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Abstract

We present “Cross-Camera Convolutional Color Con-
stancy” (C5), a learning-based method, trained on images
from multiple cameras, that accurately estimates a scene’s
illuminant color from raw images captured by a new camera
previously unseen during training. C5 is a hypernetwork-
like extension of the convolutional color constancy (CCC)
approach: C5 learns to generate the weights of a CCC
model that is then evaluated on the input image, with the
CCC weights dynamically adapted to different input con-
tent. Unlike prior cross-camera color constancy models,
which are usually designed to be agnostic to the spectral
properties of test-set images from unobserved cameras, C5
approaches this problem through the lens of transductive in-
ference: additional unlabeled images are provided as input
to the model at test time, which allows the model to cali-
brate itself to the spectral properties of the test-set camera
during inference. C5 achieves state-of-the-art accuracy for
cross-camera color constancy on several datasets, is fast to
evaluate (∼7 and ∼90 ms per image on a GPU or CPU,
respectively), and requires little memory (∼2 MB), and thus
is a practical solution to the problem of calibration-free au-
tomatic white balance for mobile photography.

1. Introduction

The goal of computational color constancy is to emu-
late the human visual system’s ability to constantly perceive
object colors even when they are observed under differ-
ent illumination conditions. In many contexts, this problem
is equivalent to the practical problem of automatic white
balance—removing an undesirable global color cast caused
by the illumination in the scene, thereby, making it appear to
have been imaged under a white light (see Figure 1). White
balance does not only affect the quality of photographs but
also has an impact on the accuracy of different computer vi-
sion tasks [3]. On modern digital cameras, automatic white
balance is performed for all captured images as an essential
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Figure 1: Our C5 model exploits the colors of unlabeled addi-
tional images captured by the new camera model to generate a spe-
cific color constancy model for the input image. These additional
images can be randomly loaded from the photographer’s “cam-
era roll”, or they could be a fixed set taken once by the camera
manufacturer. The shown images were captured by unseen DSLR
and smartphone camera models [38] that were not included in the
training stage.

part of the camera’s imaging pipeline.
Color constancy is a challenging problem, because it

is fundamentally under-constrained: an infinite family of
white-balanced images and global color casts can explain
the same observed image. Color constancy is, therefore, of-
ten framed in terms of inferring the most likely illuminant
color given some observed image and some prior knowl-
edge of the spectral properties of the camera’s sensor.

One simple heuristic applied to the color constancy prob-
lem is the “gray-world” assumption: that colors in the world
tend to be neutral gray and that the color of the illuminant
can, therefore, be estimated as the average color of the input
image [14]. This gray-world method and its related tech-
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Figure 2: A visualization of uv log-chroma histograms (u =
log(g/r), v = log(g/b)) of images from two different cameras
averaged over many images of the same scene set in the NUS
dataset [15] (shown in green), as well as the uv coordinate of the
mean of ground-truth illuminants over the entire scene set (shown
in yellow). The “positions” of these histograms change signif-
icantly across the two camera sensors because of their different
spectral sensitivities, which is why many color constancy models
generalize poorly across cameras.

niques have the convenient property that they are invari-
ant to much of the spectral sensitivity differences among
camera sensors and, therefore, very well-suited to the cross-
camera task. If camera A’s red channel is twice as sensitive
as camera B’s red channel, then a scene captured by cam-
era A will have an average red intensity that is twice that
of the scene captured by camera B, and so gray-world will
produce identical output images (though this assumes that
the spectral response of A and B are identical up to a scale
factor, which is rarely the case in practice). However, cur-
rent state-of-the-art learning-based methods for color con-
stancy rarely exhibit this property, because they often learn
things like the precise distribution of likely illuminant col-
ors (a consequence of black-body illumination and other
scene lighting regularities) and are, therefore, sensitive to
any mismatch between the spectral sensitivity of the cam-
era used during training and that of the camera used at test
time [2].

Because there is often significant spectral variation
across camera models (as shown in Figure 2), this sensi-
tivity of existing methods is problematic when designing
practical white-balance solutions. Training a learning-based
algorithm for a new camera requires collecting hundreds,
or thousands, of images with ground-truth illuminant color
labels (in practice: images containing a color chart), a bur-
densome task for a camera manufacturer or platform that
may need to support hundreds of different camera models.
However, the gray-world assumption still holds surprisingly
well across sensors—if given several images from a partic-
ular camera, one can do a reasonable job of estimating the
range of likely illuminant colors (as can also be seen in Fig-
ure 2).

