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Abstract

Compact convolutional neural networks (CNNs) have
witnessed exceptional improvements in performance in re-
cent years. However, they still fail to provide the same pre-
dictive power as CNNs with a large number of parameters.
The diverse and even abundant features captured by the lay-
ers is an important characteristic of these successful CNNs.
However, differences in this characteristic between large
CNNs and their compact counterparts have rarely been in-
vestigated. In compact CNNs, due to the limited number of
parameters, abundant features are unlikely to be obtained,
and feature diversity becomes an essential characteristic.
Diverse features present in the activation maps derived from
a data point during model inference may indicate the pres-
ence of a set of unique descriptors necessary to distin-
guish between objects of different classes. In contrast, data
points with low feature diversity may not provide a sufficient
amount of unique descriptors to make a valid prediction; we
refer to them as random predictions. Random predictions
can negatively impact the optimization process and harm
the final performance. This paper proposes addressing the
problem raised by random predictions by reshaping the
standard cross-entropy to make it biased toward data points
with a limited number of unique descriptive features. Our
novel Bias Loss focuses the training on a set of valuable
data points and prevents the vast number of samples with
poor learning features from misleading the optimization
process. Furthermore, to show the importance of diversity,
we present a family of SkipblockNet models whose archi-
tectures are brought to boost the number of unique descrip-
tors in the last layers. Experiments conducted on bench-
mark datasets demonstrate the superiority of the proposed
loss function over the cross-entropy loss. Moreover, our
SkipblockNet-M can achieve 1% higher classification accu-
racy than MobileNetV3 Large with similar computational
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Figure 1. Accuracy v.s. FLOPs on ImageNet. Our SkipblockNet
model trained with the proposed bias loss outperforms previous
well-performing compact neural networks trained with the cross-
entropy loss.

cost on the ImageNet ILSVRC-2012 classification dataset.
The code is available on the link - https://github.
com/lusinlu/biasloss_skipblocknet.

1. Introduction
Deep CNNs have shown superior performance on nu-

merous computer vision tasks, such as classification, se-
mantic segmentation, and object detection. Typically, mod-
els with high predictive power contain a large number of pa-
rameters and require a substantial amount of floating point
operations (FLOPs); for example, Inception-v3 [45] has
approximately 24M parameters and requires 6GFLOPs to
process an image with a spatial size of 299 × 299 pixels.
With the advent of AI applications in mobile devices, sev-
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eral studies have focused on developing high-performance
CNNs for resource-constrained settings. Several studies
have focused on compressing existing high-performance
pretrained models. The compression of the models can
be achieved by performing quantization [51, 25, 56, 38,
29, 55], pruning [14, 13, 10, 16], or knowledge distilla-
tion [17, 4]. Typically, the downside of these methods is
an inevitable degradation of performance.

Another research line has focused on designing com-
pact neural networks and architectural units [34, 12, 49,
53, 6, 48]. For example, Xception [6] introduced a
cost-efficient replacement for the conventional convolution,
namely, depthwise separable convolution. ShuffleNet [53]
replaced convolutional layers with a combination of point-
wise group convolution with channel shuffle operation. The
authors of EfficientNet [48] proposed a scaling method
that uniformly scales a model’s width, depth, and resolu-
tion using a set of fixed scaling coefficients. However, a
significant performance improvement in these methods is
mostly connected with an increase in the number of param-
eters [49, 12]. The solution to this problem can be the de-
sign of a task-specific objective function. The advantage
of designing an objective function over the creation of a
new architecture is that the former approach can improve
the accuracy of a model without increasing the number of
parameters. In general, the preferred loss function for clas-
sification is the cross-entropy; however, there exist studies
indicating that other objectives can outperform the stan-
dard cross-entropy loss [46, 52, 32]. The authors of [46]
proposed to compute cross-entropy with the weighted mix-
ture of targets from the uniform distribution. In scenarios
where the class imbalance problem exists, [32] proposed to
down-weight the loss assigned to well-classified examples.
In [39], the authors proposed a meta-learning reweighting
algorithm in order to tackle the problem of label noise in
the dataset. Although these objectives achieve great perfor-
mance boost, they target specific problems related mostly to
the dataset and do not consider differences between the op-
timization of compact neural networks and their large coun-
terparts. Diverse and even abundant information in the fea-
ture maps of high-performance CNNs often guarantees a
comprehensive understanding of the input data. In compact
CNN, due to the small numbers of parameters, the amount
of extracted features will be smaller, and may not be suffi-
cient to describe the object to be classified. For certain data
points, these features may lack unique descriptors required
to distinguish between the objects of different classes. As
a result, in the absence of a sufficient amount of unique de-
scriptors, the model cannot produce a valid prediction. We
refer to these as random predictions that contribute no use-
ful learning signal to the optimization process.

