ears and eyes. This likely confirms the authors’ ob-
servations of frequent heterochromism (common in GANs),
mismatched pupil sizes, and differing ear shapes.

At higher resolutions (128 and above) we find that the
network struggles with texture along the face despite es-
tablishing the general features. This is seen by half the
heads being dark and the other half being bright, as is seen
in Figures A14 and A15. This does suggest some under-
performance from the network, with one set of heads do-
ing significantly more work when compared to the others.
We also see higher blocking, especially in the first layer,
at lower resolutions, indicating difficulties in acquiring the
general scene structure. This warrants more flexibility, such
as that offered by Hydra.

F.1.2. (FFHQ) StyleNAT
For StyleNAT we perform a similar operation as to
StyleSwin. We similarly extract the queries and keys, mean
over the query’s pixel dimensions (unsqueezing), and flat-
tening the key’s pixel dimensions. We similarly get back an
image of shape [B,nh, H,W ], with similar dimension defi-
nitions. We break these into multiple figures so that they fit
properly with Figure A8 representing the 1024× 1024 res-
olution, Figure A9 the 512× 512, Figure A10 representing
both the 256× 256 and 128× 128, Figure A11 the 64× 64
and 32×32, and finally Figure A12 representing the 16×16
and 8× 8 resolutions. The first half of the heads has no di-
lation and the second half has dilations corresponding with
the architecture specified in Table A1.

We see that in the high resolution images that NA is
learning textures and long range features across the face.
This supports the claim that transformer mechanisms are
adequately learning these long range features, as should
be expected, and would support more facial symmetry that
would be seen in human faces.

In the first layer we notice that more local features are
being learned, which explains the better textures seen in our
samples. Particularly we notice in Figures A8 and A9 that
the first 2 heads learn feature maps on the main part of the
face. Noting that the first two heads represent 7× 7 kernels
that are not dilated. We also noticed some swirling patterns
in the second half of heads, which correspond to dilated
neighborhood attention mechanisms. These correspond to
the soft lines we saw above, and act like edge detectors. The
second layer does a better job at finer detail and removes
many of these, tough they are still visible on the chin. We
notice that these particularly appear around hair and may be
reasoning that the hair quality of our samples perform well.
The long range, dilated, features all do tend to learn long
range features and aspects like backgrounds, as we would
expect.

In the lower resolutions we see that these attention maps

learn more basic features such as noses, ears, and eyes,
which helps resolve many of the issues faced by CNN based
GANs. Details such as eyes and mouth can be identified
even at the 16 resolution image Figure A12! The authors
noticed that while generating they observed lower rate of
heterochromia (different eye colors), which are common
mistakes of GANs. This is difficult to quantify as it would
unlikely be caught by metrics such as FID but we can see
from the attention maps that the early focus on eyes sug-
gests that this observation may not be purely speculation.

We believe that these attention maps demonstrate a
strong case for StyleNAT and more specifically our Hydra
Neighborhood Attention. That small kernels can perform
well on localized features, like CNNs, but that our long
range kernels can incorporate long range features that we’d
want from transformers. We can also see from the feature
maps that the mixture of heads does support our desire for
added flexibility. This is done in a way that is still efficient
computationally, having high throughputs, training speed,
and a low requirement on memory.

F.2. Church Attention Maps

To help us understand the differences in performances
specifically in the LSUN Church dataset we also wish to
look at the attention maps to help give us some clues. We
know that FID has limitations being that Inception V3 is
trained on ImageNet-1k and uses a CNN based architecture.
ImageNet-1k is primarily composed of biological figures
and so does not have many objects that have hard corners
like LSUN Church. Additionally, CNNs have a biased to-
wards texture [15, 23], which can potentially make the met-
ric less meaningful, especially on datasets like this. Since
we had noticed that the Swin FFHQ attention maps had a
bias to create blocky shapes and StyleNAT had a bias to
create rounder shapes, we may wish to look into more de-
tail to determine if these are biases of the architecture or that
of the dataset. We find that this is true for StyleSwin but not
of StyleNAT.

