Adversarial Example Detection Using Latent Neighborhood Graph

Ahmed Abusnaina , Yuhang Wu , Sunpreet Arora , Yizhen Wang ,
Fei Wang , Hao Yang , and David Mohaisen
University of Central Florida, Visa Research

ahmed.abusnaina@knights.ucf.edu,

mohaisen@ucf.edu,

yuhawu, sunarora, yizhewan, feiwang, haoyang @visa.com

e 20 = e

Input Image B Embedding Space
sl o
. g 2

=

|

o>

=

=)

=)

(<5

o

e

H o Adversarial

Pre-trained B ouery image
Classifier

Neighborhocfd Embeddings [S

Figure 1: Generation of Latent Neighborhood Graph (LNG) for adversarial example detection. After computing the input
example embedding, a LNG that describes the local manifold around the input example is constructed using both adversarial
and benign example embeddings from a reference database. The LNG is then classi ed using a graph discriminator to
determine whether the graph is generated from an adversarial or benign example.

Abstract

Detection of adversarial examples with high accuracy is
critical for the security of deployed deep neural network-
based models. We present the rst graph-based adversar-
ial detection method that constructs a Latent Neighborhood
Graph (LNG) around an input example to determine if the
input example is adversarial. Given an input example, se-
lected reference adversarial and benign examples (repre-
sented as LNG nodes in Figure 1) are used to capture the
local manifold in the vicinity of the input example. The LNG
node connectivity parameters are optimized jointly with the
parameters of a graph attention network in an end-to-end
manner to determine the optimal graph topology for ad-
versarial example detection. The graph attention network
is used to determine if the LNG is derived from an adver-
sarial or benign input example. Experimental evaluations
on CIFAR-10, STL-10, and ImageNet datasets, using six
adversarial attack methods, demonstrate that the proposed
method outperforms state-of-the-art adversarial detection
methods in white-box and gray-box settings. The proposed
method is able to successfully detect adversarial examples
crafted with small perturbations using unseen attacks.

1. Introduction

Deep learning techniques are being widely used in var-
ious domains including computer vision [6, 13, 10, 24],
natural language processing [12, 43], and speech recogni-
tion [16, 37]. However, an extensive line of research has
shown that an attacker can manipulate the prediction of a
deep learning-based classi cation system by adding a small
perturbation to deep learning model inputs, intermediate
embeddings [19, 11, 8], or by inducing distribution shifts
[26, 41]. These results highlight a major security issue for
deep neural network-based prediction systems, especially
the ones deployed in critical applications such as access
control and user authentication [49].

To address this security concern, a variety of defense
mechanisms have been proposed. These defense mecha-
nisms can be broadly categorized into two categories. The
proactive approaches, e.g. adversarial training [7, 14] and
robustness-driven regularization [42], explicitly considers
the presence of known adversarial attack methods to train
a model, which increases model robustness to adversarial
perturbation. However, in order to use this approach, ex-
isting models need to be re-trained, which can be costly.
In contrast, the reactive approach requires no re-training of

7687

existing models; instead, it builds a detector to Iter adver-
sarial examples in the test environment, and thus becomes
a viable solution for already deployed systems. In addition,
detection-based defense mechanisms can also help to iden-
tify security-compromised input sources.

A key nding of recent state-of-the-art detection meth-
ods [47, 38] is that there is a signi cant correlation between
the legitimacy of an input example and its neighborhood in-
formation in the learned embedding space. For instance, the
Deep k-Nearest Neighbors (DKNN) [47] detector computes
the embedding of nearest neighbors of the input example
at each layer of the network, and subsequently uses both
the embedding and the class labels of the nearest neigh-
bors to determine if the input is adversarial. Inspired by
this insight, we propose a method to leverage dynamically
constructed neighborhood graphs for detecting adversarial
examples. We introduce Latent Neighborhood Graph a
general structure encoding not only the neighbors of the in-
put, but also the relation between them to represent the
neighborhood of the input. Compared to DKNN, the bene-