To address this problem, we design Bias Loss, a new loss
that weights each data point’s contribution in proportion to

the diversity of features it provides. As a simple measure
of diversity, we take the signal’s variance, which describes
how far the feature maps’ values are spread from the aver-
age. Based on the variance, we design a nonlinear function,
whose values serve as weights for the cross-entropy. This
way, we let data points with diverse features have a higher
impact on the optimization process and reduce a mislead
caused by random predictions.

To further realize bias loss’s full potential, we propose
the SkipblockNet architecture to address the problem of a
lack of extracted features in the last layer. Specifically,
we design lightweight intermediate blocks to straightfor-
wardly transfer the low-level features from the first layers
to the lasts using skip connections. The usage of the pro-
posed blocks will increase the number of data points with a
large number of unique descriptors. Experimental results
showed that the proposed Bias Loss is able to boost the
performance of the existing mobile models, such as Mo-
bileNetV3 Large [18] (+0.5%), ShuffleNetV2 0.5× [35]
(+0.6%), SqueezeNet [23] (+1%). Moreover, Skipblock-
Net can surpass state-of-the-art compact neural networks
such as MobileNetV3, on numerous tasks with fast infer-
ence on mobile devices.

To summarize, our contributions are three-fold: (1) we
design a loss function to reduce the mislead in the opti-
mization caused by random predictions in compact CNNs;
(2) we propose an efficient neural architecture to increase
the number of data points with a large number of unique
descriptive features; (3) our model achieves state-of-the-art
performance on the ImageNet classification task under re-
source constrained settings.

2. Related Work
Many strategies have been proposed for designing

compact, computationally efficient, and high-performance
CNNs. Bellow, we present two major categories of solu-
tions: the design of mobile architectures and task-oriented
objective functions.

2.1. Mobile Architectures

Several CNN architectures have been developed for re-
source constraint settings [20, 19, 35, 23, 12, 34]. Among
them, the MobileNet [19, 42, 18] and ShuffleNet [53, 35]
families stand out due to their high performance achieved
with fewer FLOPs. MobileNetV2 [42] introduced in-
verted residual blocks to improve the performance over
MobileNetV1 [19]. Furthermore, MobileNetV3 [18] uti-
lized NAS (Neural Architecture Search) technology [47, 50,
37] resulting in achieving higher performance with fewer
FLOPs. ShuffleNet [53] introduced the channel shuffle op-
eration to boost the flow of the information within chan-
nel groups. ShuffleNetV2 [35] further improved the ac-
tual speed on hardware. Despite the high performance

6557



achieved with very few FLOPs, the importance of main-
taining unique descriptive features in the last layers of the
network has never been well exploited. To that end, we
propose SkipblockNet, an architecture that is designed to
increase the number of unique descriptive features in the
last layers and reduce the number of random predictions.
SkipblockNet shares many similarities with the previous
high-performance CNNs, in particular, the inverted resid-
ual blocks used in MobileNetV3 [18] and the concept of
skip connections utilized in U-Net [40]. We emphasize that
our simple modifications achieve superior results not due to
innovation in design but due to the combination of the net-
work with our novel loss. In this way, we can benefit from
the developed loss the most.