In this paper, we propose a camera-independent color
constancy method. Our method achieves high-accuracy
cross-camera color constancy through the use of two con-
cepts: First, our system is constructed to take as input not
just a single test-set image, but also a small set of additional

images from the test set, which are: (i) arbitrarily-selected,
(ii) unlabeled, (iii) and not white balanced. This allows the
model to calibrate itself to the spectral properties of the
test-time camera during inference. We make no assump-
tions about these additional images except that they come
from the same camera as the “target” test set image and
they contain some content (not all black or white images).
In practice, these images could simply be randomly cho-
sen images from the photographer’s “camera roll”, or they
could be a fixed set of ad hoc images of natural scenes taken
once by the camera manufacturer—because these images
do not need to be annotated, they are abundantly available.
Second, our system is constructed as a hypernetwork [28]
around an existing color constancy model. The target image
and the additional images are used as input to a deep neural
network whose output is the weights of a smaller color con-
stancy model, and those generated weights are then used to
estimate the illuminant color of the target image.

Our system is trained using labeled (and unlabeled) im-
ages from multiple cameras, but at test time our model is
able to look at a set of (unlabeled) test set images from a
new camera. Our hypernetwork is able to infer the likely
spectral properties of the new camera that produced the test
set images (much as the reader can infer the likely illu-
minant colors of a camera from only looking at aggregate
statistics, as in Figure 2) and produce a small model that has
been dynamically adapted to produce accurate illuminant
estimates when applied to the target image. Our method is
computationally fast and requires a low memory footprint
while achieving state-of-the-art results compared to other
camera-independent color constancy methods.

2. Prior Work
There is a large body of literature proposed for illu-

minant color estimation, which can be categorized into
statistical-based methods (e.g., [13–15,20,26,34,47,51,54])
and learning-based methods (e.g., [8,9,11,12,19,21,24,25,
31, 42, 44, 45, 49, 52, 60]). The former rely on statistical-
based hypotheses to estimate scene illuminant colors based
on the color distribution and/or spatial layout of the input
raw image. Such methods are usually simple and efficient,
but they are less accurate than the learning-based alterna-
tives.

Learning-based methods, on the other hand, are typically
trained for a single target camera model in order to learn the
distribution of illuminant colors produced by the target cam-
era’s particular sensor [2,23,37]. The learning-based meth-
ods are typically constrained to the specific, single camera
use-case, as the spectral sensitivity of each camera sensor
significantly alters the recorded illuminant and scene colors,
and different sensor spectral sensitivities change the illumi-
nant color distribution for the same set of scenes [32, 58].
Such camera-specific methods cannot accurately extrapo-
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late beyond the learned distribution of the training camera
model’s illuminant colors [2, 47] without tuning/re-training
or pre-calibration [39].

Recently, few-shot and multi-domain learning tech-
niques [44, 59] have been proposed to reduce the effort of
re-training camera-specific learned color constancy models.
These methods require only a small set of labeled images
for a new camera unseen during training. In contrast, our
technique requires no ground-truth labels for the unseen
camera, and is essentially calibration-free for this new sen-
sor.

Another strategy has been proposed to white balance the
input image with several illuminant color candidates and
learn the likelihood of properly white-balanced images [29].
Such a Bayesian framework requires prior knowledge of the
target camera model’s illuminant colors to build the illumi-
nant candidate set. Despite promising results, these meth-
ods, however, all require labeled training examples from the
target camera model: raw images paired with ground-truth
illuminant colors. Collecting such training examples is a te-
dious process, as certain conditions must be satisfied—i.e.,
for each image to have a single uniform lighting and a cali-
bration object to be present in the scene [15].