To understand why this dataset provides larger difficul-
ties for these networks we not only select a good sample,
but also a bad sample, hoping to find where the model loses
coherence. We find that in general this happens fairly early
on, with the networks having difficulties placing the “sub-
jects” within the scene. We see higher fidelity maps in the
better samples but find that overall these struggle far more
than on the FFHQ task.

We believe that our results here show that FID is not
reliable for the LSUN Church dataset, as well as demon-
strates that Church is a significantly harder generation prob-
lem for these models than FFHQ is. This is claim is consis-
tent with many of the aforementioned works, which present
stronger cases and make similarly arguments for other met-
rics. These demonstrate the need to perform visual analysis



as well as feature analysis to ensure that the model is prop-
erly aligned with the goal of high quality synthesis rather
than with the biases of our metrics. Evaluation unfortu-
nately remains a difficult task, where great detail and care
is warranted.

Specifically, at low resolutions both networks have dif-
ficulties in capturing the general concept of the scene. We
believe that this is due to the increased variance and diver-
sity of this dataset, compared to FFHQ. While human cen-
tered faces share a lot of general features, such as a large
oval centered in the image, this generalization is not true for
the Church dataset, which a wide variety of differing build-
ing shapes, many different background objects to include
(which we say FFHQ prefers simple backgrounds), and that
the images are taken from many different distances.

StyleSwin samples are shown in Figure A6 and the
StyleNAT samples are show in Figure A7. We believe that
both these samples look on par with the quality of that of
ProjectedGAN [54], which currently maintains SOTA on
LSUN Church with an FID of 1.59, and thus are sufficiently
“good” samples. We will look at the blocks sized 32 to
256, as we believe this is sufficient to help us understand
the problems, but we could generate smaller maps.

It is unclear at this point if the fidelity could be increased
simply by increasing the number of training samples or if
additional architecture changes need to be made in order
to resolve this (as suggested above). We will specifically
note that even SOTA generation on this dataset, Project-
edGAN [54], does not produce convincing fakes, while this
task has been possible on FFHQ for some time, albeit not
consistently. This is extra interesting considering that the
SOTA FID on LSUN Church is 1.59, with 3 networks being
below a 2.0 while SOTA FFHQ-256 (the same size) is 2.05
(this work) and scores as high as 3.8 [34] frequently produce
convincing fakes. We also remind the reader that while Pro-
jectedGAN performs well on Church (1.59), it does not do
so on FFHQ (3.46), Table 3.

F.2.1. (Church) StyleSwin
For the StyleSwin generated images, Figure A6, we can see
that the good image looks nearly like a Shutterstock image,
almost reproducing a mirrored image and where the text is
almost legible. But in this we also see large artifacts, like the
floating telephone poll, the tree coming out of a small shed,
or other distortions. We believe that this telephone poll may
actually be part of a watermark, but are unsure. In the bad
image, we see that there was a mode failure and specifi-
cally that the generation lost track of the global landscape.
Even with this failure, we still do see church like structures,
such as a large distorted window, making this image more
of a surrealist interpretation of a church than a photograph.
These images will thus provide good representations for un-
derstanding these two modes, of why good church images
are still hard to generate and why they completely fail.

In short, we find that at all levels, there is higher block-
iness and less detail captured by the attention mechanisms
when compared to FFHQ. We see either very high or very
low activations with the inability to focus on singular tasks.
At low resolutions we see difficulties capturing structure
and that this error propagates through the model.

Figure A22 shows our full resolution images, and in the
attention maps we can again see the same blocky/pixelated
structures that we found in the FFHQ investigation, but at a
higher rate. For the good images, in the first layer we see
that the first head is performing an outline detection on the
scene, almost like a Sobel filter. We also see that the last
head is delineating the boundary between the foreground
and background, particularly the sky. Interestingly this ap-
pears almost like Pointillism, which we see in many follow-
ing maps as well. This is likely bias from the shifted win-
dows. In the second layer we see more fine grained struc-
ture, but interestingly we do not see as much as we saw
in the FFHQ version at the same resolution, Figure A15,
which suggests that this is a more difficult task for this net-
work. We can also see that this level is concentrating on
the text at the bottom of the image, which is not as clearly
visible in the smaller resolution maps. Notably, we do not
clearly see the floating telephone pole or the wires in the
sky. These could be formed from another part of the net-
work, such as the RGB or MLP layers, but we have not
investigated this. Further investigation is needed to under-
stand the contributions of these layers.