2.2. Objective Functions

The most common choice for the objective function in
many tasks is the cross-entropy. However, various studies
have indicated that the design of the loss function, aimed
to tackle a specific problem, can have significant bene-
fits [32, 39, 46, 57, 26, 22]. Lin et al. [32] proposed
to reshape the standard cross-entropy to address the prob-
lem of foreground-background class imbalance encountered
during the training of an object detector. The mechanism
of label smoothing [46] suggests using ”soft” targets in
the cross-entropy calculation. These “soft” targets are a
weighted mixture of original targets with the uniform dis-
tribution over labels. This technique helps preventing the
network from becoming over-confident in numerous tasks
like image classification, language translation, and speech
recognition. Various studies have attempted to address the
obstacle caused by noisy labels [39, 54]. In [39] the au-
thors introduce a variation of the weighted cross-entropy,
where weights are being learned by the multi-layer percep-
tron. The focus of these works has primarily been to op-
timize the performance of models with a large number of
parameters. On the contrary, our loss is designed to tackle
the problem arising because of the lack of parameters in
compact models, namely the problem of possible mislead
in an optimization process caused by random predictions.

3. Bias Loss
We design the Bias Loss to address the resource-

constrained classification scenario in which there can be a
mislead during the optimization process of deep convolu-
tional neural networks [30, 43, 15] caused by random pre-
dictions. We advocate that, in compact neural networks,
data points failing to provide a sufficient amount of unique
features that can describe the object force the model to pro-
duce random predictions, that is, predictions made in the
absence of feature diversity.

As a simple metric of diversity in all of our experiments,
we adopt the signal variance, which can indicate how far the
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Figure 2. The proposed nonlinear function z(v) given in (6), where
v is the scaled variance. The function comprises two hyperparame-
ters α, and β. An increase of β reduces the impact of low variance
data points on the cumulative loss. α controls the influence of the
high variance data points.
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Figure 3. Loss v.s. prediction probability (the output of the soft-
max) for (a) correct predictions and (b) incorrect predictions. Lce

denotes the cross-entropy and the α, β hyperparameters in the
Lbias loss are equal to 0.3.

feature maps’ values are spread out from the average. The
intuition behind this choice is that the higher the variance,
the higher the chances of obtaining a large number of unique
features. For the variance calculations, the feature maps of
the last convolutional layer (before the pooling and dropout
operations) are used. This helps avoiding distortions in the
results and estimating better the learning signal that a data
point provides. Let T ∈ Rb×c×h×w be the output of the
convolutional layer, where b is a batch size, c is a number of
input channels, and h and w are the height and width of the
tensor. Prior to the variance calculations, T is unfolded into
a two-dimensional array t ∈ Rb×n, where n = c × h × w.
The variance of the feature maps of the ith data point in the
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batch is equal to

vi =

∑n
j=1(tj − µ)2

n− 1
, (1)

where

µ =

∑n
j=1 tj

n
. (2)

In addition, the variance is scaled to the range [0, 1] for fur-
ther use in the loss function, that is,

vi =
(vi −min)

(max−min)
, (3)

where, at each iteration, max and min is the maximum and
minimum values of the activations in the batch of feature
maps. This is performed to ensure that outliers in the vari-
ance values will not lead to large changes in the loss and
will not make the model unstable.

Futhermore, we propose to inject this knowledge about
the absence of the unique descriptive features into the opti-
mization process, and to this end, we present the new loss
function, namely the Bias Loss. The bias loss is a dynam-
ically scaled cross-entropy loss, where the scale decays as
the variance of data point decreases.