An additional class of work has sought to learn sensor-
independent color constancy models, circumventing the
need to re-train or calibrate to a specific camera model.
A recent quasi-unsupervised approach to color constancy
has been proposed, which learns the semantic features of
achromatic objects to help build a model robust to differ-
ing camera sensor spectral sensitivities [10]. Another tech-
nique proposes to learn an intermediate “device indepen-
dent” space before the illuminant estimation process [2].
The goal of our method is similar, in that we also pro-
pose to learn a color constancy model that works for all
cameras, but neither of these previous sensor-independent
approaches leverages multiple test images to reason about
the spectral properties of the unseen camera model. This
enables our method to outperform these state-of-the-art
sensor-independent methods across diverse test sets.

Though not commonly applied in color constancy tech-
niques, our proposal to use multiple test-set images at
inference-time to improve performance is a well-explored
approach across machine learning. The task of classify-
ing an entire test set as accurately as possible was first de-
scribed by Vapnik as “transductive inference” [33, 55]. Our
approach is also closely related to the work on domain adap-
tation [17, 50] and transfer learning [46], both of which
attempt to enable learning-based models to cope with dif-
ferences between training and test data. Multiple sRGB
camera-rendered images of the same scene have been used
to estimate the response function of a given camera in the
radiometric calibration literature [27, 35]. In our method,
however, we employ additional images to learn to extract in-

formative cues about the spectral sensitivity of the camera
capturing the input test image, without needing to capture
the same scene multiple times.

3. Method
We call our system “cross-camera convolutional color

constancy” (C5), because it builds upon the existing “con-
volutional color constancy” (CCC) model [8] and its suc-
cessor “fast Fourier color constancy” (FFCC) [9], but em-
beds them in a multi-input hypernetwork to enable accurate
cross-camera performance. These CCC/FFCC models work
by learning to perform localization within a log-chroma his-
togram space, such as those shown in Figure 2.

Here, we present a convolutional color constancy model
that is a simplification of those presented in the original
work [8] and its FFCC follow-up [9]. This simple convo-
lutional model will be a fundamental building block that we
will use in our larger neural network. The image formation
model behind CCC/FFCC (and most color constancy mod-
els) is that each pixel of the observed image is assumed to
be the element-wise product of some “true” white-balanced
image (or equivalently, the observed image if it were im-
aged under a white illuminant) and some illuminant color:

∀k c(k) = w(k) ◦ ℓ , (1)

where c(k) is the observed color of pixel k, w(k) is the true
color of the pixel, and ℓ is the color of the illuminant, all of
which are 3-vectors of RGB values. Color constancy algo-
rithms traditionally use the input image {c(k)} to produce
an estimate of the illuminant ℓ̂ that is then divided (element-
wise) into each observed color to produce an estimate of the
true color of each pixel, {ŵ(k)}.

CCC defines two log-chroma measures for each pixel,
which are simply the log of the ratio of two color channels:

u(k) = log
(
c(k)g /c(k)r

)
, v(k) = log

(
c(k)g /c

(k)
b

)
. (2)

As noted by Finlayson, this log-chrominance representa-
tion of color means that illuminant changes (i.e. element-
wise scaling by ℓ) can be modeled simply as additive offsets
to this uv representation [18]. We then construct a 2D his-
togram of the log-chroma values of all pixels:

N0(u, v) =
∑
k

||c(k)||2
[∣∣∣u(k) − u

∣∣∣ ≤ ϵ ∧
∣∣∣v(k) − v

∣∣∣ ≤ ϵ
]
. (3)

This is simply a histogram over all uv coordinates of size
(64× 64) written out using Iverson brackets, where ϵ is the
width of a histogram bin, and where each pixel is weighted
by its overall brightness under the assumption that bright
pixels provide more actionable signal than dark pixels. As
was done in FFCC, we construct two histograms: one of
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pixel intensities, N0, and one of gradient intensities, N1.
The latter is constructed analogously to Equation 3.

These histograms of log-chroma values exhibit a useful
property: element-wise multiplication of the RGB values of
an image by a constant results in a translation of the result-
ing log-chrominance histograms. The core insight of CCC
is that this property allows color constancy to be framed as
the problem of “localizing” a log-chroma histogram in this
uv histogram-space [8]—because every uv location in N
corresponds to a (normalized) illuminant color, ℓ, the prob-
lem of estimating ℓ is reducible (in a computability sense)
to the problem of estimating a uv coordinate. This can be
done by discriminatively training a “sliding window” clas-
sifier much as one might train, say, a face-detection system:
the histogram is convolved with a (learned) filter and the
location of the argmax is extracted from the filter response,
and that argmax corresponds to uv value that is (the inverse
of) an estimated illumination location.