ts of our solution are three folds: (i) LNG covers multi-hop
neighbors which characterizes the local manifolds of the in-
put example, while DKNN only describes the manifold of
the input example, (ii) LNG aggregates neighborhood in-
formation adaptively based on the connectivity learned on
the embedding space which encodes much richer informa-
tion than the class labels employed in DKNN, (iii) LNG in-
corporates both adversarial and benign neighbors in detec-
tion while DKNN only utilizes benign neighbors due to the
measurement of consistency of the neighborhood labels at
each layer of the network. In addition to information en-
coding, existing detectors are also limited by the computa-
tion cost. PeerNet [21], a graph-based convolutional net-
work claimed to be robust to adversarial attacks, relies on
pixel-wise neighborhood retrieval based on the intermedi-
ate 2D feature maps of a deep neural network, which in-
creases the computation burden at test time. To overcome
the aforementioned limitations, our approach purely relies
on the embeddings at the nal hidden layer of a deep neural
network. We show that a combination of graph attention net
and our novel LNG representation suf ce to achieve state-
of-the-art adversarial example detection performance.

In the proposed method, input example is used as a cen-
tral node to construct a latent graph connected with samples
curated from a reference dataset (see Figure 1). The graph
describes the local manifold patterns for both the input ex-
ample and its immediate benign and adversarial neighbors
for adversarial detection. Both the nodes and the linkage of
the graph are estimated on-the- y, and we train the graph
constructor and discriminator in an end-to-end manner. Ex-
perimental evaluations on three benchmark datasets show
that the proposed approach yields state-of-the-art adversar-
ial example detection performance against various known

and unknown adversarial attacks, while maintaining high
performance (more than 80%) against best-efforts white-
box attack con guration.

The contributions of this work are as follows:

We present the rst work that poses adversarial example
detection as a graph classi cation problem. Our method
ef ciently constructs a latent neighborhood graph using
reference examples for adversarial example detection.

The proposed method estimates the latent neighborhood
graph s adjacency matrix on-the- y based on the dis-
tances of neighborhood examples, and adaptively aggre-
gates the information from both benign and adversarial
neighbors for adversarial example detection.

State-of-the-art gray-box and white-box detection perfor-
mance on adversarial examples generated using known
and unseen adversarial example generation methods.

2. Related Work

A variety of proactive defense techniques have been pro-
posed to counter adversarial examples. Some of the earliest
ones include adversarial training [19, 7, 14, 35, 28], gradient
masking [14], distillation networks [29], feature squeezing
[36], and k-NN search [4, 48]. Reactive approaches, on the
contrary, aim to effectively learn to distinguish between be-
nign and adversarial examples [20, 44, 46, 18, 9]. For exam-
ple, Feiman et al. [32] develop a logistic regression-based
(LR) adversarial example detector that uses kernel density
and Bayesian uncertainty features. Ma et al. [38] estimate
a Local Intrinsic Dimensionality (LID) score at each neu-
ral network layer using extreme value theory, and charac-
terize key properties of the adversarial subspace for adver-
sarial example detection. Ma et al. [34] analyzed the deep
neural networks internals (i.e. weights) and proposed a net-
work invariants, including value invariants and provenance
invariants, extraction technique for adversarial example de-
tection. Even though the aforementioned methods achieve
competitive gray-box adversarial example detection accu-
racy, most of them can be circumvented using Carlini and
Wagner (CW) s optimization-based attack [1]. Recently,
Hu et al. [33] proposed an algorithm that demonstrated em-
pirical robustness to the CW attack. The two key steps used
in this algorithm are: (i) the application of Gaussian noise
on the input example, and (ii) the use of the number of steps
required to change the classi cation of the example (from
benign to adversarial and vice versa) as a distance metric to
counter the powerful CW attack.