Let X ∈ Rc×h×w be the feature space, where c is
a number of input channels and h, w are the height and
width of the input data, and Y = {1, ..., k} be the label
space, where k is the number of classes. In a standard sce-
nario, we are given a dataset D = (xi, yi)

N
i=1, where each

(xi, yi) ∈ X × Y , and a neural network f(x; θ), where θ
denotes the model parameters. Conventionally, the training
aims at learning a model by minimizing the expected loss
for the training set. In general, the cross-entropy loss for a
classification problem is

Lce = − 1

N

N∑
i=1

k∑
j=1

yij log fj(xi; θ), (4)

where we consider that the output layer of the neural net-
work is a softmax. In order to calibrate the contribution of
each data point into the cumulative loss, we propose to add
a nonlinear scaling function, which aims at creating a bias
between the data points with low and high variance. The
bias loss is defined as

Lbias = − 1

N

N∑
i=1

k∑
j=1

z(vi)yij log fj(xi; θ), (5)

z(vi) = exp(vi ∗ α)− β, (6)

where α and β are tunable contribution parameters and v is
the scaled variance of the output of the convolutional layer.
The bias function is visualized for several values of α and β

in Figure 3. We notice two properties of the bias function:
(i) when the variance is low, the function values reach their
minimum, (1 − β), and the impact of these data points is
down-weighted. As the variance increases, the z(v)’s val-
ues, together with the influence of the data point, exponen-
tially increase. (ii) The parameter α smoothly adjusts the
rate of the impact of high variance examples. With the in-
crease of α, the impact of high variance data points also
increases. In addition, Figure 2 presents the values of the
bias loss depending on the variance and the prediction score.
The loss is down-weighted mainly for low confidence and
low variance data points for both correct and incorrect pre-
dictions. Furthermore, it is up-weighted for the high con-
fidence and high variance incorrect predictions, as learn-
ing from this kind of data points with a large number of
unique features can have a positive impact on the optimiza-
tion process. Our empirical results suggest that selecting
α = 0.3, β = 0.3 leads to the best performance.

Intuitively, the proposed function helps focusing the
learning on examples that can provide a large number of
unique features and reducing the possible mislead in the op-
timization process caused by random predictions.

4. SkipblockNet Mobile Architectures
We also introduce a new computational block and a new

CNN architecture to further increase the gain in perfor-
mance obtained via the bias loss. The presented block can
be easily integrated into existing architectures and boost the
information flow toward the last layers, without additional
effort.

4.1. Skip Block

The idea of the skip block is to deliver the low-level fea-
tures directly from the first layers to the last ones. The
block’s design is motivated by the U-Net [40] architecture,
where, in an autoencoder style architecture, the outputs of
layers with the same spatial dimensions in the encoder and
decoder are connected via skip connections. Generally,
in classification networks, the layers’ spatial sizes gradu-
ally decrease, making it impossible to use skip connections
straightforwardly. To address this limitation, we propose
an intermediate block, which is brought to connect layers
with different spatial sizes and enrich the last layers with
the low-level features extracted from the first layers. As
shown in Figure 4, the skip block consists of a pooling op-
eration combined with convolutions. First, in order to keep
the key features and reduce the spatial sizes, we apply an
adaptive average pooling, followed by three convolutional
layers. Batch normalization (BN) [24] and ReLU nonlin-
earity [1] are applied after each convolutional layer except
for the last one where ReLU is not used. The choice of
the adaptive average pooling is motivated by the fact that
it takes all features into account, making it possible for the
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Figure 4. Overview of the SkipblockNet architecture. On top of the
inverted residuals [18], SkipblockNet uses skip blocks to transfer
high-level features of the first block to the last layers. The network
design is deliberately simple, which allows concentrating on the
contribution of the novel bias loss, which boosts the performance
by focusing the training on a set of data points with a rich learning
signal.

skip block to process all input values. Concerning the con-
volutional layers’ parameters, the setup proposed in Mo-
bileNetV3 for the inverted residual blocks is used.