We adopt a simplification of the convolutional structure
used by FFCC [9]:

P = softmax

(
B +

∑
i

(
Ni ∗ Fi

))
, (4)

where {Fi} and B are filters and a bias, respectively, which
have the same shape as Ni. Each histogram, Ni, is con-
volved with each filter, Fi, and summed across channels (a
“conv” layer). Then, the bias, B, is added to that summa-
tion, which collectively biases inference towards uv coordi-
nates that correspond to common illuminants, such as black
body radiation.

As was done in FFCC, this convolution is accelerated
through the use of FFTs, though, unlike FFCC, we use a
non-wrapped histogram, and thus non-wrapped filters and
bias. This avoids the need for the complicated “de-aliasing”
scheme used by FFCC which is not compatible with the
convolutional neural network structure that we will later in-
troduce.

The output of the softmax, P , is effectively a “heat map”
of what illuminants are likely, given the distribution of pixel
and gradient intensities reflected in N and in the prior B,
from which, we extract a “soft argmax” by taking the ex-
pectation of u and v with respect to P :

ℓ̂u =
∑
u,v

uP (u, v) , ℓ̂v =
∑
u,v

vP (u, v). (5)

Equation 5 is equivalent to estimating the mean of a fit-
ted Gaussian, in the uv space, weighted by P . Because
the absolute scale of ℓ is assumed to be irrelevant or unre-
coverable in the context of color constancy, after estimating
(ℓ̂u, ℓ̂v), we produce an RGB illuminant estimate, ℓ̂, that
is simply the unit vector whose log-chroma values match
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Figure 3: An overview of our C5 model. The uv histograms for
the input query image and a variable number of additional input
images taken from the same sensor as the query are used as input
to our neural network, which generates a filter bank {Fi} (here
shown as one filter) and a bias B, which are the parameters of a
conventional CCC model [8]. The query uv histogram is then con-
volved by the generated filter and shifted by the generated bias to
produce a heat map, whose argmax is the estimated illuminant [8].

our estimate:

ℓ̂ =
(
exp

(
−ℓ̂u

)
/z, 1/z, exp

(
−ℓ̂v

)
/z
)
, (6)

z =

√
exp

(
−ℓ̂u

)2
+ exp

(
−ℓ̂v

)2
+ 1. (7)

A convolutional color constancy model is then trained
by setting {Fi} and B to be free parameters which are then
optimized to minimize the difference between the predicted
illuminant, ℓ̂, and the ground-truth illuminant, ℓ∗.

3.1. Architecture

With our baseline CCC/FFCC-like model in place, we
can now construct our cross-camera convolutional color
constancy model (C5), which is a deep architecture in which
CCC is a component. Both CCC and FFCC operate by
learning a single fixed set of parameters consisting of a sin-
gle filter bank {Fi} and bias B. In contrast, in C5 the fil-
ters and bias are parameterized as the output of a deep neu-
ral network (parameterized by weights θ) that takes as in-
put not just log-chrominance histograms for the image be-
ing color-corrected (which we will refer to as the “query”
image), but also log-chrominance histograms from several
other randomly selected input images (but with no ground-
truth illuminant labels) from the test set.

By using a generated filter and bias from additional im-
ages taken from the query image’s camera (instead of using
a fixed filter and bias as was done in previous work) our
model is able to automatically “calibrate” its CCC model
to the specific sensor properties of the query image. This
can be thought of as a hypernetwork [28], wherein a deep
neural network emits the “weights” of a CCC model, which
is itself a shallow neural network. This approach also bears
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some similarity to a Transformer approach, as a CCC model
can be thought of as “attending” to certain parts of a log-
chroma histogram, and so our neural network can be viewed
as a sort of self-attention mechanism [56]. See Figure 3 for
a visualization of this data flow.