Another family of approaches uses nearest neighbors for
adversarial defense. Deep k-Nearest Neighbors (DKNN)
[47] method uses a k-nearest neighbor model at every layer
of the network to assess if the input example is adversar-
ial. Nearest neighbors, especially those that do not belong

7688

Table 1: Comparison of different adversarial detection
methods based on information used for defense. Use of (i)
adversarial examples (Adv. Ex.) for training, (ii) input em-
bedding space (Embedding) for prediction, (iii) detection is
independent from the sample class (Class-indep.), and (iv)
Graph-based adversarial detection (Graph).

Method

Adv. training [14]
Cohen et al. [15]
Mahalanobis [23]
DkNN [47]

Hu et al. [33]
LID [38]

Ours

Adv. Ex. | Embedding | Class-indep. | Graph

to the majority class, are used for this determination. Kimin
et al. [23] proposed a Mahalanobis distance-based method
that models the distribution of samples in each class in-
dependently. Compared to [47, 23], our class-independent
method does not make any prior assumption on the data dis-
tribution of a speci ¢ class and are less sensitive to the num-
ber of samples in each class. Recently, Svoboda et al. [21]
propose PeerNets, a deep network structure that aggregates
information from nearest neighbors to improve the robust-
ness to adversarial attacks, and Cohen et al. [15] used the
in uence functions to identify important examples from a
training dataset for the adversarial example detection task,
and an LR classi er for predicting if the input example
is adversarial. While such approaches (e.g., [47, 21, 15])
yield competitive detection performance, they suffer from
high computational complexity: [47] requires the retrieval
of nearest neighbors from a subset of deep network layers,
[21] retrieves neighbors for each pixel on multiple 2D fea-
ture maps, and the method in [15] computes in uence func-
tions for the entire training dataset online.

Table 1 compares key differences in adversarial detection
methods based on the information used for detection.

3. Methodology

Our defense mechanism rst generates a latent neighbor-
hood graph (LNG) for each input example, and then uses
Graph Neural Networks (GNNs) to exploit the relationship
between nodes in the neighborhood graph to distinguish be-
tween benign and adversarial examples. The fundamental
premise is to harness the rich information in local mani-
folds with LNG, and use the GNNs model with its high
expressiveness to effectively nd higher-order patterns for
adversarial example detection from the local manifolds of
the nodes encoded in the graph.

Figure 2 shows the overview of our defense mechanism.
First, for each image in the data set, we extract its em-
bedding from the pre-trained neural network model we
are defending, and use the embedding representation there-

Input Image Embedding Center Node
O
(o} W o
— e,
M @)
Node Retrieval
Reference Data %, PN R -

22622 @ - ;

e e ® . @
o> %, 5> @& - .
525 : L ® . !
Ry

= ® 0
Zret (V.X)

A

Figure 2: Overview of the proposed method.

after instead of the original pixel values. In addition to the
training data for the original learning task, we maintain an
additional reference data set for retrieving the manifold in-
formation. A neighborhood of reference examples is se-
lected around from the reference set. After retrieving the
reference examples, we construct the following two matri-
ces: the embedding matrix stores the embeddings
of neighborhood examples, where each row is a em-
bedding vector of one example; the adjacency matrix

encodes the manifold relation between all pairs of exam-
ples in the neighborhood. Since is unknown, we propose
an ef cient algorithm to estimate based on the embed-
ding distance in the following sections. The LNG of is
characterized by these two matrices. Finally, a GNN model
ingests both and as inputs, and predicts whether s
an adversarial example.

In the following, we explain the main components of our
mechanism in detail. We rst describe the creation of refer-
ence dataset, followed by generation of LNG, and the struc-
ture of our GNN model for adversarial example detection.

3.1. Reference Dataset

Given a training set of inputs , we randomly sam-
ple a subset of inputs . We call such the clean
reference set because the inputs are all natural. Given a
trained model for the original task, we can also create an
adversarially-augmented reference set: we rst pick an at-
tack algorithm, create adversarial examples for all inputs in

against the given model, and add the adversarial ex-
amples to . The resulted adversarially-augmented ref-

7689

(b) Adversarial -NNG

(a) Benign -NNG

(c) Benign LNG (d) Adversarial LNG

Figure 3: Sample graphs generated by the proposed method. (a) and (c) show the -NNG and LNG for the benign image,
while (b) and (d) show the -NNG and LNG for the adversarial pair generated using the same image. Blue border refers to
the input image, while black and red borders refer to benign and adversarial neighbors, respectively.

erence set will have twice as many points as the clean ref-
erence set. We observe these adversarial samples are able
to encode information regarding the layout of adversarial
examples to benign examples in the local manifold.