4.2. SkipblockNet

Since our primary goal is to boost the number of unique
descriptive features in compact neural networks, while mit-
igating computational complexity, we propose a Skipblock-
Net architecture that deploys skip blocks. Due to its supe-
rior performance as a design baseline, we follow the archi-
tecture of MobileNetV3 [18]. SkipblockNet (Figure 4) con-
sists of the stack of inverted residual and the classification
blocks of MobileNetV3, and includes our novel skip block.
The first layer is a convolution with 16 filters followed by
15 inverted residual blocks. Two skip blocks are inserted af-
ter the first inverted residual block (Figure 4) with the pur-
pose of transferring the information to the sixth and tenth
inverted residual blocks. After the skip and inverted resid-
ual blocks, a convolutional layer and global average pool-
ing are applied before the final classification block, which
consist of dropout and fully connected layers. Similar to
MobileNetV3, we use hard-swish nonlinear functions due
to their efficiency. As can be seen in Table 2, the latency
of SkipblockNet on mobile devices is on par with that of
MobileNetV3. Although the described architecture can al-
ready guarantee high performance and low latency, there
can be situations where a faster model or higher accuracy
may be required. In order to provide a fully customizable
network, we integrate the width multiplier, presented in the

inverted residual block, into the skip block so as to to con-
trol the number of the channels in each layer. By manipu-
lating the width multiplier, the width of the entire network
can be changed. That will lead to changes in the model size
and computational cost, as well as changes in performance.
In general, increase of the multiplier will lead to increase in
the performance and latency, and vice versa. The presented
architectures give a basic design for reference, and for fur-
ther improvement, AutoML methods [2, 9, 27] can be used
to tune the skip blocks and boost the performance.

5. Experiments
We present empirical results to demonstrate the effi-

ciency of the novel bias loss and the proposed family of
SkipblockNet models. We report results on three tasks: im-
age classification, object detection, and transfer learning.
All experiments were performed on a single machine with
2 GeForce RTX 2080 Ti GPUs. Further, during trainings,
activation maps with outliers produce very high variances.
In turn, these high variances will lead to high values of the
bias function and make the training unstable. To avoid this
effect, in all experiments, we clamp the output of the bias
function to the range of [0.5, 1.5].

5.1. ImageNet Classification

We set experiments on ImageNet [41] and compare the
achieved accuracies versus various measures of resource us-
age such as FLOPs and latency.

Training Setup: ImageNet is a large-scale image clas-
sification dataset with over 1.2M training and 50K valida-
tion images belonging to 1000 classes. For experiments
on ImageNet, we follow most of the settings used in Effi-
cientNet [48]: the RMSProp optimizer with a decay of 0.9
and a momentum of 0.9; a batch norm momentum of 0.99;
a weight decay of 1e − 5; and an initial learning rate of
1e − 6 that increased to 0.032 in the initial 3 epochs [11]
and then decays by 0.97 every 2.4 epochs. Furthermore,
we adopt Inception preprocessing with an image size of
224 × 224 pixels [44], a batch size of 512, and comple-
ment the training with an exponential moving average with
a decay rate of 0.99995. The reported results are single-
crop performance evaluations on the ImageNet validation
set. The aforementioned setting is adopted in order to per-
form a fair comparison, as most of the state-of-the-art ar-
chitectures [49, 12, 34, 18] that we are comparing with are
using the same setup.

Results: Table 1 shows the performance of the Skip-
blockNet family models in relation to several modern
resource-constraint network architectures. The networks
are grouped into four levels of computational complex-
ity: 50 − 100, 100 − 200, 200 − 300, and 300 −
400 million FLOPs. We compare them in terms of accu-
racy, number of parameters and computational complex-
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Table 1. Comparison of state-of-the-art resource constraint neural networks over accuracy, FLOPs, and number of parameters. The results
are grouped into sections by FLOPs for better visualization.