Moving down to the 128 resolution images in Figure A23
we see that the attention maps overall get much messier.
For the good image we can see that the roof of the church
is picked up by many of the heads. In the second layer, on
the second head, we also see a clear filter looking at the tree
and roof of the church, which we can also see a less clear
selection in head 6 and the first layer at head 5. These same
heads provide decent filters for the bad images, the layer 1
head 5 and layer 2 head 2 seeming to do the best at object
filtering.

Looking at the 64 resolution Figure A24 and 32 resolu-
tions Figure A21 we can more clearly see where the prob-
lems are happening. In FFHQ the 64 resolution maps, Fig-
ure A16, is where we start to first see our main object with
relative details and the 32 resolution has a decent depiction
of broad shape. We do not have as good of an indication
within these maps, where the 64 resolution images do not
have clearly identifiable building textures, let alone build-
ing shapes. This is even worse at the 32 resolution image
level.

Interestingly, at this resolution it is difficult to distin-
guish which version would generate the good or bad image,
which doesn’t seem distinguishable till at least the 128 reso-
lution. These aspects suggest that the generation of this data
is substantially harder for this model. This is extra interest-



ing considering that the FID scores are fairly close for both
of these datasets, with FFHQ being 2.81 and Church being
2.95. With more difficulties in capturing general structure
the network then struggles to increase detail and this sys-
tematic issue cannot be resolved. This network saw trained
on 1.5M iterations.

F.2.2. (Church) StyleNAT
StyleNAT performs significantly worse at LSUN Church,
and it isn’t clear why this is. Determining if this is a lim-
itations of the metric, which may be biased to these fea-
tures [40], we must explore a bit deeper. For these at-
tention maps we will use the model that generated visi-
ble text and what the authors thought were higher qual-
ity. This network uses smaller kernel sizes of 3 and
has a max dilation rate of 8. Thus the dilations are
[[1],[1][1,2],[1,2,4],[1,2,4],[1,2,4],[1,2,4,8]]. This is the
same configuration as when higher overfitting was ob-
served. Since higher overfitting tends to correspond to
higher fidelity we want to investigate what went right, to
improve the work. The good image here is on par with that
of Swin, and SOTA works, but the bad image is again a sur-
realist work wherein we see a agglomeration of a “Church.”
The good image appears pixelated, has scan lines, and some
other distortions such as the car being reflected and turned
into a bush. The bad image seems to incorporate nearly
every feature within the dataset, including churches, tow-
ers, temples, cathedrals, as well as many different trees all
smashed together Cronenberg style.

In short, we find that StyleNAT is in fact able to generate
hard lines, as this dataset is biased towards, but does tend
to prefer smoother features. We also see that at even the
early stages that the scene has difficulties capturing global
coherence. This likely explains the instabilities we faced
and why training often diverged fairly early on, with nearly
a fifth of the number of iterations as FFHQ and nearly 10%
of StyleSwin.

The 256 resolution attention maps, Figure A18, images
we immediately see that some of the attention heads to not
have rounder features, indicating that our network does not
have a significant bias towards biological shapes. In the
first level, the first three attention heads have what appear
to be scan lines, which we do see manifest in the full im-
age. We also see traces of this in the next three heads, as
well as most of the heads in the second layer. It appears
that in this case, this level is looking a lot at texture, similar
to that in FFHQ Figure A10. An interesting feature here,
clearer in the first layer in heads 4-8, is that the we see what
looks like the skeleton of a tree with branches coming out,
almost centered at where the actual tree is in the main pic-
ture (left). What is notable here is that neither the trunk nor
the branches are visible in the generated image, and that
the “imagined” trunk is a bit translated from where we may
predict it would be on the “actual” tree.

