VideoLT: Large-Scale Long-Tailed Video Recognition

Xing Zhang, Zuxuan Wu, Zejia Weng, Huazhu Fu, Jingjing Chen, Yu-Gang Jiang, Larry S. Davis; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 7960-7969


Label distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant labels. While long-tailed recognition has been extensively studied for image classification tasks, limited effort has been made for video domain. In this paper, we introduce VideoLT, a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. VideoLT contains 256,218 untrimmed videos, annotated into 1,004 classes with a long-tailed distribution. Through extensive studies, we demonstrate that state-of-the-art methods used for long-tailed image recognition do not perform well in the video domain due to the additional temporal dimension in video data. This motivates us to propose FrameStack, a simple yet effective method for long-tailed video recognition task. In particular, FrameStack performs sampling at the frame-level in order to balance class distributions, and the sampling ratio is dynamically determined using knowledge derived from the network during training. Experimental results demonstrate that FrameStack can improve classification performance without sacrificing overall accuracy. Code and dataset are available at:

Related Material

[pdf] [supp] [arXiv]
@InProceedings{Zhang_2021_ICCV, author = {Zhang, Xing and Wu, Zuxuan and Weng, Zejia and Fu, Huazhu and Chen, Jingjing and Jiang, Yu-Gang and Davis, Larry S.}, title = {VideoLT: Large-Scale Long-Tailed Video Recognition}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {7960-7969} }