3.2. Latent Neighborhood Graph

A latent neighborhood graph is characterized by an em-
bedding matrix and an adjacency matrix . We construct
an LNG by a 2-step procedure node retrieval followed by
edge estimation. The node retrieval process selects a set of
points in s neighborhood from the reference data set.
Stacking the embedding vectors of these points (including

) yields the embedding matrix . Edge estimation uses
a data-driven approach to determine the relationships be-
tween nodes in , which yields the adjacency matrix

3.2.1 Node Retrieval

The construction of starts with the -nearest-neighbor
graph (-NNG) of the input and the nodes in . each
pointin is a node in the graph, and an edge from
node tonode existsiff isamong stop- nearestneigh-
bors in Euclidean distance over the embedding space. We
then keep the nodes whose graph distance from in the -
NNG is within a threshold . For example, if , then we
only keep the immediate top- nearest neighbors of (one-
hop neighbors); if , then we also keep the nearest
neighbors for each s one-hop neighbors. Finally, we form

with neighbors to . Based on this breadth- rst-search
strategy to construct , the node retrieval method discovers
all nodes with a xed graph distance to , repeats the same
procedure with increased graph distance until the maximum
graph distance is reached, and then returns the neighbors
to from the discovered nodes.

Our approach can harness manifold information that is
otherwise not possible using Euclidean distance, e.g. the
Swiss-roll scenario [22]. We also note that when ,

the node retrieval process is equivalent to selecting nearest
neighbors, like DKNN. Therefore, our approach offers more
exibility in learning the local manifold.

3.2.2 Edge Estimation

Next, we determine the edges of the LNG based on the
nodes of -NNG. The edges are paths to control the infor-
mation aggregation across the graph, which creates the con-
text to determine the center node s class. Since each node s
embedding is extracted independently, it is important to let
the system automatically determine the context used for ad-
versarial detection, and also aware of the pair-wise relation
between the query example and its neighbors. Motivated
by the design of Cosmo et al. [25], we connected all the
nodes in the generated graph with the center node using di-
rect linking and adopt a data-driven approach to re-estimate
the connections between neighbors. In particular, we model
the relation between two nodes as a sigmoid function of
the Euclidean distance between them:

where is the Euclidean distance between and , and
are two constant coef cients. Instead of manually as-
signing the coef cients and , we make them learnable
parameters and optimize them in an end-to-end manner with
the graph discriminator introduced in the next section.
Figure 3 shows the -NNG and LNG for a benign and
its corresponding CW-based adversarial dog image from
the CIFAR-10 dataset. The neighborhood nodes are highly
related to the input image embedding, while the connections
of LNG are estimated using the proposed approach.

3.3. Graph Discriminator

We use a speci ¢ graph attention network architec-
ture [31] to aggregate information from z and its neighbors,

7690

and at the same time learn the optimal and to create
the right context from z neighbors for adversarial detec-
tion. The network takes two inputs: the embedding matrix

and the adjacency matrix of the latent neighborhood
graph. The graph attention network architecture consists of
four consecutive graph attention layers, followed by a dense
layer with 512 neurons, and a dense classi cation layer with
two-class output. Formally, let denote a function in the
model class, and let ~ and denote the embedding and
adjacency matrix of an input generated by our LNG algo-
rithm. During the training stage, we solve:

where is the cross-entropy loss between the class probabil-
ity prediction and the true label. To summarize, method can
characterize the local manifold with LNG, and can adapt to
different local manifolds based on graph attention network.
Both factors are vital to our choice of using a GNN struc-
ture, and the empirical improvement of detection rates in
Section 4 validates our belief.