Model FLOPs Parameters Top-1 Acc. (%) Top-5 Acc. (%)
MobileNetV2 0.5× [42] 97M 2.0M 65.4 86.4
MUXNet-xs [34] 66M 1.8M 66.7 86.8
MobileNetV3 Small 1.0× [18] 66M 2.9M 67.4 -
SkipblockNet-XS (with bias loss) 81M 2.3M 69.9 88.9
ShuffleNetV2 1.0× 146M 2.3M 69.4 88.9
MUXNet-s [34] 117M 2.4M 71.6 90.3
ChamNet-C [7] 212M 3.4M 71.6 -
MobileNetV3 large 0.75× 155M 4.0M 73.3 -
SkipblockNet-S (with bias loss) 152M 3.6M 73.8 91.4
FBNet-A [50] 249M 4.3M 73.0 -
MobileNetV3 Large 1.0× 219M 5.4M 75.2 -
MUXNet-m 218M 3.4M 75.3 92.5
GhostNet 1.3× 226M 7.3M 75.7 92.7
MixNet-S [49] 256M 4.1M 75.8 92.8
SkipblockNet-M (with bias loss) 246M 5.5M 76.2 92.8
ProxylessNAS [5] 320M 4.1 74.6 92.2
MnasNet-A2 [47] 340M 4.8M 75.6 92.7
EfficientNet-B0 [48] 390M 5.3 76.3 93.2
MUXNet-l 318M 4.0M 76.6 93.2
MobileNetV3 large 1.25× 356M 7.5M 76.6 -
SkipblockNet-L (with bias loss) 364M 7.1M 77.1 93.4

Table 2. Top-1 accuracy v.s. latency on Google Pixel family
phones (Pixel-n denotes a Google Pixel-n phone). All latencies
are in ms and are measured using a single core with a batch size of
one. The top-1 accuracy is calculated on ImageNet.

Model Top-1 (%) Pixel 4 Pixel 3
SkipblockNet-M 76.2 27 42
GhostNet 1.3× 75.7 27 41
MnasNet-A2 75.6 21 39
MobileNetV3 1.0× 75.2 26 38
MobileNetV2 1.0× 71.8 27 38

ity (FLOPs). Overall, our family of SkipblockNet mod-
els (SkipblockNet-XS, SkipblockNet-S, SkipblockNet-M,
SkipblockNet-L) trained with the bias loss outperforms
other competitors at the different computational complex-
ity levels. Specifically, SkipblockNet-M archieves 76.2%
accuracy with 246 MFLOPs, which is higher by 1% com-
pared with the MobileNetv3 Large [18] and by 0.4% com-
pared with MixNet-S [49]. Figure 1 and Figure 5 visualize
the trade-off obtained by SkipblockNet and previous com-
pact neural networks.

Inference Speed: We measure the inference speed of
the SkipblockNet-M on Google Pixel phones using the Py-
Torch V1.6 Mobile framework [36]. We use a single core
in all our measurements. Table 2 reports the latencies of
the SkipblockNet along with the other state-of-the-art com-
pact neural networks. The results suggest that Skipblock-

Table 3. Ablation study for different techniques. The baseline is
MobileNetV3 1.0× and the combination of the baseline with the
skip blocks is SkipblockNet-M.

Top-1 (%) baseline skip block bias loss
75.2 ✓
75.7 ✓ ✓
75.5 ✓ ✓
76.2 ✓ ✓ ✓

Net can achieve 1% higher accuracy than the MobileNetV3
with computational overhead higher only by 1ms on Google
Pixel 4.

Impact of Different Components on the Perfor-
mance: To investigate the importance of the different tech-
niques used in SkipblockNet, we conduct a series of ex-
periments on the ImageNet dataset, shown in Table 3. We
first consider the MobileNetV3, a baseline architecture for
our SkipblockNet, and trained it with the Bias Loss. As
shown in Table 3, the bias loss can increase the accuracy
of MobileNetV3 by 0.5%, compared with the training with
cross-entropy. To evaluate the impact of skip blocks, we ex-
amined the performance of the baseline MobileNetV3 with
the SkipblockNet-M (which is the MobileNetV3 architec-
ture plus skip blocks), both trained with the cross-entropy.
The results indicate that a gain of 0.3% can be obtained only
by using the skip blocks. Moreover, by enriching the last
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Figure 5. Top-1 classification accuracy v.s. number of parameters
on ImageNet for various compact CNNs. Our SkipblockNet is
trained with the proposed bias loss.