At the core of our model is the deep neural network that
takes as input a set of log-chroma histograms and must pro-
duce as output a CCC filter bank and bias map. For this
we use a multi-encoder-multi-decoder U-Net-like architec-
ture [48]. The first encoder is dedicated to the “query” in-
put image’s histogram, while the rest of the encoders take
as input the histograms corresponding to the additional in-
put images. To allow the network to reason about the set
of additional input images in a way that is insensitive to
their ordering, we adopt the permutation invariant pooling
approach of Aittala et al. [4]: we use max pooling across
the set of activations of each branch of the encoder. This
“cross-pooling” gives us a single set of activations that are
reflective of the set of additional input images, but are ag-
nostic to the particular ordering of those input images. At
inference time, these additional images are needed to allow
the network to reason about how to use them in challenging
cases. The cross-pooled features of the last layer of all en-
coders are then fed into two decoder blocks. Each decoder
produces one component of our CCC model: a bias map,
B, and two filters, {F0, F1} (which correspond to pixel and
edge histograms, {N0, N1}, respectively).

As per the traditional U-Net structure, we use skip con-
nections between each level of the decoder and its corre-
sponding level of the encoder with the same spatial resolu-
tion, but only for the encoder branch corresponding to the
query input image’s histogram. Each block of our encoder
consists of a set of interleaved 3×3 conv layers, leaky ReLU
activation, batch normalization, and 2×2 max pooling, and
each block of our decoder consists of 2× bilinear upsam-
pling followed by interleaved 3×3 conv layers, leaky ReLU
activation, and instance normalization.

When passing our 2-channel (pixel and gradient) log-
chroma histograms to our network, we augment each his-
togram with two extra “channels” comprising of only the u
and v coordinates of each histogram, as in CoordConv [40].
This augmentation allows a convolutional architecture on
top of log-chroma histograms to reason about the absolute
“spatial” information associated with each uv coordinate,
thereby allowing a convolutional model to be aware of the
absolute color of each histogram bin (see supplementary
materials for an ablation study). Figure 4 shows a detailed
visualization of our architecture.

3.2. Training

Our model is trained by minimizing the angular error
[30] between the predicted unit-norm illuminant color, ℓ̂,
and the ground-truth illuminant color, ℓ∗, as well as an ad-

ditional loss that regularizes the CCC models emitted by our
network. Our loss function L(·) is:

L
(
ℓ∗, ℓ̂

)
= cos−1

(
ℓ∗ · ℓ̂
∥ℓ∗∥

)
+ S ({Fi(θ)}, B(θ)) , (8)

where S(·) is a regularizer that encourage the network to
generate smooth filters and biases, which reduces over-
fitting and improves generalization:

S ({Fi}, B) = λB(∥B ∗ ∇u∥2 + ∥B ∗ ∇v∥2)

+λF

∑
i

(∥Fi ∗ ∇u∥2 + ∥Fi ∗ ∇v∥2) , (9)

where ∇u and ∇v are 3×3 horizontal and vertical Sobel fil-
ters, respectively, and λF and λB are multipliers that control
the strength of the smoothness for the filters and the bias,
respectively. This regularization is similar to the total vari-
ation smoothness prior used by FFCC [9], though here we
are imposing it on the filters and bias generated by a neural
network, rather than on a single filter bank and bias map.
We set the multiplier hyperparameters λF and λB to 0.15
and 0.02, respectively (see supplementary materials for an
ablation study).

In addition to regularizing the CCC model emitted by our
network, we additionally regularize the weights of our net-
work themselves, θ, using L2 regularization (i.e., “weight
decay”) with a multiplier of 5×10−4. This regularization
of our network serves a different purpose than the regu-
larization of the CCC models emitted by our network—
regularizing {Fi(θ)} and B(θ) prevents over-fitting by the
CCC model emitted by our network, while regularizing θ
prevents over-fitting by the model generating those CCC
models.

Training is performed using the Adam optimizer [36]
with hyperparameters β1 = 0.9, β2 = 0.999, for 60 epochs.
We use a learning rate of 5×10−4 with a cosine anneal-
ing schedule [41] and increasing batch-size (from 16 to
64) [43, 53] which improve the stability of training (see the
supplementary materials for an ablation study).

When training our model for a particular camera model,
at each iteration we randomly select a batch of training im-
ages (and their corresponding ground-truth illuminants) for
use as query input images, and then randomly select eight
additional input images for each query image from the train-
ing set for use as additional input images. See the supple-
mentary materials for results of multiple versions of our
model in which we vary the number of additional images
used.