In other maps that we generated, that aren’t shown, we
noticed this pattern is extremely frequent when trees exist
in the scene and there exists identical structure when the
tree does not have foliage. This includes the circular shapes
adjacent to the trunks. We did not notice this feature when
only the foliage is visible, where the tree may look more
like a bush, such as in the bad sample. We did not notice
such skeletons as prevalent in the Swin version, although
the best example can be seen in head 4 of the 256 layer
in Figure A22, but this appeared to be an exception rather
than the norm. We are careful to make a conclusion that the
network has classified trees and understands their skeletal
structure and note that a reasonable alternative explanation
is that this trunk looking figure can just as easily be a guide
for distinguishing the location of the tree.

There is also a notable difference in the attention maps
between levels. In general we believe these show that the
first layer is working more on the general structure of the
scene while the second layer is improving detail. We also
saw such correlations within the FFHQ analysis. We believe
that this is a reasonable guess because the first level follows
an upsampling layer and thus the network needs to first re-
establish structure of the scene before it can provide detail.
We also believe that this happens within the Swin based
generator as well. This can mean that potentially higher
fidelity generators can add additional layers, and that this is
more necessary at higher resolutions.

As for the reasons for the low quality generations, we no-
tice that the scenes in the 32 and 64 resolution, Figures A20
and A21, levels have potentially suggestive attention maps.
Particularly we notice that the bad quality image has much
more chaotic attention maps. Interestingly, we also see the
scan lines



(a) Good (b) Bad

Figure A6. Church good and bad samples from StyleSwin. Good example has a clearly visible church and tree with a good distinction of
foreground and background. Good example has a fairly legible citation but no other watermarks. Bad example has lost global structure but
does maintain church like features.

(a) Good (b) Bad

Figure A7. Church good and bad samples from StyleNAT. Good sample has a clearly visible church, with cars out front and a clear
distinction between foreground and background. While the bad sample distinguishes foreground and background, it is unable to correctly
connect a coherent image of a church.



(a) 1024 Level, Layer 1 (b) 1024 Level, Layer 2

Figure A8. FFHQ StyleNAT attention maps at the level with 1024 resolution. Every layer has 4 heads with kernel size of 7, but the last
2 heads have a dilation of 128. First layer concentrates more on structure and second more on texture. Heads without dilations appear to
focus more on texture and the face.

(a) 512 Level, Layer 1 (b) 512 Level, Layer 2

Figure A9. FFHQ StyleNAT attention maps at the level with 512 resolution. Every layer has 4 heads with kernel size of 7, but the last 2
heads have a dilation of 64. First layer appears to focus more on structure, with no dilations concentrating on the face. Dilated heads focus
on head shape.



(a) 256 Level, Layer 1 (b) 256 Level, Layer 2

(c) 128 Level, Layer 1 (d) 128 Level, Layer 2

Figure A10. FFHQ StyleNAT attention maps at levels with 128 and 256 resolution. Every layer in each 32×32 level has 16 heads, and
every layer in each 64×64 level has 8 heads, all with kernel size of 7. The second half of the heads have dilations 16 and 32 respectively.
General structure is visible and it can be seen we capture long range features.



(a) 64 Level, Layer 1 (b) 64 Level, Layer 2

(c) 32 Level, Layer 1 (d) 32 Level, Layer 2

Figure A11. FFHQ StyleNAT attention maps at levels with 32 and 64 resolution. Every layer in each level has 16 heads with kernel size
of 7. The second half of the heads have dilations 4 and 8, respectively. Main structure visible in these resolutions, including eyes and the
separation of face and hair.



(a) 16 Level, Layer 1 (b) 16 Level, Layer 2

(c) 8 Level, Layer 1 (d) 8 Level, Layer 2

Figure A12. FFHQ StyleNAT attention maps at levels with 8 and 16 resolution. Every layer in each level has 16 heads with kernel size of
7. The second half of the heads have dilations 1 and 2, respectively. The 8 resolution image looks to be focusing on placement of object
within the scene, taking the general round shape and distinguishing subject from background.