layers with the low-level information of the first layers, we
can increase the number of data points with high variance
and make the boost in the performance related to the us-
age of the bias loss even higher (i.e., an increase of 0.5%
in the case of MobileNetV3 and 0.7% for SkipblockNet-
M). Moreover, in order to show the skip blocks’ advantage
over a simple increase of the depth multiplier, we trained
MobileNetV3 1.05× with the 247M FLOPs and 5.9M
parameters and compare it with SkipblockNet-M (246M
FLOPs, 5.5M parameters). When trained with the cross-
entropy, SkipblockNet-M achieves 75.5% accuracy, while
MobileNetV3 1.05× achieves 75.3%.

5.2. Classification with Bias Loss

To verify the effectiveness of the proposed bias loss,
we apply it on several resource constraint neural networks
and conduct experiments using the CIFAR-100 [31] clas-
sification dataset. The CIFAR-100 dataset [31] consists of
60, 000 images from 100 classes. The dataset is divided into
50, 000 training and 10, 000 testing images. For training
on CIFAR-100, we use an SGD optimizer with a momen-
tum equal to 0.9 and a weight decay of 5e − 4. The initial
learning rate is set to 1e − 1 and then decays at the epochs
60, 120, 160 at a rate of 0.2. For data augmentation, im-
ages are randomly flipped horizontally and rotated between
the angles [−15, 15]. Table 4 reports the accuracy of neu-
ral networks trained with cross-entropy, focal loss [32] and
bias loss. The results shows that models trained with bias
loss systematically outperform models trained with cross-
entropy and focal loss by about 1% and 0.5%, respectively.
The results indicate that our loss can boost the performance
regardless of the architecture. In particular, when compared
with the cross-entropy, for ShuffleNetV2 [35] 0.5×, the ac-
curacy is increased by 1.5%, for SqueezeNet [23] by 1%,

Table 4. Comparison of compact CNNs accuracies trained on
CIFAR-100 with the bias loss and cross-entropy.

Model Params Top-1 (%) Top-1 (%) Top-1(%)
CE loss Focal loss Bias loss

ShuffleNetV2 0.5× 1.4M 69.5 69.8 71
MobileNetV2 0.75× 2.6M 68 68.2 68.6
NASNet-A (N = 4) 5.3M 77.2 77.5 78
SqueezeNet 1.25M 69.4 69.8 70.4
DenseNet (k = 12) 7M 78.9 79.5 79.9
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Figure 6. Transfer learning performance. Trade-off between top-1
accuracy and number of FLOPs.

and for MobileNetV2 0.75× [42] by 0.6%.

5.3. Transfer Learning

We have also evaluated our SkipblockNet on the transfer
learning task using the Food101 [3] dataset. Food-101 con-
sists of 75, 750 training and 25, 250 testing images from 101
different classes. Figure 6 compares the accuracy against
FLOPs for our models and the list of other neural networks.
Each SkipblockNet model is first trained from scratch on
ImageNet and all weights are fine-tuned on the Food101
dataset using a setup similar to [28]. The accuracy and
FLOPs results for the rest of the models are taken from [28].
The results show that our SkipblockNets significantly out-
perform previous compact neural networks and have accu-
racy on par with the models with a large number of param-
eters. Specifically, SkipblockNet-M achieves 0.95% higher
accuracy, than MobileNetV2 [42], with 1.2× higher effi-
ciency.

5.4. Object Detection

To evaluate the generalization ability of SkipblockNet,
we conduct object detection experiments on the PASCAL
VOC detection benchmark [8]. We use the PASCAL VOC
2012 trainval split as training data and report the mean Aver-
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Table 5. Average/Max/Min variances of the output of the n-th and last convolutional layers for different models, where BL and CE indicates
trainings with the bias loss and cross-entropy, respectively.