4. Experiments and Discussion
In all experiments we used 384×256 raw images after

applying the black-level normalization and masking out the
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Figure 4: An overview of neural network architecture that emits CCC model weights. The uv histogram of the query image along with
additional input histograms taken from the same camera are provided as input to a set of multiple encoders. The activations of each
encoder are shared with the other encoders by performing max-pooling across encoders after each block. The cross-pooled features at the
last encoder layer are then fed into two decoder blocks to generate a bias and filter bank of an CCC model for the query histogram. Each
scale of the decoder is connected to the corresponding scale of the encoder for query histogram with skip connections. The structure of
encoder and decoder blocks is shown at the upper right corner.

Real Fujifilm X-M1 raw image

Mapped to Nikon D40’s sensor space

Mapped to the CIE XYZ space

Real Nikon D40 raw image

Figure 5: An example of the image mapping used to augment
training data. From left to right: a raw image captured by a Fuji-
film X-M1 camera; the same image after white-balancing in CIE
XYZ; the same image mapped into the Nikon D40 sensor space;
and a real image captured by a Nikon D40 of the same scene for
comparison [15].

calibration object to avoid any “leakage” during the eval-
uation. Excluding histogram computation time (which is
difficult to profile accurately due to the expensive nature of
scatter-type operations in deep learning frameworks), our
method runs in ∼7 milliseconds per image on a NVIDIA
GeForce GTX 1080, and ∼90 milliseconds on an Intel Xeon
CPU Processor E5-1607 v4 (10M Cache, 3.10 GHz). Be-
cause our model exists in log-chroma histogram space, the
uncompressed size of our entire model is ∼2 MB, small

enough to easily fit within the narrow constraints of limited
compute environments such as mobile phones.

4.1. Data Augmentation

Many of the datasets we use contain only a few images
per distinct camera model (e.g. the NUS dataset [15]) and
this poses a problem for our approach as neural networks
generally require significant amounts of training data. To
address this, we use a data augmentation procedure in which
images taken from a “source” camera model are mapped
into the color space of a “target” camera.

To perform this mapping, we first white balance each
raw source image using its ground-truth illuminant color,
and then transform that white-balanced raw image into the
device-independent CIE XYZ color space [16] using the
color space transformation matrix (CST) provided in each
DNG file [1]. Then, we transform the CIE XYZ image into
the target sensor space by inverting the CST of an image
taken from the target camera dataset.

Instead of randomly selecting an image from the target
dataset, we use the correlated color temperature of each im-
age and the capture exposure setting to match source and
target images that were captured under roughly the same
conditions. This means that “daytime” source images get
warped into the color space of “daytime” target images, etc.,
and this significantly increases the realism of our synthe-
sized data. After mapping the source image to the target
white-balanced sensor space, we randomly sample from a
cubic curve that has been fit to the rg chromaticity of illu-
minant colors in the target sensor.

Lastly, we apply a chromatic adaptation to generate the
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Input raw image

Nikon D810

Quasi-Unsupervised CC

Error = 3.90°

SIIE

Error = 4.70°
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Error = 2.16°
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Mobile Sony IMX135 Error = 2.99° Error = 6.16° Error = 0.80°

Canon EOS 5DSR Error = 10.92° Error = 2.23° Error = 0.75°

Figure 6: Here we visualize the performance of our C5 model alongside other camera-independent models: “quasi-unsupervised CC” [10]
and SIIE [2]. Despite not having seen any images from the test-set camera during training, C5 is able to produce accurate illuminant
estimates. The intermediate CCC filters and biases produced by C5 are also visualized.

augmented image in the target sensor space. This chromatic
adaptation is performed by multiplying each color channel
of the white-balanced raw image, mapped to the target sen-
sor space, with the corresponding sampled illuminant color
channel value; see Figure 5 for an example. Additional de-
tails can be found in the supplementary materials. This aug-
mentation allows us to generate additional training exam-
ples to improve the generalization of our model. More de-
tails are provided in Sec. 4.2.