(a) 1024 Level, Layer 1 (b) 1024 Level, Layer 2

Figure A13. FFHQ StyleSwin attention maps at the level with 1024 resolution. Each layer has 4 heads with kernel size of 8 but half of
them were trained with Shifted WSA. First level appears to concentrate on facial structure and texture. Second level appears to focus on
symmetric features such as cheeks and eyes.

(a) 512 Level, Layer 1 (b) 512 Level, Layer 2

Figure A14. FFHQ StyleSwin attention maps at the level with 512 resolution. Each layer has 4 heads with kernel size of 8 but half of them
were trained with Shifted WSA. Generative artifacts are clearly visible on forehead in most maps. Heads have vastly different concentration
levels.



(a) 256 Level, Layer 1 (b) 256 Level, Layer 2

(c) 128 Level, Layer 1 (d) 128 Level, Layer 2

Figure A15. FFHQ StyleSwin attention maps at levels with 128 and 256 resolution. Every layer in each level has 4 heads with kernel size
of 8 but half of them were trained with Shifted WSA. 128 resolution shows beginning indications of generative artifact.



(a) 64 Level, Layer 1 (b) 64 Level, Layer 2

(c) 32 Level, Layer 1 (d) 32 Level, Layer 2

Figure A16. FFHQ StyleSwin attention maps at levels with 32 and 64 resolution. Every layer in each 32×32 level has 16 heads, and every
layer in each 64×64 level has 8 heads, all with kernel size of 8, but half of them were trained with Shifted WSA.



(a) 16 Level, Layer 1 (b) 16 Level, Layer 2

(c) 8 Level, Layer 1 (d) 8 Level, Layer 2

Figure A17. FFHQ StyleSwin attention maps at levels with 8 and 16 resolution. Every layer in each level has 16 heads with kernel size of
8 but half of them were trained with Shifted WSA.



(a) Good: 256 Level, Layer 1 (b) Good: 256 Level, Layer 2

(c) Bad: 256 Level, Layer 1 (d) Bad: 256 Level, Layer 2

Figure A18. Church StyleNAT 256 sized samples with bad and good samples. Generated images are highly predictable within both good
and bad samples. Scanlines artifacts and hard lines are visible in both images, showing hard lines can be learned. “Tree trunk” like feature
visible in good sample, with branches and swirls where foliage is located. Likely indicates a guide for the location of the tree in the scene
rather than learning tree skeletal structures. Both maps can distinguish foreground and background. Bad sample looks more church like
than the actual image. Notably the second layer, which we believe focuses on detail, has far lower activations in the bad sample. Despite
progressive dilation, it is difficult to tell if heads are associated with local or global features, as was apparent in FFHQ.



(a) Good: 128 Level, Layer 1 (b) Good: 128 Level, Layer 2

(c) Bad: 128 Level, Layer 1 (d) Bad: 128 Level, Layer 2

Figure A19. Church StyleNAT 128 sized samples with bad and good samples. Final image fairly predictable in the good sample but the
bad sample looks more akin to stacked housing apartments. Scanlines weaker in the good sample and we can see loss of coherence in
the bad sample. In both samples the detail layer has lower activations with one head appearing to dominate. We believe this decoherence
propagates, preventing network from learning enough detail before scaling. Similar difficulties within StyleSwin indicate that this dataset
may be more challenging and that detail is more important in lower resolutions. The early heads, which have no dilations, also clearly
struggle to capture fine details. This is exceptionally apparent in the second layer which is more oriented towards this task.