Model 5th layer 20th layer last layer

avg. max min avg. max min avg. max min

SkipblockNet-M (CE) 1.7 2.4 1.6 0.6 1.2 0.1 0.09 0.2 0.04
SkipblockNet-M (BL) 2. 2.5 1.7 1. 1.6 0.2 0.15 0.2 0.09
ShuffleNet (CE) 1.2 1.6 0.9 0.3 0.5 0.02 0.02 0.07 0.01
ShuffleNet (BL) 1.4 1.7 0.9 0.4 0.7 0.03 0.04 0.1 0.02
MobileNetV3 1.0× (CE) 1.7 2.3 1.6 0.4 1. 0.06 0.05 0.09 0.01
MobileNetV3 1.0× (BL) 1.9 2.4 1.9 0.7 1.5 0.1 0.09 0.1 0.03
Inception V3 (CE) 3.3 5.9 1.9 5.2 9.3 2.4 0.7 3.6 0.2
DenseNet (CE) 3 6.1 1.9 4.1 7.2 1.4 0.7 2.4 0.2

Table 6. The performance for PASCAL VOC2007 Detection.

Model Parameters FLOPs mAP (%)
VGG + SSD 26.2M 31B 77.2
MobileNet + SSD 9.4M 1.6B 67.5
MobileNetV2 + SSD 8.9M 1.4B 73.1
SkipblockNet-S + SSD 9.4M 1.4B 73.6

age Precision (mAP) on the test split. Our experiments use
the Single Shot Detector (SSD) [33] as a detection frame-
work and SkipblockNet as the feature extraction backbone.
To set up additional layers, we follow the procedure de-
scribed in MobileNetV2 [42]. We train all the models with
the SGD optimizer for 200 epochs, with a batch size of 42,
an input image size of 300×300×3, and an initial learning
rate of 0.01 with cosine annealing. Table 6 reports the mAP
achieved with the SkipblockNet compared with other mod-
els. Under similar resource usage, SkipblockNet-S + SSD
achieves 0.5% higher mAP than MobileNetV2 [42].

5.5. Analysis of the Variance in the Neural Networks

To show the role of the variance in the CNNs and the
impact that the bias loss and the skip blocks can have on it,
we conduct experiments on a range of well-known architec-
tures. We examine the distribution of the values in convolu-
tional layers in the networks with a large number of param-
eters like Inception V3 [45] and DensNet169 [21] and in
compact ones. The purpose of the experiment is to compare
the variance in the large and compact models and quantify
the boost in the variance that the bias loss and skip blocks
can provide. We took models pre-trained on ImageNet and
examined the average, maximum and minimum values of
the variance within the different layers. The results pre-
sented in Table 1 indicate that: (1) the variance in large
models is significantly higher than that in compact models.
Hence, large models can extract a decent amount of descrip-
tive features for almost all samples, and the proposed strat-

egy of reweighting will not boost their performance. (2) The
bias loss can increase the variance throughout the model.
(3) Skip blocks enrich later layers of a model with low-level
features, thereby increasing the variance (SkipblockNet-M
(CE) vs MobileNetV3 1.0×(CE)). The increase in the vari-
ance leads to the boost in the number of up-weighted data
points meaning that, in the case of training with the bias
loss, the optimizer will benefit from learning from more
useful data points. Hence, the combination of skip blocks
with the bias loss can bring a higher gain in accuracy.

6. Conclusion

In this paper, we proposed the Bias Loss, a novel loss
function designed to improve the performance of the com-
pact CNNs by reducing a mislead during the optimization
process caused by the data points with poor learning fea-
tures. Furthermore, we presented a family of Skipblock-
Net models whose architectures are brought to reduce the
number of data points with poor learning features. Our ex-
tensive experiments, conducted on benchmark datasets and
models, illustrate that the proposed loss is able to boost
the performance of existing compact CNNs. Moreover, our
SkipblockNet-M achieves significantly better accuracy and
efficiency than all the latest compact CNNs on the Ima-
geNet classification task.
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[2] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
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