4.2. Results and Comparisons

We validate our model using four public datasets con-
sisting of images taken from one or more camera mod-
els: the Gehler-Shi dataset (568 images, two cameras) [24],
the NUS dataset (1,736 images, eight cameras) [15], the
INTEL-TAU dataset (7,022 images, three cameras) [38],
and the Cube+ dataset (2,070 images, one camera) [7]
which has a separate 2019 “Challenge” test set [6]. We
measure performance by reporting the error statistics com-
monly used by the community: the mean, median, trimean,
and arithmetic means of the first and third quartiles (“best
25%” and “worst 25%”) of the angular error between the es-
timated illuminant and the true illuminant. As our method
randomly selects the additional images, each experiment is
repeated ten times and we reported the arithmetic mean of
each error metric (the supplementary materials contain stan-
dard deviations).

To evaluate our model’s performance at generalizing to
new camera models not seen during training, we adopt

a leave-one-out cross-validation evaluation approach: for
each dataset, we exclude all scenes and cameras used by the
test set from our training images. For a fair comparison with
FFCC [9], we trained FFCC using the same leave-one-out
cross-validation evaluation approach. Results can be seen in
Table 1 and qualitative comparisons are shown in Figures 6
and 7. Even when compared with prior sensor-independent
techniques [2,10], we achieve state-of-the-art performance,
as demonstrated in Table 1.

When evaluating on the two Cube+ [6, 7] test sets and
the INTEL-TAU [38] dataset in Table 1, we train our model
on the NUS [15] and Gehler-Shi [24] datasets. When eval-
uating on the Gehler-Shi [24] and the NUS [15] datasets in
Table 1, we train C5 using the INTEL-TAU dataset [38],
the Cube+ dataset [7], and one of the Gehler-Shi [24] and
the NUS [15] datasets after excluding the testing dataset.
The one deviation from this procedure is for the NUS re-
sult labeled “CS”, where for a fair comparison with the re-
cent SIIE method [2], we report our results with their cross-
sensor (CS) evaluation in Table 1, in which we only ex-
cluded images of the test camera, and repeated this process
over all cameras in the dataset.

We augmented the data used to train the model, adding
5,000 augmented examples generated as described in Sec.
4.1. In this process, we used only cameras of the training
sets of each experiment as “target” cameras for augmenta-
tion, which has the effect of mixing the sensors and scene
content from the training sets only. For instance, when eval-
uating on the INTEL-TAU [38] dataset, our augmented im-
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Figure 7: Here we compare our C5 model against FFCC [9]
on cross-sensor generalization using test-set Sony SLT-A57
images from the NUS dataset [15]. If FFCC is trained and
tested on images from the same camera it performs well,
as does C5 (top row). But if FFCC is instead tested on a
different camera, such as the Olympus EPL6, it generalizes
poorly, while C5 retains its performance (bottom row).

ages simulate the scene content of the NUS [15] dataset
as observed by sensors of the Gehler-Shi [24] dataset, and
vice-versa.

Characteristics of Additional Images Unless otherwise
stated, the additional input images are randomly selected,
but from the same camera model as the test image. This
setting is meant to be equivalent to the real-world use case
in which the additional images provided as input are, say, a
photographer’s previously-captured images that are already
present on the camera during inference. However, for the
“Cube+ Challenge” table, we provide an additional set of
experiments in Table 1, in which the set of additional im-
ages are chosen according to some heuristic, rather than
randomly. We identified the 20 test-set images with the
lowest variation of uv chroma values (“dull images”), the
20 test-set images with the highest variation of uv chroma
values (“vivid images”), and we show that using vivid im-
ages produces lower error rates than randomly-chosen or
dull images. This makes intuitive sense, as one might expect
colorful images to be a more informative signal as to the
spectral properties of previously-unobserved camera. We
also show results in Table 1 where the additional images are
taken from a different camera than the test-set camera, and
show that this results in error rates that are higher than us-
ing additional images from the same test-set camera, as one
might expect.

5. Conclusion
We have presented C5, a cross-camera convolutional

color constancy method. By embedding the existing state-
of-the-art convolutional color constancy model (CCC) [8,
9] into a multi-input hypernetwork approach, C5 can be
trained on images from multiple cameras, but at test time
synthesize weights for a CCC-like model that is dynami-
cally calibrated to the spectral properties of the previously-

Table 1: Angular errors on the Cube+ dataset [7], the Cube+
challenge [6], the INTEL-TAU dataset [38], the Gehler-Shi
dataset [24], and the NUS dataset [15]. The term “CS”
refers to cross-sensor as used in [2]. See the text for ad-
ditional details. Lowest errors are highlighted in yellow.

