VidTr: Video Transformer Without Convolutions

Yanyi Zhang, Xinyu Li, Chunhui Liu, Bing Shuai, Yi Zhu, Biagio Brattoli, Hao Chen, Ivan Marsic, Joseph Tighe; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 13577-13587


We introduce Video Transformer (VidTr) with separable-attention for video classification. Comparing with commonly used 3D networks, VidTr is able to aggregate spatio-temporal information via stacked attentions and provide better performance with higher efficiency. We first introduce the vanilla video transformer and show that the transformer module is able to perform spatio-temporal modeling from raw pixels, but with heavy memory usage. We then present VidTr which reduces the memory cost by 3.3xwhile keeping the same performance. To further optimize the model, we propose the standard deviation based topK pooling for attention, which reduces the computation by dropping non-informative features along temporal dimension. VidTr achieves state-of-the-art performance on five commonly used datasets with lower computational requirements, showing both the efficiency and effectiveness of our design. Finally, error analysis and visualization show that VidTr is especially good at predicting actions that require long-term temporal reasoning.

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Zhang_2021_ICCV, author = {Zhang, Yanyi and Li, Xinyu and Liu, Chunhui and Shuai, Bing and Zhu, Yi and Brattoli, Biagio and Chen, Hao and Marsic, Ivan and Tighe, Joseph}, title = {VidTr: Video Transformer Without Convolutions}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {13577-13587} }