4. Experiments

The proposed adversarial example detection approach
is evaluated against six state-of-the-art adversarial example
generation methods: FGSM (),PGD (), CW (),
AutoAttack (), Square (), and boundary attack. All
attacks are implemented as non-targeted attacks on three
datasets: CIFAR-10 [5], ImageNet dataset [6], and STL-
10 [3]. The non-targeted attacks are typically harder than
the targeted attacks to detect, as less perturbation is applied.
The performance is compared to four state-of-the-art adver-
sarial examples detection approaches, namely DkNN [47],
kNN [4], LID [38], as well as Hu et al. [33].

DKNN [47]: checks the label consistency of neighborhood
examples in each deep network layers to test whether the
input example is off-manifold .

KNN [4]: shares the same intuition with DKNN. However,
because it was originally proposed to work on a web-scale
database, it uses fewer layers than DKNN. We converted this
approach into an adversarial detector and employed the em-
bedding layer for the nearest neighbors retrieval.

LID [38]: characterizes properties of adversarial exam-
ples, which can be facilitated to detect adversarial examples
when accompanied with a simple k-NN classi er.

Hu et al. [33]: is one of the most recent algorithms for ad-
versarial detection, and was demonstrated to be extremely
robust to white-box adversarial attacks. The method relies
on an online search stage to measure the distance of the in-
put example to a decision boundary.

4.1. Experimental Setup
Training and Testing. The CIFAR-10 dataset is split into

Table 2: Detection performance (AUC) of the -NNG dis-
criminator for different number of neighbors ().

Neighbors
2 3 4 5 6
96.39% | 98.86% | 99.23% | 99.54% | 99.17%

three subsets, training set (45,000 images), reference set
(5,000 images), and testing set (10,000 images). For Ima-
geNet [30] dataset, we use the reference dataset of the 2012
original set, which contains a total of 50,000 labeled images
(50 images per class). The dataset is split into two subsets,
reference set (40,000) and testing set (10,000). For STL-10
dataset, we split the labeled images into three sets: training
set (4,000 images), reference set (1,000 images), and testing
set (8,000 images).

The ResNet-110 [40] classi er is trained on the CIFAR-
10 training set and yields a classi cation accuracy of
93.41%. A pre-trained Densenet-121 [17] model with em-
bedding of size and a reported accuracy of 75%
is used for ImageNet. For STL-10 dataset, ResNet-20 clas-
si er with classi cation accuracy of 82.30% is used. Any
reference or testing examples incorrectly classi ed by the
classi er were discarded.

The discriminator is trained on graphs generated using
the reference dataset (see section 3) and adversarial exam-
ples generated using one adversarial attack method on the
same dataset. We evaluate the performance of the discrimi-
nator using 100 random examples per class from the testing
dataset for CIFAR-10, and the whole testing dataset for Im-
ageNet and STL-10. Adversarial Robustness Toolbox [27]
is used for implementing the adversarial attacks. For the
baseline evaluation, we follow the same con gurations used
in the original DKNN [47] approach. For Huetal. s [33] and
LID [38] adversarial detectors, the reference set is used to
determine the thresholds that provide the best detection per-
formance. All baseline adversarial detectors are trained on
the reference dataset augmented with adversarial examples,
and evaluated on the test set similar to our discriminator.
Parameter Tuning. To demonstrate the ef ciency of the
proposed method, we select for k-nearest neighbor-
based graph generation (section 3.2.1). To determine , a
line search is used. Table 2 shows the effect of changing
on the FGSM adversarial examples detection performance
on the CIFAR-10 dataset using -NNG. We set in our
approach considering the trade-off between benign and ad-
versarial accuracy. To nd the optimal number of neighbors
in DKNN and kNN, we tested [10, ———] and
then select for CIFAR-10 dataset, and for
STL-10 and ImageNet datasets.

Feature space. To obtain the node feature for each neigh-
borhood example, we use the image embedding generated

7691