Cube+ Dataset Mean Med. B. 25% W. 25% Tri. Size (MB)
Gray-world [14] 3.52 2.55 0.60 7.98 2.82 -
Shades-of-Gray [20] 3.22 2.12 0.43 7.77 2.44 -
Cross-dataset CC [37] 2.47 1.94 - - - -
Quasi-Unsupervised CC [10] 2.69 1.76 0.49 6.45 2.00 622
SIIE [2] 2.14 1.44 0.44 5.06 - 10.3
FFCC [9] 2.69 1.89 0.46 6.31 2.08 0.22
C5 1.92 1.32 0.44 4.44 1.46 2.09

Cube+ Challenge Mean Med. B. 25% W. 25% Tri.
Gray-world [14] 4.44 3.50 0.77 9.64 -
1st-order Gray-Edge [54] 3.51 2.30 0.56 8.53 -
Quasi-Unsupervised CC [10] 3.12 2.19 0.60 7.28 2.40
SIIE [2] 2.89 1.72 0.71 7.06 -
FFCC [9] 3.25 2.04 0.64 8.22 2.09
C5 2.24 1.48 0.47 5.39 1.62
C5 (another camera model) 2.97 2.47 0.78 6.11 2.52
C5 (dull images) 2.35 1.58 0.46 5.57 1.70
C5 (vivid images) 2.19 1.39 0.43 5.44 1.54

INTEL-TAU Mean Med. B. 25% W. 25% Tri.
Gray-world [14] 4.7 3.7 0.9 10.0 4.0
Shades-of-Gray [20] 4.0 2.9 0.7 9.0 3.2
PCA-based B/W Colors [15] 4.6 3.4 0.7 10.3 3.7
Weighted Gray-Edge [26] 6.0 4.2 0.9 14.2 4.8
Quasi-Unsupervised CC [10] 3.12 2.19 0.60 7.28 2.40
SIIE [2] 3.42 2.42 0.73 7.80 2.64
FFCC [9] 3.42 2.38 0.70 7.96 2.61
C5 2.52 1.70 0.52 5.96 1.86

Gehler-Shi Dataset Mean Med. B. 25% W. 25% Tri.
Shades-of-Gray [20] 4.93 4.01 1.14 10.20 4.23
PCA-based B/W Colors [15] 3.52 2.14 0.50 8.74 2.47
ASM [5] 3.80 2.40 - - 2.70
Woo et al. [57] 4.30 2.86 0.71 10.14 3.31
Grayness Index [47] 3.07 1.87 0.43 7.62 2.16
Cross-dataset CC [37] 2.87 2.21 - - -
Quasi-Unsupervised CC [10] 3.46 2.23 - - -
SIIE [2] 2.77 1.93 0.55 6.53 -
FFCC [9] 2.95 2.19 0.57 6.75 2.35
CS 2.50 1.99 0.53 5.46 2.03

NUS Dataset Mean Med. B. 25% W. 25% Tri.
Gray-world [14] 4.59 3.46 1.16 9.85 3.81
Shades-of-Gray [20] 3.67 2.94 0.98 7.75 3.03
Local Surface Reflectance [22] 3.45 2.51 0.98 7.32 2.70
PCA-based B/W Colors [15] 2.93 2.33 0.78 6.13 2.42
Grayness Index [47] 2.91 1.97 0.56 6.67 2.13
Cross-dataset CC [37] 3.08 2.24 - - -
Quasi-Unsupervised CC [10] 3.00 2.25 - - -
SIIE (CS) [2] 2.05 1.50 0.52 4.48
FFCC [9] 2.87 2.14 0.71 6.23 2.30
CS 2.54 1.90 0.61 5.61 2.02
C5 (CS) 1.77 1.37 0.48 3.75 1.46

unseen camera of the test-set image. Extensive experimen-
tation demonstrates that C5 achieves state-of-the-art perfor-
mance on cross-camera color constancy for several datasets.
By enabling accurate illuminant estimation without requir-
ing the tedious collection of labeled training data for ev-
ery particular camera, we hope that C5 will accelerate the
widespread adoption of learning-based white balance by the
camera industry.
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