(a) Good: 64 Level, Layer 1 (b) Good: 64 Level, Layer 2

(c) Bad: 64 Level, Layer 1 (d) Bad: 64 Level, Layer 2

Figure A20. Church StyleNAT 64 sized samples with bad and good samples. The final images are not easily predictable at this resolution
and we see little coherence. General shapes can be distinguished but this is not as strong as in FFHQ. First layer clearly focuses on general
structure while the second on more detail. We continue to have difficulties associating head dilation with the corresponding receptive fields
of the scene. The many bands suggest that there are difficulties in locating the object’s placement within the scene. Both samples have tall
tower like structures within the attention maps despite not being in final image or maps of the subsequent resolution. There are a lot of
similarities between both samples, especially within the first layer. This could indicate overfitting and a strong preference to a strategy.



(a) Good: 32 Level, Layer 1 (b) Good: 32 Level, Layer 2

(c) Bad: 32 Level, Layer 1 (d) Bad: 32 Level, Layer 2

Figure A21. Church StyleNAT 32 sized samples with bad and good samples. General structure is fairly coherent with blocky and tower
like structures. Strong band at the bottom likely indicates attempt to generate shutterstock citation. In FFHQ we had clear placement of
the subject within the scene at this level and even features like eyes and mouth. We see difficulties for this at this level, but do see towering
structures. Unlike FFHQ this dataset has many differences in the general structure and location of main objects. This resolution has decent
coherence for both samples but the lack of detail in the second layer may indicate how the lack of quality propagates within the network.
Similar to StyleSwin these maps tend to put focus on the center of the image.



(a) Good: 256 Level, Layer 1 (b) Good: 256 Level, Layer 2

(c) Bad: 256 Level, Layer 1 (d) Bad: 256 Level, Layer 2

Figure A22. Church StyleSwin 256 sized samples with bad and good samples. Blocky structure still exists akin to pointillism. Maps
has filters reminiscent of edge filters, where the good sample can distinguish foreground and background. The tree and church are clearly
visible and the good sample has a predictable final image. The floating telephone or watermark is not clearly identifiable here but we can
see activations in the shutterstock citation at the bottom. Bad sample does not have as clear of an identification, and is more likely to have
curved features. Similar to FFHQ the first 2 heads of the first layer have low activations while the other heads have disproportionately high.



(a) Good: 128 Level, Layer 1 (b) Good: 128 Level, Layer 2

(c) Bad: 128 Level, Layer 1 (d) Bad: 128 Level, Layer 2

Figure A23. Church StyleSwin 128 sized samples with bad and good samples. Good sample has clear good filters and some heads have
strong focus on the main objects in the scene. One head in the bad sample has this same clear filter. Maps have less detailed focus,
activating on many different points within the scene. Maps have less structure and features at this resolution than we saw within the FFHQ
examples. In FFHQ we had less pointillism, especially in the first layer, but this is extremely prominent here indicating a difficulty in
attending to the scene. Attention activation is highly disproportionate at this resolution.



(a) Good: 64 Level, Layer 1 (b) Good: 64 Level, Layer 2

(c) Bad: 64 Level, Layer 1 (d) Bad: 64 Level, Layer 2

Figure A24. Church StyleSwin 64 sized samples with bad and good samples. Samples are difficult to differentiate at this level and we have
lower interpretability. In FFHQ the face was locatable at this resolution and the second layer started to reduce the blocking. This resolution
still appears to be concentrating on the main structure of the objects, but has large range contexts in both layers. In the good sample we
have difficulties identifying the tree or church, but they are somewhat visible. Attentions are highly checkerboard, likely due to the shifting
of windows. The bottom of the images indicates concentration on the shutterstock citation in both samples.



(a) Good: 32 Level, Layer 1 (b) Good: 32 Level, Layer 2

(c) Bad: 32 Level, Layer 1 (d) Bad: 32 Level, Layer 2

Figure A25. Church StyleSwin 32 sized samples with bad and good samples. Global structure is generally lost and would be difficult to
predict produced sample from these maps. The church is identifiable in the second layer of the good sample, but attention is a bit scattered.
First level is more sporadic compared to the second level, which is more connected. Similar to FFHQ the first layer has large checkerboard
patterns and second layer is smoother, though less general structure is identifiable. This appears to indicate that the first layer is matching
structure to the upscaling and the second layer concentrates on details. Coherence is likely lost after this resolution.
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